Upload initialization.py with huggingface_hub
Browse files- initialization.py +95 -0
initialization.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Optional, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from .config import InitFnType, ModelConfig
|
8 |
+
from .util import StrEnum
|
9 |
+
|
10 |
+
__all__ = ["init_weights", "ModuleType"]
|
11 |
+
|
12 |
+
|
13 |
+
class ModuleType(StrEnum):
|
14 |
+
in_module = "in"
|
15 |
+
out_module = "out"
|
16 |
+
emb = "emb"
|
17 |
+
final_out = "final_out"
|
18 |
+
|
19 |
+
|
20 |
+
def init_weights(
|
21 |
+
config: ModelConfig,
|
22 |
+
module: Union[nn.Linear, nn.Embedding],
|
23 |
+
d: Optional[int] = None,
|
24 |
+
layer_id: Optional[int] = None,
|
25 |
+
std_factor: float = 1.0,
|
26 |
+
type_of_module: Optional[ModuleType] = None,
|
27 |
+
) -> None:
|
28 |
+
"""
|
29 |
+
Initialize weights of a linear or embedding module.
|
30 |
+
|
31 |
+
:param config: The model config.
|
32 |
+
:param module: The linear or embedding submodule to initialize.
|
33 |
+
:param d: The effective input dimensionality of the weights. This could be smaller than the actual dimensions
|
34 |
+
for fused layers.
|
35 |
+
:param layer_id: When set, the standard deviation for the "mitchell" method will be adjusted by
|
36 |
+
``1 / sqrt(2 * (layer_id + 1))``.
|
37 |
+
"""
|
38 |
+
d = d if d is not None else config.d_model
|
39 |
+
if config.init_fn == InitFnType.normal:
|
40 |
+
std = config.init_std * std_factor
|
41 |
+
if config.init_cutoff_factor is not None:
|
42 |
+
cutoff_value = config.init_cutoff_factor * std
|
43 |
+
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
|
44 |
+
else:
|
45 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
46 |
+
elif config.init_fn == InitFnType.mitchell:
|
47 |
+
std = std_factor / math.sqrt(d)
|
48 |
+
if layer_id is not None:
|
49 |
+
std = std / math.sqrt(2 * (layer_id + 1))
|
50 |
+
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-3 * std, b=3 * std)
|
51 |
+
elif config.init_fn == InitFnType.kaiming_normal:
|
52 |
+
nn.init.kaiming_normal_(module.weight, nonlinearity="relu")
|
53 |
+
elif config.init_fn == InitFnType.fan_in:
|
54 |
+
std = std_factor / math.sqrt(d)
|
55 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
56 |
+
elif config.init_fn == InitFnType.full_megatron:
|
57 |
+
if type_of_module is None:
|
58 |
+
raise RuntimeError(f"When using the {InitFnType.full_megatron} init, every module must have a type.")
|
59 |
+
|
60 |
+
cutoff_factor = config.init_cutoff_factor
|
61 |
+
if cutoff_factor is None:
|
62 |
+
cutoff_factor = 3
|
63 |
+
|
64 |
+
if type_of_module == ModuleType.in_module:
|
65 |
+
# for att_proj (same as QKV), ff_proj
|
66 |
+
std = config.init_std
|
67 |
+
elif type_of_module == ModuleType.out_module:
|
68 |
+
# for attn_out, ff_out
|
69 |
+
std = config.init_std / math.sqrt(2.0 * config.n_layers)
|
70 |
+
elif type_of_module == ModuleType.emb:
|
71 |
+
# positional embeddings (wpe)
|
72 |
+
# token embeddings (wte)
|
73 |
+
std = config.init_std
|
74 |
+
elif type_of_module == ModuleType.final_out:
|
75 |
+
# final output (ff_out)
|
76 |
+
std = config.d_model**-0.5
|
77 |
+
else:
|
78 |
+
raise RuntimeError(f"Unknown module type '{type_of_module}'")
|
79 |
+
nn.init.trunc_normal_(
|
80 |
+
module.weight,
|
81 |
+
mean=0.0,
|
82 |
+
std=std,
|
83 |
+
a=-cutoff_factor * std,
|
84 |
+
b=cutoff_factor * std,
|
85 |
+
)
|
86 |
+
else:
|
87 |
+
raise NotImplementedError(config.init_fn)
|
88 |
+
|
89 |
+
if isinstance(module, nn.Linear):
|
90 |
+
if module.bias is not None:
|
91 |
+
nn.init.zeros_(module.bias)
|
92 |
+
|
93 |
+
if config.init_fn == InitFnType.normal and getattr(module, "_is_residual", False):
|
94 |
+
with torch.no_grad():
|
95 |
+
module.weight.div_(math.sqrt(2 * config.n_layers))
|