Upload modeling_olmo.py with huggingface_hub
Browse files- modeling_olmo.py +187 -0
modeling_olmo.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import fields
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import math
|
7 |
+
from transformers import PreTrainedModel
|
8 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast
|
9 |
+
from transformers.models.auto import AutoModelForCausalLM
|
10 |
+
|
11 |
+
from .config import ModelConfig
|
12 |
+
from .model import OLMo
|
13 |
+
|
14 |
+
from .configuration_olmo import OLMoConfig
|
15 |
+
|
16 |
+
def create_model_config_from_pretrained_config(config: OLMoConfig):
|
17 |
+
"""
|
18 |
+
Utility function
|
19 |
+
"""
|
20 |
+
|
21 |
+
kwargs = {}
|
22 |
+
for field in fields(ModelConfig):
|
23 |
+
kwargs[field.name] = getattr(config, field.name)
|
24 |
+
|
25 |
+
model_config = ModelConfig(**kwargs)
|
26 |
+
return model_config
|
27 |
+
|
28 |
+
class OLMoPreTrainedModel(PreTrainedModel):
|
29 |
+
config_class = OLMoConfig
|
30 |
+
base_model_prefix = "model"
|
31 |
+
_no_split_modules = ["OLMoBlock"]
|
32 |
+
# _skip_keys_device_placement = ["past_key_values", "causal_mask"]
|
33 |
+
_skip_keys_device_placement = ["past_key_values"]
|
34 |
+
|
35 |
+
def _init_weights(self, module):
|
36 |
+
# `OLMoModel.reset_parameters` initializes weights of itself and its children
|
37 |
+
if isinstance(module, OLMo):
|
38 |
+
module.reset_parameters()
|
39 |
+
|
40 |
+
class OLMoForCausalLM(OLMoPreTrainedModel):
|
41 |
+
_tied_weights_keys = []
|
42 |
+
# _tied_weights_keys = ["transformer.wte.weight"]
|
43 |
+
|
44 |
+
def __init__(self, config: OLMoConfig):
|
45 |
+
super().__init__(config)
|
46 |
+
self.model = OLMo(config)
|
47 |
+
|
48 |
+
# Initialize weights and apply final processing
|
49 |
+
self.post_init()
|
50 |
+
|
51 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
52 |
+
return self.model.transformer.wte
|
53 |
+
|
54 |
+
def set_input_embeddings(self, value: torch.nn.Module):
|
55 |
+
self.model.transformer.wte = value
|
56 |
+
|
57 |
+
def get_output_embeddings(self):
|
58 |
+
if self.config.weight_tying:
|
59 |
+
return self.model.transformer.wte
|
60 |
+
else:
|
61 |
+
return self.model.transformer.ff_out
|
62 |
+
|
63 |
+
def set_output_embeddings(self, value: torch.nn.Module):
|
64 |
+
if self.config.weight_tying:
|
65 |
+
self.model.transformer.wte = value
|
66 |
+
else:
|
67 |
+
self.model.transformer.ff_out = value
|
68 |
+
|
69 |
+
def set_decoder(self, decoder):
|
70 |
+
self.model = decoder
|
71 |
+
|
72 |
+
def get_decoder(self):
|
73 |
+
return self.model
|
74 |
+
|
75 |
+
def forward(
|
76 |
+
self,
|
77 |
+
input_ids: torch.LongTensor = None,
|
78 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
79 |
+
attention_mask: Optional[torch.Tensor] = None,
|
80 |
+
attention_bias: Optional[torch.Tensor] = None,
|
81 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
82 |
+
labels: Optional[torch.LongTensor] = None,
|
83 |
+
use_cache: Optional[bool] = None,
|
84 |
+
output_attentions: Optional[bool] = None,
|
85 |
+
output_hidden_states: Optional[bool] = None,
|
86 |
+
return_dict: Optional[bool] = None,
|
87 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
88 |
+
r"""
|
89 |
+
Args:
|
90 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
91 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
92 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
93 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
94 |
+
Returns:
|
95 |
+
Example:
|
96 |
+
```python
|
97 |
+
>>> from transformers import AutoTokenizer, OLMoForCausalLM
|
98 |
+
>>> model = OLMoForCausalLM.from_pretrained("allenai/OLMo-7B")
|
99 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-7B")
|
100 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
101 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
102 |
+
>>> # Generate
|
103 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
104 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
105 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
106 |
+
```"""
|
107 |
+
output_attentions = output_attentions or self.config.output_attentions
|
108 |
+
output_hidden_states = output_hidden_states or self.config.output_hidden_states
|
109 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
110 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
111 |
+
|
112 |
+
assert not output_attentions
|
113 |
+
|
114 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
115 |
+
base_output: Union[BaseModelOutputWithPast, Tuple] = self.model.forward(
|
116 |
+
input_ids=input_ids,
|
117 |
+
inputs_embeds=inputs_embeds,
|
118 |
+
attention_mask=attention_mask,
|
119 |
+
attention_bias=attention_bias,
|
120 |
+
past_key_values=past_key_values,
|
121 |
+
use_cache=use_cache,
|
122 |
+
output_hidden_states=output_hidden_states,
|
123 |
+
)
|
124 |
+
|
125 |
+
last_hidden_state = base_output.last_hidden_state if return_dict else base_output[0]
|
126 |
+
|
127 |
+
# Get logits.
|
128 |
+
# shape: (batch_size, seq_len or 1, vocab_size)
|
129 |
+
if self.config.weight_tying:
|
130 |
+
logits = F.linear(last_hidden_state, self.model.transformer.wte.weight, None) # type: ignore
|
131 |
+
else:
|
132 |
+
logits = self.model.transformer.ff_out(last_hidden_state) # type: ignore
|
133 |
+
if self.config.scale_logits:
|
134 |
+
logits.mul_(1 / math.sqrt(self.config.d_model))
|
135 |
+
|
136 |
+
loss = None
|
137 |
+
if labels is not None:
|
138 |
+
# Shift so that tokens < n predict n
|
139 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
140 |
+
shift_labels = labels[..., 1:].contiguous()
|
141 |
+
# Flatten the tokens
|
142 |
+
loss_fct = torch.nn.CrossEntropyLoss()
|
143 |
+
shift_logits = shift_logits.view(-1, self.config.embedding_size) # changed to self.config.embedding_size from self.config.vocab_size
|
144 |
+
shift_labels = shift_labels.view(-1)
|
145 |
+
# Enable model parallelism
|
146 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
147 |
+
loss = loss_fct(shift_logits, shift_labels)
|
148 |
+
|
149 |
+
if not return_dict:
|
150 |
+
output = (logits,) + base_output[1:]
|
151 |
+
return (loss,) + output if loss is not None else output
|
152 |
+
|
153 |
+
assert isinstance(base_output, BaseModelOutputWithPast)
|
154 |
+
return CausalLMOutputWithPast(
|
155 |
+
loss=loss,
|
156 |
+
logits=logits,
|
157 |
+
past_key_values=base_output.past_key_values,
|
158 |
+
hidden_states=base_output.hidden_states,
|
159 |
+
attentions=base_output.attentions,
|
160 |
+
)
|
161 |
+
|
162 |
+
def prepare_inputs_for_generation(
|
163 |
+
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
|
164 |
+
):
|
165 |
+
if past_key_values:
|
166 |
+
# This is because we want the model to only process the last generated token.
|
167 |
+
input_ids = input_ids[:, -1:]
|
168 |
+
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
|
169 |
+
|
170 |
+
if 'cache_position' in kwargs: kwargs.pop("cache_position")
|
171 |
+
if past_key_values and ("input_embeds" in kwargs or "inputs_embeds" in kwargs): kwargs.pop("inputs_embeds")
|
172 |
+
model_inputs.update(kwargs)
|
173 |
+
# logger.warning("%s %s", kwargs.keys(), model_inputs.keys())
|
174 |
+
# model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
|
175 |
+
return model_inputs
|
176 |
+
|
177 |
+
@staticmethod
|
178 |
+
def _reorder_cache(past_key_values, beam_idx):
|
179 |
+
reordered_past = ()
|
180 |
+
for layer_past in past_key_values:
|
181 |
+
reordered_past += (
|
182 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
183 |
+
)
|
184 |
+
return reordered_past
|
185 |
+
|
186 |
+
# Register the model so that it is available for transformer pipelines, auto-loading, etc.
|
187 |
+
# AutoModelForCausalLM.register(OLMoConfig, OLMoForCausalLM)
|