English
naveensp commited on
Commit
4df84c0
·
verified ·
1 Parent(s): f9bac78

Upload modeling_olmo.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_olmo.py +187 -0
modeling_olmo.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import fields
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import torch
5
+ import torch.nn.functional as F
6
+ import math
7
+ from transformers import PreTrainedModel
8
+ from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast
9
+ from transformers.models.auto import AutoModelForCausalLM
10
+
11
+ from .config import ModelConfig
12
+ from .model import OLMo
13
+
14
+ from .configuration_olmo import OLMoConfig
15
+
16
+ def create_model_config_from_pretrained_config(config: OLMoConfig):
17
+ """
18
+ Utility function
19
+ """
20
+
21
+ kwargs = {}
22
+ for field in fields(ModelConfig):
23
+ kwargs[field.name] = getattr(config, field.name)
24
+
25
+ model_config = ModelConfig(**kwargs)
26
+ return model_config
27
+
28
+ class OLMoPreTrainedModel(PreTrainedModel):
29
+ config_class = OLMoConfig
30
+ base_model_prefix = "model"
31
+ _no_split_modules = ["OLMoBlock"]
32
+ # _skip_keys_device_placement = ["past_key_values", "causal_mask"]
33
+ _skip_keys_device_placement = ["past_key_values"]
34
+
35
+ def _init_weights(self, module):
36
+ # `OLMoModel.reset_parameters` initializes weights of itself and its children
37
+ if isinstance(module, OLMo):
38
+ module.reset_parameters()
39
+
40
+ class OLMoForCausalLM(OLMoPreTrainedModel):
41
+ _tied_weights_keys = []
42
+ # _tied_weights_keys = ["transformer.wte.weight"]
43
+
44
+ def __init__(self, config: OLMoConfig):
45
+ super().__init__(config)
46
+ self.model = OLMo(config)
47
+
48
+ # Initialize weights and apply final processing
49
+ self.post_init()
50
+
51
+ def get_input_embeddings(self) -> torch.nn.Module:
52
+ return self.model.transformer.wte
53
+
54
+ def set_input_embeddings(self, value: torch.nn.Module):
55
+ self.model.transformer.wte = value
56
+
57
+ def get_output_embeddings(self):
58
+ if self.config.weight_tying:
59
+ return self.model.transformer.wte
60
+ else:
61
+ return self.model.transformer.ff_out
62
+
63
+ def set_output_embeddings(self, value: torch.nn.Module):
64
+ if self.config.weight_tying:
65
+ self.model.transformer.wte = value
66
+ else:
67
+ self.model.transformer.ff_out = value
68
+
69
+ def set_decoder(self, decoder):
70
+ self.model = decoder
71
+
72
+ def get_decoder(self):
73
+ return self.model
74
+
75
+ def forward(
76
+ self,
77
+ input_ids: torch.LongTensor = None,
78
+ inputs_embeds: Optional[torch.FloatTensor] = None,
79
+ attention_mask: Optional[torch.Tensor] = None,
80
+ attention_bias: Optional[torch.Tensor] = None,
81
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
82
+ labels: Optional[torch.LongTensor] = None,
83
+ use_cache: Optional[bool] = None,
84
+ output_attentions: Optional[bool] = None,
85
+ output_hidden_states: Optional[bool] = None,
86
+ return_dict: Optional[bool] = None,
87
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
88
+ r"""
89
+ Args:
90
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
91
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
92
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
93
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
94
+ Returns:
95
+ Example:
96
+ ```python
97
+ >>> from transformers import AutoTokenizer, OLMoForCausalLM
98
+ >>> model = OLMoForCausalLM.from_pretrained("allenai/OLMo-7B")
99
+ >>> tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-7B")
100
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
101
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
102
+ >>> # Generate
103
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
104
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
105
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
106
+ ```"""
107
+ output_attentions = output_attentions or self.config.output_attentions
108
+ output_hidden_states = output_hidden_states or self.config.output_hidden_states
109
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
110
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
111
+
112
+ assert not output_attentions
113
+
114
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
115
+ base_output: Union[BaseModelOutputWithPast, Tuple] = self.model.forward(
116
+ input_ids=input_ids,
117
+ inputs_embeds=inputs_embeds,
118
+ attention_mask=attention_mask,
119
+ attention_bias=attention_bias,
120
+ past_key_values=past_key_values,
121
+ use_cache=use_cache,
122
+ output_hidden_states=output_hidden_states,
123
+ )
124
+
125
+ last_hidden_state = base_output.last_hidden_state if return_dict else base_output[0]
126
+
127
+ # Get logits.
128
+ # shape: (batch_size, seq_len or 1, vocab_size)
129
+ if self.config.weight_tying:
130
+ logits = F.linear(last_hidden_state, self.model.transformer.wte.weight, None) # type: ignore
131
+ else:
132
+ logits = self.model.transformer.ff_out(last_hidden_state) # type: ignore
133
+ if self.config.scale_logits:
134
+ logits.mul_(1 / math.sqrt(self.config.d_model))
135
+
136
+ loss = None
137
+ if labels is not None:
138
+ # Shift so that tokens < n predict n
139
+ shift_logits = logits[..., :-1, :].contiguous()
140
+ shift_labels = labels[..., 1:].contiguous()
141
+ # Flatten the tokens
142
+ loss_fct = torch.nn.CrossEntropyLoss()
143
+ shift_logits = shift_logits.view(-1, self.config.embedding_size) # changed to self.config.embedding_size from self.config.vocab_size
144
+ shift_labels = shift_labels.view(-1)
145
+ # Enable model parallelism
146
+ shift_labels = shift_labels.to(shift_logits.device)
147
+ loss = loss_fct(shift_logits, shift_labels)
148
+
149
+ if not return_dict:
150
+ output = (logits,) + base_output[1:]
151
+ return (loss,) + output if loss is not None else output
152
+
153
+ assert isinstance(base_output, BaseModelOutputWithPast)
154
+ return CausalLMOutputWithPast(
155
+ loss=loss,
156
+ logits=logits,
157
+ past_key_values=base_output.past_key_values,
158
+ hidden_states=base_output.hidden_states,
159
+ attentions=base_output.attentions,
160
+ )
161
+
162
+ def prepare_inputs_for_generation(
163
+ self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
164
+ ):
165
+ if past_key_values:
166
+ # This is because we want the model to only process the last generated token.
167
+ input_ids = input_ids[:, -1:]
168
+ model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
169
+
170
+ if 'cache_position' in kwargs: kwargs.pop("cache_position")
171
+ if past_key_values and ("input_embeds" in kwargs or "inputs_embeds" in kwargs): kwargs.pop("inputs_embeds")
172
+ model_inputs.update(kwargs)
173
+ # logger.warning("%s %s", kwargs.keys(), model_inputs.keys())
174
+ # model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
175
+ return model_inputs
176
+
177
+ @staticmethod
178
+ def _reorder_cache(past_key_values, beam_idx):
179
+ reordered_past = ()
180
+ for layer_past in past_key_values:
181
+ reordered_past += (
182
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
183
+ )
184
+ return reordered_past
185
+
186
+ # Register the model so that it is available for transformer pipelines, auto-loading, etc.
187
+ # AutoModelForCausalLM.register(OLMoConfig, OLMoForCausalLM)