Delete modeling_olmo.py
Browse files- modeling_olmo.py +0 -187
modeling_olmo.py
DELETED
@@ -1,187 +0,0 @@
|
|
1 |
-
from dataclasses import fields
|
2 |
-
from typing import List, Optional, Tuple, Union
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.nn.functional as F
|
6 |
-
import math
|
7 |
-
from transformers import PreTrainedModel
|
8 |
-
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast
|
9 |
-
from transformers.models.auto import AutoModelForCausalLM
|
10 |
-
|
11 |
-
from .config import ModelConfig
|
12 |
-
from .model import OLMo
|
13 |
-
|
14 |
-
from .configuration_olmo import OLMoConfig
|
15 |
-
|
16 |
-
def create_model_config_from_pretrained_config(config: OLMoConfig):
|
17 |
-
"""
|
18 |
-
Utility function
|
19 |
-
"""
|
20 |
-
|
21 |
-
kwargs = {}
|
22 |
-
for field in fields(ModelConfig):
|
23 |
-
kwargs[field.name] = getattr(config, field.name)
|
24 |
-
|
25 |
-
model_config = ModelConfig(**kwargs)
|
26 |
-
return model_config
|
27 |
-
|
28 |
-
class OLMoPreTrainedModel(PreTrainedModel):
|
29 |
-
config_class = OLMoConfig
|
30 |
-
base_model_prefix = "model"
|
31 |
-
_no_split_modules = ["OLMoBlock"]
|
32 |
-
# _skip_keys_device_placement = ["past_key_values", "causal_mask"]
|
33 |
-
_skip_keys_device_placement = ["past_key_values"]
|
34 |
-
|
35 |
-
def _init_weights(self, module):
|
36 |
-
# `OLMoModel.reset_parameters` initializes weights of itself and its children
|
37 |
-
if isinstance(module, OLMo):
|
38 |
-
module.reset_parameters()
|
39 |
-
|
40 |
-
class OLMoForCausalLM(OLMoPreTrainedModel):
|
41 |
-
_tied_weights_keys = []
|
42 |
-
# _tied_weights_keys = ["transformer.wte.weight"]
|
43 |
-
|
44 |
-
def __init__(self, config: OLMoConfig):
|
45 |
-
super().__init__(config)
|
46 |
-
self.model = OLMo(config)
|
47 |
-
|
48 |
-
# Initialize weights and apply final processing
|
49 |
-
self.post_init()
|
50 |
-
|
51 |
-
def get_input_embeddings(self) -> torch.nn.Module:
|
52 |
-
return self.model.transformer.wte
|
53 |
-
|
54 |
-
def set_input_embeddings(self, value: torch.nn.Module):
|
55 |
-
self.model.transformer.wte = value
|
56 |
-
|
57 |
-
def get_output_embeddings(self):
|
58 |
-
if self.config.weight_tying:
|
59 |
-
return self.model.transformer.wte
|
60 |
-
else:
|
61 |
-
return self.model.transformer.ff_out
|
62 |
-
|
63 |
-
def set_output_embeddings(self, value: torch.nn.Module):
|
64 |
-
if self.config.weight_tying:
|
65 |
-
self.model.transformer.wte = value
|
66 |
-
else:
|
67 |
-
self.model.transformer.ff_out = value
|
68 |
-
|
69 |
-
def set_decoder(self, decoder):
|
70 |
-
self.model = decoder
|
71 |
-
|
72 |
-
def get_decoder(self):
|
73 |
-
return self.model
|
74 |
-
|
75 |
-
def forward(
|
76 |
-
self,
|
77 |
-
input_ids: torch.LongTensor = None,
|
78 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
79 |
-
attention_mask: Optional[torch.Tensor] = None,
|
80 |
-
attention_bias: Optional[torch.Tensor] = None,
|
81 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
82 |
-
labels: Optional[torch.LongTensor] = None,
|
83 |
-
use_cache: Optional[bool] = None,
|
84 |
-
output_attentions: Optional[bool] = None,
|
85 |
-
output_hidden_states: Optional[bool] = None,
|
86 |
-
return_dict: Optional[bool] = None,
|
87 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
88 |
-
r"""
|
89 |
-
Args:
|
90 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
91 |
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
92 |
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
93 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
94 |
-
Returns:
|
95 |
-
Example:
|
96 |
-
```python
|
97 |
-
>>> from transformers import AutoTokenizer, OLMoForCausalLM
|
98 |
-
>>> model = OLMoForCausalLM.from_pretrained("allenai/OLMo-7B")
|
99 |
-
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-7B")
|
100 |
-
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
101 |
-
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
102 |
-
>>> # Generate
|
103 |
-
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
104 |
-
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
105 |
-
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
106 |
-
```"""
|
107 |
-
output_attentions = output_attentions or self.config.output_attentions
|
108 |
-
output_hidden_states = output_hidden_states or self.config.output_hidden_states
|
109 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
110 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
111 |
-
|
112 |
-
assert not output_attentions
|
113 |
-
|
114 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
115 |
-
base_output: Union[BaseModelOutputWithPast, Tuple] = self.model.forward(
|
116 |
-
input_ids=input_ids,
|
117 |
-
inputs_embeds=inputs_embeds,
|
118 |
-
attention_mask=attention_mask,
|
119 |
-
attention_bias=attention_bias,
|
120 |
-
past_key_values=past_key_values,
|
121 |
-
use_cache=use_cache,
|
122 |
-
output_hidden_states=output_hidden_states,
|
123 |
-
)
|
124 |
-
|
125 |
-
last_hidden_state = base_output.last_hidden_state if return_dict else base_output[0]
|
126 |
-
|
127 |
-
# Get logits.
|
128 |
-
# shape: (batch_size, seq_len or 1, vocab_size)
|
129 |
-
if self.config.weight_tying:
|
130 |
-
logits = F.linear(last_hidden_state, self.model.transformer.wte.weight, None) # type: ignore
|
131 |
-
else:
|
132 |
-
logits = self.model.transformer.ff_out(last_hidden_state) # type: ignore
|
133 |
-
if self.config.scale_logits:
|
134 |
-
logits.mul_(1 / math.sqrt(self.config.d_model))
|
135 |
-
|
136 |
-
loss = None
|
137 |
-
if labels is not None:
|
138 |
-
# Shift so that tokens < n predict n
|
139 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
140 |
-
shift_labels = labels[..., 1:].contiguous()
|
141 |
-
# Flatten the tokens
|
142 |
-
loss_fct = torch.nn.CrossEntropyLoss()
|
143 |
-
shift_logits = shift_logits.view(-1, self.config.embedding_size) # changed to self.config.embedding_size from self.config.vocab_size
|
144 |
-
shift_labels = shift_labels.view(-1)
|
145 |
-
# Enable model parallelism
|
146 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
147 |
-
loss = loss_fct(shift_logits, shift_labels)
|
148 |
-
|
149 |
-
if not return_dict:
|
150 |
-
output = (logits,) + base_output[1:]
|
151 |
-
return (loss,) + output if loss is not None else output
|
152 |
-
|
153 |
-
assert isinstance(base_output, BaseModelOutputWithPast)
|
154 |
-
return CausalLMOutputWithPast(
|
155 |
-
loss=loss,
|
156 |
-
logits=logits,
|
157 |
-
past_key_values=base_output.past_key_values,
|
158 |
-
hidden_states=base_output.hidden_states,
|
159 |
-
attentions=base_output.attentions,
|
160 |
-
)
|
161 |
-
|
162 |
-
def prepare_inputs_for_generation(
|
163 |
-
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
|
164 |
-
):
|
165 |
-
if past_key_values:
|
166 |
-
# This is because we want the model to only process the last generated token.
|
167 |
-
input_ids = input_ids[:, -1:]
|
168 |
-
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
|
169 |
-
|
170 |
-
if 'cache_position' in kwargs: kwargs.pop("cache_position")
|
171 |
-
if past_key_values and ("input_embeds" in kwargs or "inputs_embeds" in kwargs): kwargs.pop("inputs_embeds")
|
172 |
-
model_inputs.update(kwargs)
|
173 |
-
# logger.warning("%s %s", kwargs.keys(), model_inputs.keys())
|
174 |
-
# model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
|
175 |
-
return model_inputs
|
176 |
-
|
177 |
-
@staticmethod
|
178 |
-
def _reorder_cache(past_key_values, beam_idx):
|
179 |
-
reordered_past = ()
|
180 |
-
for layer_past in past_key_values:
|
181 |
-
reordered_past += (
|
182 |
-
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
183 |
-
)
|
184 |
-
return reordered_past
|
185 |
-
|
186 |
-
# Register the model so that it is available for transformer pipelines, auto-loading, etc.
|
187 |
-
# AutoModelForCausalLM.register(OLMoConfig, OLMoForCausalLM)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|