Upload model.py with huggingface_hub
Browse files
model.py
ADDED
@@ -0,0 +1,1824 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Adapted from
|
3 |
+
[MosaiclML](https://github.com/mosaicml/examples.git) and
|
4 |
+
[minGPT](https://github.com/karpathy/minGPT.git)
|
5 |
+
"""
|
6 |
+
|
7 |
+
from __future__ import annotations
|
8 |
+
|
9 |
+
import logging
|
10 |
+
import math
|
11 |
+
import sys
|
12 |
+
from abc import abstractmethod
|
13 |
+
from collections import defaultdict
|
14 |
+
from functools import partial
|
15 |
+
from typing import (
|
16 |
+
Callable,
|
17 |
+
Dict,
|
18 |
+
Iterable,
|
19 |
+
List,
|
20 |
+
NamedTuple,
|
21 |
+
Optional,
|
22 |
+
Sequence,
|
23 |
+
Set,
|
24 |
+
Tuple,
|
25 |
+
cast,
|
26 |
+
)
|
27 |
+
|
28 |
+
import torch
|
29 |
+
import torch.backends.cuda
|
30 |
+
import torch.nn as nn
|
31 |
+
import torch.nn.functional as F
|
32 |
+
from torch import einsum
|
33 |
+
|
34 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
35 |
+
|
36 |
+
from .aliases import PathOrStr
|
37 |
+
from .beam_search import BeamSearch, Constraint, FinalSequenceScorer, Sampler
|
38 |
+
from .config import (
|
39 |
+
ActivationCheckpointingStrategy,
|
40 |
+
ActivationType,
|
41 |
+
BlockType,
|
42 |
+
CheckpointType,
|
43 |
+
FSDPWrapStrategy,
|
44 |
+
LayerNormType,
|
45 |
+
ModelConfig,
|
46 |
+
)
|
47 |
+
from .exceptions import OLMoConfigurationError
|
48 |
+
from .initialization import ModuleType, init_weights
|
49 |
+
from .torch_util import ensure_finite_
|
50 |
+
|
51 |
+
import copy
|
52 |
+
if sys.version_info.minor > 8:
|
53 |
+
from collections.abc import MutableMapping
|
54 |
+
elif sys.version_info.minor == 8:
|
55 |
+
from typing import MutableMapping
|
56 |
+
else:
|
57 |
+
raise SystemExit("This script supports Python 3.8 or higher")
|
58 |
+
|
59 |
+
__all__ = [
|
60 |
+
"LayerNormBase",
|
61 |
+
"LayerNorm",
|
62 |
+
"RMSLayerNorm",
|
63 |
+
"RotaryEmbedding",
|
64 |
+
"Activation",
|
65 |
+
"GELU",
|
66 |
+
"ReLU",
|
67 |
+
"SwiGLU",
|
68 |
+
"BitLinear158",
|
69 |
+
"OLMoBlock",
|
70 |
+
"OLMoSequentialBlock",
|
71 |
+
"OLMoParallelBlock",
|
72 |
+
"OLMo",
|
73 |
+
"OLMoOutput",
|
74 |
+
"OLMoGenerateOutput",
|
75 |
+
]
|
76 |
+
|
77 |
+
|
78 |
+
log = logging.getLogger(__name__)
|
79 |
+
|
80 |
+
|
81 |
+
def activation_checkpoint_function(cfg: ModelConfig):
|
82 |
+
preserve_rng_state = (
|
83 |
+
(cfg.attention_dropout == 0.0) and (cfg.embedding_dropout == 0.0) and (cfg.residual_dropout == 0.0)
|
84 |
+
)
|
85 |
+
from torch.utils.checkpoint import checkpoint
|
86 |
+
|
87 |
+
return partial(
|
88 |
+
checkpoint,
|
89 |
+
preserve_rng_state=preserve_rng_state,
|
90 |
+
use_reentrant=False,
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
class BufferCache(dict, MutableMapping[str, torch.Tensor]):
|
95 |
+
"""
|
96 |
+
Cache for attention biases and other things that would normally be stored as buffers.
|
97 |
+
We avoid using buffers because we've run into various issues doing so with FSDP.
|
98 |
+
In general it appears the way FSDP handles buffers is not well-defined.
|
99 |
+
It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid
|
100 |
+
since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into
|
101 |
+
NaNs when they're synchronized due to casting or some other issue.
|
102 |
+
"""
|
103 |
+
|
104 |
+
|
105 |
+
def _non_meta_init_device(config: ModelConfig) -> torch.device:
|
106 |
+
if config.init_device is not None and config.init_device != "meta":
|
107 |
+
return torch.device(config.init_device)
|
108 |
+
else:
|
109 |
+
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
110 |
+
|
111 |
+
|
112 |
+
class Dropout(nn.Dropout):
|
113 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
114 |
+
if self.p == 0.0:
|
115 |
+
return input
|
116 |
+
else:
|
117 |
+
return F.dropout(input, self.p, self.training, self.inplace)
|
118 |
+
|
119 |
+
|
120 |
+
class LayerNormBase(nn.Module):
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
config: ModelConfig,
|
124 |
+
*,
|
125 |
+
size: Optional[int] = None,
|
126 |
+
elementwise_affine: Optional[bool] = True,
|
127 |
+
eps: float = 1e-05,
|
128 |
+
):
|
129 |
+
super().__init__()
|
130 |
+
self.config = config
|
131 |
+
self.eps = eps
|
132 |
+
self.normalized_shape = (size or config.d_model,)
|
133 |
+
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
|
134 |
+
self.weight = nn.Parameter(torch.ones(self.normalized_shape, device=config.init_device))
|
135 |
+
use_bias = self.config.bias_for_layer_norm
|
136 |
+
if use_bias is None:
|
137 |
+
use_bias = self.config.include_bias
|
138 |
+
if use_bias:
|
139 |
+
self.bias = nn.Parameter(torch.zeros(self.normalized_shape, device=config.init_device))
|
140 |
+
else:
|
141 |
+
self.register_parameter("bias", None)
|
142 |
+
else:
|
143 |
+
self.register_parameter("bias", None)
|
144 |
+
self.register_parameter("weight", None)
|
145 |
+
|
146 |
+
@abstractmethod
|
147 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
148 |
+
raise NotImplementedError
|
149 |
+
|
150 |
+
@classmethod
|
151 |
+
def build(cls, config: ModelConfig, size: Optional[int] = None, **kwargs) -> LayerNormBase:
|
152 |
+
if config.layer_norm_type == LayerNormType.default:
|
153 |
+
return LayerNorm(config, size=size, low_precision=False, **kwargs)
|
154 |
+
elif config.layer_norm_type == LayerNormType.low_precision:
|
155 |
+
return LayerNorm(config, size=size, low_precision=True, **kwargs)
|
156 |
+
elif config.layer_norm_type == LayerNormType.rms:
|
157 |
+
return RMSLayerNorm(config, size=size, **kwargs)
|
158 |
+
else:
|
159 |
+
raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'")
|
160 |
+
|
161 |
+
def _cast_if_autocast_enabled(self, tensor: torch.Tensor, dtype: Optional[torch.dtype] = None) -> torch.Tensor:
|
162 |
+
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
|
163 |
+
# `is_autocast_cpu_enabled()` for CPU autocast.
|
164 |
+
# See https://github.com/pytorch/pytorch/issues/110966.
|
165 |
+
if tensor.device.type == "cuda" and torch.is_autocast_enabled():
|
166 |
+
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_gpu_dtype())
|
167 |
+
elif tensor.device.type == "cpu" and torch.is_autocast_cpu_enabled():
|
168 |
+
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_cpu_dtype())
|
169 |
+
else:
|
170 |
+
return tensor
|
171 |
+
|
172 |
+
def reset_parameters(self):
|
173 |
+
if self.weight is not None:
|
174 |
+
torch.nn.init.ones_(self.weight) # type: ignore
|
175 |
+
if self.bias is not None:
|
176 |
+
torch.nn.init.zeros_(self.bias) # type: ignore
|
177 |
+
|
178 |
+
|
179 |
+
class LayerNorm(LayerNormBase):
|
180 |
+
"""
|
181 |
+
The default :class:`LayerNorm` implementation which can optionally run in low precision.
|
182 |
+
"""
|
183 |
+
|
184 |
+
def __init__(
|
185 |
+
self,
|
186 |
+
config: ModelConfig,
|
187 |
+
size: Optional[int] = None,
|
188 |
+
low_precision: bool = False,
|
189 |
+
elementwise_affine: Optional[bool] = None,
|
190 |
+
eps: float = 1e-05,
|
191 |
+
):
|
192 |
+
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
|
193 |
+
self.low_precision = low_precision
|
194 |
+
|
195 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
196 |
+
if self.low_precision:
|
197 |
+
module_device = x.device
|
198 |
+
downcast_x = self._cast_if_autocast_enabled(x)
|
199 |
+
downcast_weight = (
|
200 |
+
self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
201 |
+
)
|
202 |
+
downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
|
203 |
+
with torch.autocast(enabled=False, device_type=module_device.type):
|
204 |
+
return F.layer_norm(
|
205 |
+
downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps)
|
209 |
+
|
210 |
+
|
211 |
+
class RMSLayerNorm(LayerNormBase):
|
212 |
+
"""
|
213 |
+
RMS layer norm, a simplified :class:`LayerNorm` implementation
|
214 |
+
"""
|
215 |
+
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
config: ModelConfig,
|
219 |
+
size: Optional[int] = None,
|
220 |
+
elementwise_affine: Optional[bool] = None,
|
221 |
+
eps: float = 1e-5,
|
222 |
+
):
|
223 |
+
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
|
224 |
+
|
225 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
226 |
+
with torch.autocast(enabled=False, device_type=x.device.type):
|
227 |
+
og_dtype = x.dtype
|
228 |
+
x = x.to(torch.float32)
|
229 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
230 |
+
x = x * torch.rsqrt(variance + self.eps)
|
231 |
+
x = x.to(og_dtype)
|
232 |
+
|
233 |
+
if self.weight is not None:
|
234 |
+
if self.bias is not None:
|
235 |
+
return self.weight * x + self.bias
|
236 |
+
else:
|
237 |
+
return self.weight * x
|
238 |
+
else:
|
239 |
+
return x
|
240 |
+
|
241 |
+
|
242 |
+
class RotaryEmbedding(nn.Module):
|
243 |
+
"""
|
244 |
+
[Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864).
|
245 |
+
"""
|
246 |
+
|
247 |
+
def __init__(self, config: ModelConfig, cache: BufferCache):
|
248 |
+
super().__init__()
|
249 |
+
self.config = config
|
250 |
+
self.__cache = cache
|
251 |
+
# Warm up cache.
|
252 |
+
self.get_rotary_embedding(config.max_sequence_length, _non_meta_init_device(config))
|
253 |
+
|
254 |
+
def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
|
255 |
+
if (
|
256 |
+
(pos_sin := self.__cache.get("rope_pos_sin")) is not None
|
257 |
+
and (pos_cos := self.__cache.get("rope_pos_cos")) is not None
|
258 |
+
and pos_sin.shape[-2] >= seq_len
|
259 |
+
and pos_cos.shape[-2] >= seq_len
|
260 |
+
):
|
261 |
+
if pos_sin.device != device:
|
262 |
+
pos_sin = pos_sin.to(device)
|
263 |
+
self.__cache["rope_pos_sin"] = pos_sin
|
264 |
+
if pos_cos.device != device:
|
265 |
+
pos_cos = pos_cos.to(device)
|
266 |
+
self.__cache["rope_pos_cos"] = pos_cos
|
267 |
+
return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :]
|
268 |
+
|
269 |
+
with torch.autocast(device.type, enabled=False):
|
270 |
+
dim = self.config.d_model // self.config.n_heads
|
271 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim))
|
272 |
+
seq = torch.arange(seq_len, device=device, dtype=torch.float)
|
273 |
+
freqs = einsum("i , j -> i j", seq, inv_freq)
|
274 |
+
positions = torch.cat((freqs, freqs), dim=-1)
|
275 |
+
pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :]
|
276 |
+
self.__cache["rope_pos_sin"] = pos_sin
|
277 |
+
self.__cache["rope_pos_cos"] = pos_cos
|
278 |
+
return pos_sin, pos_cos
|
279 |
+
|
280 |
+
def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
|
281 |
+
B, nh, T, hs = x.size()
|
282 |
+
x = x.view(B, nh, T, 2, hs // 2)
|
283 |
+
x1, x2 = x.unbind(dim=-2)
|
284 |
+
return torch.cat((-x2, x1), dim=-1)
|
285 |
+
|
286 |
+
def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
287 |
+
return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype)
|
288 |
+
|
289 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
290 |
+
if self.config.rope_full_precision:
|
291 |
+
q_, k_ = q.float(), k.float()
|
292 |
+
else:
|
293 |
+
q_, k_ = q, k
|
294 |
+
|
295 |
+
with torch.autocast(q.device.type, enabled=False):
|
296 |
+
query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None
|
297 |
+
pos_sin, pos_cos = self.get_rotary_embedding(key_len, q_.device)
|
298 |
+
pos_sin = pos_sin.type_as(q_)
|
299 |
+
pos_cos = pos_cos.type_as(q_)
|
300 |
+
q_ = self.apply_rotary_pos_emb(
|
301 |
+
pos_sin[:, :, key_len - query_len : key_len, :],
|
302 |
+
pos_cos[:, :, key_len - query_len : key_len, :],
|
303 |
+
q_,
|
304 |
+
)
|
305 |
+
k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_)
|
306 |
+
return q_.type_as(q), k_.type_as(k)
|
307 |
+
|
308 |
+
|
309 |
+
class Activation(nn.Module):
|
310 |
+
def __init__(self, config: ModelConfig):
|
311 |
+
super().__init__()
|
312 |
+
self.config = config
|
313 |
+
|
314 |
+
@abstractmethod
|
315 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
316 |
+
raise NotImplementedError
|
317 |
+
|
318 |
+
@property
|
319 |
+
@abstractmethod
|
320 |
+
def output_multiplier(self) -> float:
|
321 |
+
raise NotImplementedError
|
322 |
+
|
323 |
+
@classmethod
|
324 |
+
def build(cls, config: ModelConfig) -> Activation:
|
325 |
+
if config.activation_type == ActivationType.gelu:
|
326 |
+
return cast(Activation, GELU(approximate="none"))
|
327 |
+
elif config.activation_type == ActivationType.relu:
|
328 |
+
return cast(Activation, ReLU(inplace=False))
|
329 |
+
elif config.activation_type == ActivationType.swiglu:
|
330 |
+
return SwiGLU(config)
|
331 |
+
else:
|
332 |
+
raise NotImplementedError(f"Unknown activation: '{config.activation_type}'")
|
333 |
+
|
334 |
+
|
335 |
+
class GELU(nn.GELU):
|
336 |
+
@property
|
337 |
+
def output_multiplier(self) -> float:
|
338 |
+
return 1.0
|
339 |
+
|
340 |
+
|
341 |
+
class ReLU(nn.ReLU):
|
342 |
+
@property
|
343 |
+
def output_multiplier(self) -> float:
|
344 |
+
return 1.0
|
345 |
+
|
346 |
+
|
347 |
+
class SwiGLU(Activation):
|
348 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
349 |
+
x, gate = x.chunk(2, dim=-1)
|
350 |
+
return F.silu(gate) * x
|
351 |
+
|
352 |
+
@property
|
353 |
+
def output_multiplier(self) -> float:
|
354 |
+
return 0.5
|
355 |
+
|
356 |
+
|
357 |
+
def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor:
|
358 |
+
att_bias = torch.triu(
|
359 |
+
torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
|
360 |
+
diagonal=1,
|
361 |
+
)
|
362 |
+
att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min)
|
363 |
+
return att_bias.view(1, 1, seq_len, seq_len) # type: ignore
|
364 |
+
|
365 |
+
|
366 |
+
def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor:
|
367 |
+
if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len:
|
368 |
+
if causal_bias.device != device:
|
369 |
+
causal_bias = causal_bias.to(device)
|
370 |
+
cache["causal_attention_bias"] = causal_bias
|
371 |
+
return causal_bias
|
372 |
+
with torch.autocast(device.type, enabled=False):
|
373 |
+
causal_bias = causal_attention_bias(seq_len, device)
|
374 |
+
cache["causal_attention_bias"] = causal_bias
|
375 |
+
return causal_bias
|
376 |
+
|
377 |
+
|
378 |
+
def alibi_attention_bias(seq_len: int, config: ModelConfig, device: torch.device) -> torch.FloatTensor:
|
379 |
+
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, 1, seq_len)
|
380 |
+
|
381 |
+
# shape: (1, 1, seq_len, seq_len)
|
382 |
+
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, seq_len, 1)
|
383 |
+
alibi_bias.abs_().mul_(-1)
|
384 |
+
|
385 |
+
# shape: (n_heads,)
|
386 |
+
m = torch.arange(1, config.n_heads + 1, dtype=torch.float, device=device)
|
387 |
+
m.mul_(config.alibi_bias_max / config.n_heads)
|
388 |
+
|
389 |
+
# shape: (1, n_heads, seq_len, seq_len)
|
390 |
+
return alibi_bias * (1.0 / (2 ** m.view(1, config.n_heads, 1, 1))) # type: ignore
|
391 |
+
|
392 |
+
def activation_quant(x):
|
393 |
+
"""Per−token quantization to 8 bits. No grouping is needed for quantization.
|
394 |
+
Args:
|
395 |
+
x: an activation tensor with shape [n, d]
|
396 |
+
Returns:
|
397 |
+
y: a quantized activation tensor with shape [n, d]
|
398 |
+
"""
|
399 |
+
scale = 127.0 / x.abs().max(dim=-1, keepdim=True).values.clamp_(min=1e-5)
|
400 |
+
y = (x * scale).round().clamp_(-128, 127) / scale
|
401 |
+
return y
|
402 |
+
|
403 |
+
def weight_quant(w):
|
404 |
+
"""Per−tensor quantization to 1.58 bits. No grouping is needed for quantization.
|
405 |
+
Args:
|
406 |
+
w: a weight tensor with shape [d, k]
|
407 |
+
Returns:
|
408 |
+
u: a quantized weight with shape [d, k]
|
409 |
+
"""
|
410 |
+
scale = 1.0 / w.abs().mean().clamp_(min=1e-5)
|
411 |
+
u = (w * scale).round().clamp_(-1, 1) / scale
|
412 |
+
return u
|
413 |
+
|
414 |
+
def activation_norm_quant(x):
|
415 |
+
"""
|
416 |
+
same as activation_quant definition - but returning y and scale seperately
|
417 |
+
Args:
|
418 |
+
x: an activation tensor with shape [n, d]
|
419 |
+
Returns:
|
420 |
+
y: a quantized activation tensor with shape [n, d]
|
421 |
+
scale: a scalar for dequantization with shape [1]
|
422 |
+
"""
|
423 |
+
scale = 127.0 / x.abs().max(dim=-1, keepdim=True).values.clamp_(min=1e-5)
|
424 |
+
y = (x * scale).round().clamp_(-128, 127)
|
425 |
+
return y, scale
|
426 |
+
|
427 |
+
def gemm_lowbit_kernel(x, w):
|
428 |
+
y = F.linear(x, w)
|
429 |
+
return y
|
430 |
+
|
431 |
+
class BitLinear158(nn.Linear):
|
432 |
+
"""
|
433 |
+
This is only for training, and kernel optimization is needed for efficiency.
|
434 |
+
"""
|
435 |
+
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
436 |
+
device=None, dtype=None, config=None):
|
437 |
+
super().__init__(in_features, out_features, bias, device, dtype)
|
438 |
+
self.norm = RMSLayerNorm(config, elementwise_affine=False)
|
439 |
+
|
440 |
+
def forward(self, x):
|
441 |
+
"""
|
442 |
+
Args:
|
443 |
+
x: an input tensor with shape [n, d]
|
444 |
+
Returns:
|
445 |
+
y: an output tensor with shape [n, d]
|
446 |
+
"""
|
447 |
+
w = self.weight # a weight tensor with shape [d, k]
|
448 |
+
x_norm = self.norm(x)
|
449 |
+
# Atrick for implementing Straight−Through−Estimator (STE) using detach()
|
450 |
+
x_quant = x_norm + (activation_quant(x_norm) - x_norm).detach()
|
451 |
+
w_quant = w + (weight_quant(w) - w).detach()
|
452 |
+
y = F.linear(x_quant, w_quant)
|
453 |
+
return y
|
454 |
+
|
455 |
+
class BitLinear158_inference(nn.Linear):
|
456 |
+
"""
|
457 |
+
Use quantized weights for inference .
|
458 |
+
"""
|
459 |
+
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
460 |
+
device=None, dtype=None, config=None):
|
461 |
+
super().__init__(in_features, out_features, bias, device, dtype)
|
462 |
+
self.norm = RMSLayerNorm(config, elementwise_affine=False)
|
463 |
+
self.weight_scale = nn.Parameter(torch.ones(1))
|
464 |
+
|
465 |
+
def forward(self, x):
|
466 |
+
"""
|
467 |
+
Args:
|
468 |
+
x: an input tensor with shape [n, d]
|
469 |
+
Returns:
|
470 |
+
y: an output tensor with shape [n, d]
|
471 |
+
"""
|
472 |
+
w = self.weight # a 1.58−bit weight tensor with shape [d, k]
|
473 |
+
w_scale = self.weight_scale # a full−precision weight scale tensor with shape [1]
|
474 |
+
x_norm = self.norm(x)
|
475 |
+
x_quant, x_scale = activation_norm_quant(x_norm)
|
476 |
+
y = gemm_lowbit_kernel(x_quant, w) / w_scale / x_scale
|
477 |
+
return y
|
478 |
+
|
479 |
+
|
480 |
+
class OLMoBlock(nn.Module):
|
481 |
+
"""
|
482 |
+
A base class for transformer block implementations.
|
483 |
+
"""
|
484 |
+
|
485 |
+
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
|
486 |
+
super().__init__()
|
487 |
+
self.layer_id = layer_id
|
488 |
+
self.config = config
|
489 |
+
self.hidden_size = (
|
490 |
+
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
|
491 |
+
)
|
492 |
+
self.__cache = cache
|
493 |
+
assert config.d_model % config.n_heads == 0
|
494 |
+
|
495 |
+
self._activation_checkpoint_fn = None
|
496 |
+
|
497 |
+
Linear = BitLinear158_inference if config.inference_mode else BitLinear158 if config.ternary else nn.Linear
|
498 |
+
|
499 |
+
# Dropout.
|
500 |
+
self.dropout = Dropout(config.residual_dropout)
|
501 |
+
|
502 |
+
# Layer norms.
|
503 |
+
self.k_norm: Optional[LayerNormBase] = None
|
504 |
+
self.q_norm: Optional[LayerNormBase] = None
|
505 |
+
if config.attention_layer_norm:
|
506 |
+
self.k_norm = LayerNormBase.build(
|
507 |
+
config,
|
508 |
+
size=config.d_model // config.n_heads if config.multi_query_attention else None,
|
509 |
+
elementwise_affine=config.attention_layer_norm_with_affine,
|
510 |
+
)
|
511 |
+
self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)
|
512 |
+
|
513 |
+
# Make sure QKV clip coefficient is positive, otherwise it's not well-defined.
|
514 |
+
if config.clip_qkv is not None:
|
515 |
+
assert config.clip_qkv > 0
|
516 |
+
|
517 |
+
# Activation function.
|
518 |
+
self.act = Activation.build(config)
|
519 |
+
assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
|
520 |
+
|
521 |
+
# Attention output projection.
|
522 |
+
self.attn_out = Linear(
|
523 |
+
config.d_model, config.d_model, bias=config.include_bias, device=config.init_device,
|
524 |
+
config=config
|
525 |
+
)
|
526 |
+
|
527 |
+
# Feed-forward output projection.
|
528 |
+
self.ff_out = Linear(
|
529 |
+
int(self.act.output_multiplier * self.hidden_size),
|
530 |
+
config.d_model,
|
531 |
+
bias=config.include_bias,
|
532 |
+
device=config.init_device,
|
533 |
+
config=config,
|
534 |
+
)
|
535 |
+
self.ff_out._is_residual = True # type: ignore
|
536 |
+
|
537 |
+
# Rotary embeddings.
|
538 |
+
if self.config.rope:
|
539 |
+
self.rotary_emb = RotaryEmbedding(config, self.__cache)
|
540 |
+
|
541 |
+
def reset_parameters(self):
|
542 |
+
if self.k_norm is not None:
|
543 |
+
self.k_norm.reset_parameters()
|
544 |
+
if self.q_norm is not None:
|
545 |
+
self.q_norm.reset_parameters()
|
546 |
+
init_weights(
|
547 |
+
self.config,
|
548 |
+
self.attn_out,
|
549 |
+
d=self.config.d_model,
|
550 |
+
layer_id=self.layer_id,
|
551 |
+
type_of_module=ModuleType.out_module,
|
552 |
+
)
|
553 |
+
init_weights(
|
554 |
+
self.config,
|
555 |
+
self.ff_out,
|
556 |
+
d=self.ff_out.in_features,
|
557 |
+
layer_id=self.layer_id,
|
558 |
+
type_of_module=ModuleType.out_module,
|
559 |
+
)
|
560 |
+
|
561 |
+
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
|
562 |
+
if strategy == ActivationCheckpointingStrategy.fine_grained:
|
563 |
+
self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
|
564 |
+
else:
|
565 |
+
self._activation_checkpoint_fn = None
|
566 |
+
|
567 |
+
@classmethod
|
568 |
+
def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
|
569 |
+
target_dtype = input_dtype
|
570 |
+
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
|
571 |
+
# `is_autocast_cpu_enabled()` for CPU autocast.
|
572 |
+
# See https://github.com/pytorch/pytorch/issues/110966.
|
573 |
+
if bias.device.type == "cuda" and torch.is_autocast_enabled():
|
574 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
575 |
+
elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
|
576 |
+
target_dtype = torch.get_autocast_cpu_dtype()
|
577 |
+
if bias.dtype != target_dtype:
|
578 |
+
bias = bias.to(target_dtype)
|
579 |
+
ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
|
580 |
+
return bias
|
581 |
+
|
582 |
+
def _scaled_dot_product_attention(
|
583 |
+
self,
|
584 |
+
q: torch.Tensor,
|
585 |
+
k: torch.Tensor,
|
586 |
+
v: torch.Tensor,
|
587 |
+
attn_mask: Optional[torch.Tensor] = None,
|
588 |
+
dropout_p: float = 0.0,
|
589 |
+
is_causal: bool = False,
|
590 |
+
) -> torch.Tensor:
|
591 |
+
"""
|
592 |
+
Computes scaled dot product attention on query, key and value tensors, using an optional
|
593 |
+
attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
|
594 |
+
|
595 |
+
This method is based on PyTorch's `scaled_dot_product_attention`.
|
596 |
+
"""
|
597 |
+
return F.scaled_dot_product_attention(
|
598 |
+
q,
|
599 |
+
k,
|
600 |
+
v,
|
601 |
+
attn_mask=attn_mask,
|
602 |
+
dropout_p=dropout_p,
|
603 |
+
is_causal=is_causal,
|
604 |
+
)
|
605 |
+
|
606 |
+
def attention(
|
607 |
+
self,
|
608 |
+
q: torch.Tensor,
|
609 |
+
k: torch.Tensor,
|
610 |
+
v: torch.Tensor,
|
611 |
+
attention_bias: Optional[torch.Tensor] = None,
|
612 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
613 |
+
use_cache: bool = False,
|
614 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
615 |
+
B, T, C = q.size() # batch size, sequence length, d_model
|
616 |
+
dtype = k.dtype
|
617 |
+
|
618 |
+
# Optionally apply layer norm to keys and queries.
|
619 |
+
if self.q_norm is not None and self.k_norm is not None:
|
620 |
+
q = self.q_norm(q).to(dtype=dtype)
|
621 |
+
k = self.k_norm(k).to(dtype=dtype)
|
622 |
+
|
623 |
+
# Move head forward to be next to the batch dim.
|
624 |
+
# shape: (B, nh, T, hs)
|
625 |
+
q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
|
626 |
+
if self.config.multi_query_attention:
|
627 |
+
# shape: (B, 1, T, hs)
|
628 |
+
k = k.view(B, T, 1, C // self.config.n_heads).transpose(1, 2)
|
629 |
+
# shape: (B, 1, T, hs)
|
630 |
+
v = v.view(B, T, 1, C // self.config.n_heads).transpose(1, 2)
|
631 |
+
else:
|
632 |
+
# shape: (B, nh, T, hs)
|
633 |
+
k = k.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
|
634 |
+
# shape: (B, nh, T, hs)
|
635 |
+
v = v.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
|
636 |
+
|
637 |
+
if layer_past is not None:
|
638 |
+
past_key, past_value = layer_past
|
639 |
+
k = torch.cat((past_key, k), dim=-2)
|
640 |
+
v = torch.cat((past_value, v), dim=-2)
|
641 |
+
|
642 |
+
present = (k, v) if use_cache else None
|
643 |
+
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
|
644 |
+
|
645 |
+
if self.config.rope:
|
646 |
+
# Apply rotary embeddings.
|
647 |
+
q, k = self.rotary_emb(q, k)
|
648 |
+
|
649 |
+
if attention_bias is not None:
|
650 |
+
# Resize and cast attention bias.
|
651 |
+
# The current dtype of the attention bias might not match the dtype that the SDP attn function will
|
652 |
+
# run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
|
653 |
+
# as down-casting the attention bias to the autocast precision will result in -infs, which will
|
654 |
+
# cause the SDP attn function to produce NaNs.
|
655 |
+
attention_bias = self._cast_attn_bias(
|
656 |
+
attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype
|
657 |
+
)
|
658 |
+
|
659 |
+
# Get the attention scores.
|
660 |
+
# shape: (B, nh, T, hs)
|
661 |
+
att = self._scaled_dot_product_attention(
|
662 |
+
q,
|
663 |
+
k,
|
664 |
+
v,
|
665 |
+
attn_mask=attention_bias,
|
666 |
+
dropout_p=0.0 if not self.training else self.config.attention_dropout,
|
667 |
+
is_causal=attention_bias is None,
|
668 |
+
)
|
669 |
+
|
670 |
+
# Re-assemble all head outputs side-by-side.
|
671 |
+
att = att.transpose(1, 2).contiguous().view(B, T, C)
|
672 |
+
|
673 |
+
# Apply output projection.
|
674 |
+
return self.attn_out(att), present
|
675 |
+
|
676 |
+
@abstractmethod
|
677 |
+
def forward(
|
678 |
+
self,
|
679 |
+
x: torch.Tensor,
|
680 |
+
attention_bias: Optional[torch.FloatTensor] = None,
|
681 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
682 |
+
use_cache: bool = False,
|
683 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
684 |
+
raise NotImplementedError
|
685 |
+
|
686 |
+
@classmethod
|
687 |
+
def build(cls, layer_id: int, config: ModelConfig, cache: BufferCache) -> OLMoBlock:
|
688 |
+
if config.block_type == BlockType.sequential:
|
689 |
+
return OLMoSequentialBlock(layer_id, config, cache)
|
690 |
+
elif config.block_type == BlockType.parallel:
|
691 |
+
return OLMoParallelBlock(layer_id, config, cache)
|
692 |
+
elif config.block_type == BlockType.llama:
|
693 |
+
return OLMoLlamaBlock(layer_id, config, cache)
|
694 |
+
else:
|
695 |
+
raise NotImplementedError(f"Unknown block type: '{config.block_type}'")
|
696 |
+
|
697 |
+
|
698 |
+
class OLMoSequentialBlock(OLMoBlock):
|
699 |
+
"""
|
700 |
+
This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
|
701 |
+
(plus another skip connection).
|
702 |
+
"""
|
703 |
+
|
704 |
+
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
|
705 |
+
super().__init__(layer_id, config, cache)
|
706 |
+
# Layer norms.
|
707 |
+
self.attn_norm = LayerNorm.build(config)
|
708 |
+
self.ff_norm = LayerNorm.build(config)
|
709 |
+
Linear = BitLinear158_inference if config.inference_mode else BitLinear158 if config.ternary else nn.Linear
|
710 |
+
# Attention input projection. Projects x -> (q, k, v)
|
711 |
+
if config.multi_query_attention:
|
712 |
+
self.fused_dims = (config.d_model, config.d_model // config.n_heads, config.d_model // config.n_heads)
|
713 |
+
else:
|
714 |
+
self.fused_dims = (config.d_model, config.d_model, config.d_model)
|
715 |
+
self.att_proj = Linear(
|
716 |
+
config.d_model, sum(self.fused_dims), bias=config.include_bias, device=config.init_device,
|
717 |
+
config=config
|
718 |
+
)
|
719 |
+
# Feed-forward input projection.
|
720 |
+
self.ff_proj = Linear(
|
721 |
+
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device,
|
722 |
+
config=config
|
723 |
+
)
|
724 |
+
|
725 |
+
def reset_parameters(self):
|
726 |
+
super().reset_parameters()
|
727 |
+
self.attn_norm.reset_parameters()
|
728 |
+
self.ff_norm.reset_parameters()
|
729 |
+
# NOTE: the standard deviation for these weights does not depend on the layer.
|
730 |
+
init_weights(
|
731 |
+
self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
|
732 |
+
)
|
733 |
+
init_weights(
|
734 |
+
self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
|
735 |
+
)
|
736 |
+
|
737 |
+
def forward(
|
738 |
+
self,
|
739 |
+
x: torch.Tensor,
|
740 |
+
attention_bias: Optional[torch.Tensor] = None,
|
741 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
742 |
+
use_cache: bool = False,
|
743 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
744 |
+
# Get query, key, value projections.
|
745 |
+
# shape:
|
746 |
+
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
|
747 |
+
# - for multi-query attn q: (batch_size, seq_len, d_model)
|
748 |
+
# k, v: (batch_size, seq_len, d_model // n_heads)
|
749 |
+
if self._activation_checkpoint_fn is not None:
|
750 |
+
qkv = self.att_proj(self._activation_checkpoint_fn(self.attn_norm, x))
|
751 |
+
else:
|
752 |
+
qkv = self.att_proj(self.attn_norm(x))
|
753 |
+
|
754 |
+
if self.config.clip_qkv is not None:
|
755 |
+
qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
756 |
+
|
757 |
+
q, k, v = qkv.split(self.fused_dims, dim=-1)
|
758 |
+
|
759 |
+
# Get attention scores.
|
760 |
+
if self._activation_checkpoint_fn is not None:
|
761 |
+
att, cache = self._activation_checkpoint_fn( # type: ignore
|
762 |
+
self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache
|
763 |
+
)
|
764 |
+
else:
|
765 |
+
att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache)
|
766 |
+
|
767 |
+
# Add attention scores.
|
768 |
+
# shape: (B, T, C)
|
769 |
+
x = x + self.dropout(att)
|
770 |
+
|
771 |
+
# Add feed-forward projection.
|
772 |
+
# shape: (batch_size, seq_len, d_model)
|
773 |
+
og_x = x
|
774 |
+
if self._activation_checkpoint_fn is not None:
|
775 |
+
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
776 |
+
else:
|
777 |
+
x = self.ff_norm(x)
|
778 |
+
x = self.ff_proj(x)
|
779 |
+
if self._activation_checkpoint_fn is not None:
|
780 |
+
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
|
781 |
+
else:
|
782 |
+
x = self.act(x)
|
783 |
+
x = self.ff_out(x)
|
784 |
+
x = self.dropout(x)
|
785 |
+
x = og_x + x
|
786 |
+
|
787 |
+
return x, cache
|
788 |
+
|
789 |
+
|
790 |
+
class OLMoParallelBlock(OLMoBlock):
|
791 |
+
"""
|
792 |
+
This is a transformer block where the output is computed as ``MLP(LN(x)) + Attention(LN(x))``
|
793 |
+
as in the PaLM architecture, as opposed to the typical ``MLP(LN(x + Attention(LN(x))))``
|
794 |
+
as in :class:`OLMoSequentialBlock` (ignoring some skip connections).
|
795 |
+
|
796 |
+
The decoupling of the MLP and Attention functions allow us to fuse the separate input projections
|
797 |
+
into a single linear layer to increase throughput. In this configuration it's also straight-forward
|
798 |
+
to fuse the output projections, but we found that didn't help.
|
799 |
+
"""
|
800 |
+
|
801 |
+
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
|
802 |
+
super().__init__(layer_id, config, cache)
|
803 |
+
self.norm = LayerNorm.build(config)
|
804 |
+
Linear = BitLinear158_inference if config.inference_mode else BitLinear158 if config.ternary else nn.Linear
|
805 |
+
|
806 |
+
# Fused attention and feed-forward projection.
|
807 |
+
# NOTE: we could also fuse the attention and feed-forward output projections but we
|
808 |
+
# found that didn't help, possibly because of the overhead of joining the `att` and
|
809 |
+
# `ff` activations together. See https://github.com/allenai/LLM/pull/79 for details.
|
810 |
+
if config.multi_query_attention:
|
811 |
+
self.fused_dims = (
|
812 |
+
config.d_model,
|
813 |
+
config.d_model // config.n_heads,
|
814 |
+
config.d_model // config.n_heads,
|
815 |
+
self.hidden_size,
|
816 |
+
)
|
817 |
+
else:
|
818 |
+
self.fused_dims = (config.d_model, config.d_model, config.d_model, self.hidden_size)
|
819 |
+
self.fused_attn_ff_proj = Linear(
|
820 |
+
config.d_model, sum(self.fused_dims), bias=config.include_bias, device=config.init_device,
|
821 |
+
config=config
|
822 |
+
)
|
823 |
+
|
824 |
+
def reset_parameters(self):
|
825 |
+
super().reset_parameters()
|
826 |
+
self.norm.reset_parameters()
|
827 |
+
# NOTE: the standard deviation for these weights does not depend on the layer.
|
828 |
+
init_weights(
|
829 |
+
self.config,
|
830 |
+
self.fused_attn_ff_proj,
|
831 |
+
d=self.config.d_model,
|
832 |
+
layer_id=None,
|
833 |
+
type_of_module=ModuleType.in_module,
|
834 |
+
)
|
835 |
+
|
836 |
+
def forward(
|
837 |
+
self,
|
838 |
+
x: torch.Tensor,
|
839 |
+
attention_bias: Optional[torch.Tensor] = None,
|
840 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
841 |
+
use_cache: bool = False,
|
842 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
843 |
+
# Get query, key, value, and feed-forward projections.
|
844 |
+
# shape of q, k, v:
|
845 |
+
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
|
846 |
+
# - for multi-query attn q: (batch_size, seq_len, d_model)
|
847 |
+
# k, v: (batch_size, seq_len, d_model // n_heads)
|
848 |
+
# shape of ff: (batch_size, seq_len, hidden_size)
|
849 |
+
if self._activation_checkpoint_fn is not None:
|
850 |
+
q, k, v, ff = self.fused_attn_ff_proj(self._activation_checkpoint_fn(self.norm, x)).split(
|
851 |
+
self.fused_dims, dim=-1
|
852 |
+
)
|
853 |
+
else:
|
854 |
+
q, k, v, ff = self.fused_attn_ff_proj(self.norm(x)).split(self.fused_dims, dim=-1)
|
855 |
+
|
856 |
+
if self.config.clip_qkv is not None:
|
857 |
+
q.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
858 |
+
k.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
859 |
+
v.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
860 |
+
|
861 |
+
# Get attention scores.
|
862 |
+
# shape: (B, T, C)
|
863 |
+
if self._activation_checkpoint_fn is not None:
|
864 |
+
att, cache = self._activation_checkpoint_fn( # type: ignore
|
865 |
+
self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache
|
866 |
+
)
|
867 |
+
else:
|
868 |
+
att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache)
|
869 |
+
|
870 |
+
# Apply output projections (and activation function) and sum the results.
|
871 |
+
# We keep these projections separate because we found that we got better throughput this
|
872 |
+
# way compared to fusing them.
|
873 |
+
if self._activation_checkpoint_fn is not None:
|
874 |
+
return (
|
875 |
+
x + self.dropout(self.ff_out(self._activation_checkpoint_fn(self.act, ff))) + self.dropout(att),
|
876 |
+
cache,
|
877 |
+
)
|
878 |
+
else:
|
879 |
+
return (
|
880 |
+
x + self.dropout(self.ff_out(self.act(ff))) + self.dropout(att),
|
881 |
+
cache,
|
882 |
+
)
|
883 |
+
|
884 |
+
|
885 |
+
class OLMoLlamaBlock(OLMoBlock):
|
886 |
+
"""
|
887 |
+
This is a transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
|
888 |
+
(plus another skip connection). This block is similar to `OLMoSequentialBlock`
|
889 |
+
but some operations have slightly different implementations to imitate the
|
890 |
+
behavior of Llama.
|
891 |
+
"""
|
892 |
+
|
893 |
+
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
|
894 |
+
super().__init__(layer_id, config, cache)
|
895 |
+
# Layer norms.
|
896 |
+
self.attn_norm = LayerNorm.build(config)
|
897 |
+
self.ff_norm = LayerNorm.build(config)
|
898 |
+
self.__cache = cache
|
899 |
+
Linear = BitLinear158_inference if config.inference_mode else BitLinear158 if config.ternary else nn.Linear
|
900 |
+
|
901 |
+
|
902 |
+
# Attention input projection. Projects x -> (q, k, v)
|
903 |
+
if config.multi_query_attention:
|
904 |
+
q_proj_out_dim = config.d_model
|
905 |
+
k_proj_out_dim = config.d_model // config.n_heads
|
906 |
+
v_proj_out_dim = config.d_model // config.n_heads
|
907 |
+
else:
|
908 |
+
q_proj_out_dim = config.d_model
|
909 |
+
k_proj_out_dim = config.d_model
|
910 |
+
v_proj_out_dim = config.d_model
|
911 |
+
self.q_proj = Linear(
|
912 |
+
config.d_model, q_proj_out_dim, bias=config.include_bias, device=config.init_device,
|
913 |
+
config=config
|
914 |
+
)
|
915 |
+
self.k_proj = Linear(
|
916 |
+
config.d_model, k_proj_out_dim, bias=config.include_bias, device=config.init_device,
|
917 |
+
config=config
|
918 |
+
)
|
919 |
+
self.v_proj = Linear(
|
920 |
+
config.d_model, v_proj_out_dim, bias=config.include_bias, device=config.init_device,
|
921 |
+
config=config
|
922 |
+
)
|
923 |
+
|
924 |
+
# Feed-forward input projection.
|
925 |
+
self.ff_proj = Linear(
|
926 |
+
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device,
|
927 |
+
config=config
|
928 |
+
)
|
929 |
+
|
930 |
+
def reset_parameters(self):
|
931 |
+
super().reset_parameters()
|
932 |
+
if self.attn_norm:
|
933 |
+
self.attn_norm.reset_parameters()
|
934 |
+
self.ff_norm.reset_parameters()
|
935 |
+
# NOTE: the standard deviation for these weights does not depend on the layer.
|
936 |
+
init_weights(self.config, self.q_proj, d=self.config.d_model, layer_id=None)
|
937 |
+
init_weights(self.config, self.k_proj, d=self.config.d_model, layer_id=None)
|
938 |
+
init_weights(self.config, self.v_proj, d=self.config.d_model, layer_id=None)
|
939 |
+
init_weights(self.config, self.ff_proj, d=self.config.d_model, layer_id=None)
|
940 |
+
|
941 |
+
def _scaled_dot_product_attention(
|
942 |
+
self,
|
943 |
+
q: torch.Tensor,
|
944 |
+
k: torch.Tensor,
|
945 |
+
v: torch.Tensor,
|
946 |
+
attn_mask: Optional[torch.Tensor] = None,
|
947 |
+
dropout_p: float = 0.0,
|
948 |
+
is_causal: bool = False,
|
949 |
+
) -> torch.Tensor:
|
950 |
+
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(q.size(-1))
|
951 |
+
|
952 |
+
if is_causal:
|
953 |
+
assert attn_mask is None
|
954 |
+
|
955 |
+
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
|
956 |
+
attn_bias = get_causal_attention_bias(self.__cache, key_len, q.device)[:, :, :query_len, :key_len]
|
957 |
+
elif attn_mask is not None:
|
958 |
+
attn_bias = attn_mask.to(q.dtype)
|
959 |
+
else:
|
960 |
+
attn_bias = torch.zeros_like(attn_weights)
|
961 |
+
|
962 |
+
attn_weights += attn_bias
|
963 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(q.dtype)
|
964 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout_p)
|
965 |
+
return torch.matmul(attn_weights, v)
|
966 |
+
|
967 |
+
def forward(
|
968 |
+
self,
|
969 |
+
x: torch.Tensor,
|
970 |
+
attention_bias: Optional[torch.Tensor] = None,
|
971 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
972 |
+
use_cache: bool = False,
|
973 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
974 |
+
# Get query, key, value projections.
|
975 |
+
# shape:
|
976 |
+
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
|
977 |
+
# - for multi-query attn q: (batch_size, seq_len, d_model)
|
978 |
+
# k, v: (batch_size, seq_len, d_model // n_heads)
|
979 |
+
x_normed = self.attn_norm(x)
|
980 |
+
q = self.q_proj(x_normed)
|
981 |
+
k = self.k_proj(x_normed)
|
982 |
+
v = self.v_proj(x_normed)
|
983 |
+
|
984 |
+
if self.config.clip_qkv is not None:
|
985 |
+
q.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
986 |
+
k.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
987 |
+
v.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
988 |
+
|
989 |
+
# Get attention scores.
|
990 |
+
att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache)
|
991 |
+
|
992 |
+
# Add attention scores.
|
993 |
+
# shape: (B, T, C)
|
994 |
+
x = x + self.dropout(att)
|
995 |
+
|
996 |
+
# Add feed-forward projection.
|
997 |
+
# shape: (batch_size, seq_len, d_model)
|
998 |
+
og_x = x
|
999 |
+
if self._activation_checkpoint_fn is not None:
|
1000 |
+
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
1001 |
+
else:
|
1002 |
+
x = self.ff_norm(x)
|
1003 |
+
x = self.ff_proj(x)
|
1004 |
+
if self._activation_checkpoint_fn is not None:
|
1005 |
+
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
|
1006 |
+
else:
|
1007 |
+
x = self.act(x)
|
1008 |
+
x = self.ff_out(x)
|
1009 |
+
x = self.dropout(x)
|
1010 |
+
x = og_x + x
|
1011 |
+
|
1012 |
+
return x, cache
|
1013 |
+
|
1014 |
+
|
1015 |
+
class OLMoOutput(NamedTuple):
|
1016 |
+
logits: torch.FloatTensor
|
1017 |
+
"""
|
1018 |
+
A tensor of shape `(batch_size, seq_len, vocab_size)` representing the log probabilities
|
1019 |
+
for the next token *before* normalization via (log) softmax.
|
1020 |
+
"""
|
1021 |
+
|
1022 |
+
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]
|
1023 |
+
"""
|
1024 |
+
Attention keys and values from each block.
|
1025 |
+
"""
|
1026 |
+
|
1027 |
+
hidden_states: Optional[Tuple[torch.Tensor]]
|
1028 |
+
"""
|
1029 |
+
Hidden states from each block.
|
1030 |
+
"""
|
1031 |
+
|
1032 |
+
|
1033 |
+
class OLMoGenerateOutput(NamedTuple):
|
1034 |
+
token_ids: torch.LongTensor
|
1035 |
+
"""
|
1036 |
+
The generated token IDs, a tensor of shape `(batch_size, beam_size, max_steps)`.
|
1037 |
+
These do *not* include the original input IDs.
|
1038 |
+
"""
|
1039 |
+
|
1040 |
+
scores: torch.FloatTensor
|
1041 |
+
"""
|
1042 |
+
The scores of the generated sequences, a tensor of shape `(batch_size, beam_size)`.
|
1043 |
+
"""
|
1044 |
+
|
1045 |
+
|
1046 |
+
class OLMoBlockGroup(nn.ModuleList):
|
1047 |
+
def __init__(self, config: ModelConfig, layer_offset: int, modules: Optional[Iterable[nn.Module]] = None):
|
1048 |
+
super().__init__(modules)
|
1049 |
+
self.config = config
|
1050 |
+
self.layer_offset = layer_offset
|
1051 |
+
self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None
|
1052 |
+
self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
|
1053 |
+
|
1054 |
+
def forward(
|
1055 |
+
self,
|
1056 |
+
x: torch.Tensor,
|
1057 |
+
attention_bias: Optional[torch.FloatTensor] = None,
|
1058 |
+
layers_past: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
1059 |
+
use_cache: bool = False,
|
1060 |
+
) -> Tuple[torch.Tensor, Optional[List[Tuple[torch.Tensor, torch.Tensor]]]]:
|
1061 |
+
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
|
1062 |
+
for block_idx, block in enumerate(self):
|
1063 |
+
layer_past = None if layers_past is None else layers_past[block_idx]
|
1064 |
+
block_idx += self.layer_offset
|
1065 |
+
if (
|
1066 |
+
(self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer)
|
1067 |
+
or (
|
1068 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two
|
1069 |
+
and block_idx % 2 == 0
|
1070 |
+
)
|
1071 |
+
or (
|
1072 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three
|
1073 |
+
and block_idx % 3 == 0
|
1074 |
+
)
|
1075 |
+
or (
|
1076 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four
|
1077 |
+
and block_idx % 4 == 0
|
1078 |
+
)
|
1079 |
+
):
|
1080 |
+
# shape: (batch_size, seq_len, d_model)
|
1081 |
+
x, cache = self._activation_checkpoint_fn( # type: ignore
|
1082 |
+
block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache
|
1083 |
+
)
|
1084 |
+
else:
|
1085 |
+
# shape: (batch_size, seq_len, d_model)
|
1086 |
+
x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache)
|
1087 |
+
if attn_key_values is not None:
|
1088 |
+
assert cache is not None
|
1089 |
+
attn_key_values.append(cache)
|
1090 |
+
return x, attn_key_values
|
1091 |
+
|
1092 |
+
def reset_parameters(self):
|
1093 |
+
for block in self:
|
1094 |
+
block.reset_parameters()
|
1095 |
+
|
1096 |
+
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
|
1097 |
+
self.activation_checkpointing_strategy = strategy
|
1098 |
+
for block in self:
|
1099 |
+
block.set_activation_checkpointing(strategy)
|
1100 |
+
|
1101 |
+
|
1102 |
+
class OLMo(nn.Module):
|
1103 |
+
def __init__(self, config: ModelConfig, init_params: bool = True):
|
1104 |
+
super().__init__()
|
1105 |
+
self.config = config
|
1106 |
+
self.__cache = BufferCache()
|
1107 |
+
|
1108 |
+
# Validate config.
|
1109 |
+
if self.config.alibi and self.config.flash_attention:
|
1110 |
+
raise OLMoConfigurationError("ALiBi is currently not supported with FlashAttention")
|
1111 |
+
|
1112 |
+
if self.config.alibi and self.config.rope:
|
1113 |
+
raise OLMoConfigurationError("ALiBi and RoPE are mutually exclusive")
|
1114 |
+
|
1115 |
+
if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
|
1116 |
+
if self.config.embedding_size < self.config.vocab_size:
|
1117 |
+
raise OLMoConfigurationError("embedding size should be at least as big as vocab size")
|
1118 |
+
elif self.config.embedding_size % 128 != 0:
|
1119 |
+
import warnings
|
1120 |
+
|
1121 |
+
warnings.warn(
|
1122 |
+
"Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
|
1123 |
+
)
|
1124 |
+
|
1125 |
+
self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None
|
1126 |
+
self._activation_checkpoint_fn: Callable = activation_checkpoint_function(self.config)
|
1127 |
+
|
1128 |
+
if not (
|
1129 |
+
0 < self.config.block_group_size <= self.config.n_layers
|
1130 |
+
and self.config.n_layers % self.config.block_group_size == 0
|
1131 |
+
):
|
1132 |
+
raise OLMoConfigurationError("n layers must be divisible by block group size")
|
1133 |
+
|
1134 |
+
torch.backends.cuda.enable_flash_sdp(self.config.flash_attention)
|
1135 |
+
torch.backends.cuda.enable_mem_efficient_sdp(False) # this is super slow so make sure torch won't use it
|
1136 |
+
|
1137 |
+
self.transformer = nn.ModuleDict(
|
1138 |
+
dict(
|
1139 |
+
wte=nn.Embedding(
|
1140 |
+
config.embedding_size or config.vocab_size, config.d_model, device=config.init_device
|
1141 |
+
),
|
1142 |
+
emb_drop=Dropout(config.embedding_dropout),
|
1143 |
+
ln_f=LayerNorm.build(config),
|
1144 |
+
)
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
blocks = [OLMoBlock.build(i, config, self.__cache) for i in range(config.n_layers)]
|
1148 |
+
if self.config.block_group_size > 1:
|
1149 |
+
block_groups = [
|
1150 |
+
OLMoBlockGroup(config, i, blocks[i : i + config.block_group_size])
|
1151 |
+
for i in range(0, config.n_layers, config.block_group_size)
|
1152 |
+
]
|
1153 |
+
self.transformer.update({"block_groups": nn.ModuleList(block_groups)})
|
1154 |
+
else:
|
1155 |
+
self.transformer.update({"blocks": nn.ModuleList(blocks)})
|
1156 |
+
|
1157 |
+
if not (self.config.alibi or self.config.rope):
|
1158 |
+
self.transformer.update(
|
1159 |
+
{"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)}
|
1160 |
+
)
|
1161 |
+
if not config.weight_tying:
|
1162 |
+
self.transformer.update(
|
1163 |
+
{
|
1164 |
+
"ff_out": nn.Linear(
|
1165 |
+
config.d_model,
|
1166 |
+
config.embedding_size or config.vocab_size,
|
1167 |
+
bias=config.include_bias,
|
1168 |
+
device=config.init_device,
|
1169 |
+
)
|
1170 |
+
}
|
1171 |
+
)
|
1172 |
+
# When `init_device="meta"` FSDP will call `reset_parameters()` to initialize weights.
|
1173 |
+
if init_params and self.config.init_device != "meta":
|
1174 |
+
self.reset_parameters()
|
1175 |
+
self.__num_fwd_flops: Optional[int] = None
|
1176 |
+
|
1177 |
+
# Warm up cache.
|
1178 |
+
if self.config.alibi:
|
1179 |
+
get_causal_attention_bias(self.__cache, config.max_sequence_length, _non_meta_init_device(config))
|
1180 |
+
self.get_alibi_attention_bias(config.max_sequence_length, _non_meta_init_device(config))
|
1181 |
+
|
1182 |
+
def embed_tokens(self, input_ids):
|
1183 |
+
return self.transformer.wte(input_ids)
|
1184 |
+
|
1185 |
+
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
|
1186 |
+
self.activation_checkpointing_strategy = strategy
|
1187 |
+
if self.config.block_group_size != 1:
|
1188 |
+
for block_group in self.transformer.block_groups:
|
1189 |
+
block_group.set_activation_checkpointing(strategy)
|
1190 |
+
else:
|
1191 |
+
for block in self.transformer.blocks:
|
1192 |
+
block.set_activation_checkpointing(strategy)
|
1193 |
+
|
1194 |
+
@property
|
1195 |
+
def device(self) -> torch.device:
|
1196 |
+
device: torch.device = self.transformer.wte.weight.device # type: ignore
|
1197 |
+
if device.type == "meta":
|
1198 |
+
return _non_meta_init_device(self.config)
|
1199 |
+
else:
|
1200 |
+
return device
|
1201 |
+
|
1202 |
+
def reset_parameters(self):
|
1203 |
+
log.info("Initializing model parameters...")
|
1204 |
+
# Top-level embeddings / linear layers.
|
1205 |
+
init_weights(
|
1206 |
+
self.config,
|
1207 |
+
self.transformer.wte, # type: ignore
|
1208 |
+
std_factor=(0.5 * math.sqrt(self.config.d_model)) if self.config.scale_logits else 1.0,
|
1209 |
+
type_of_module=ModuleType.emb,
|
1210 |
+
)
|
1211 |
+
if hasattr(self.transformer, "wpe"):
|
1212 |
+
init_weights(self.config, self.transformer.wpe, type_of_module=ModuleType.emb) # type: ignore
|
1213 |
+
|
1214 |
+
# Top-level layer norm.
|
1215 |
+
self.transformer.ln_f.reset_parameters() # type: ignore
|
1216 |
+
|
1217 |
+
# Output weights.
|
1218 |
+
if hasattr(self.transformer, "ff_out"):
|
1219 |
+
init_weights(self.config, self.transformer.ff_out, type_of_module=ModuleType.final_out) # type: ignore
|
1220 |
+
|
1221 |
+
# Let the blocks handle themselves.
|
1222 |
+
if self.config.block_group_size == 1:
|
1223 |
+
for block in self.transformer.blocks:
|
1224 |
+
block.reset_parameters()
|
1225 |
+
else:
|
1226 |
+
for block_group in self.transformer.block_groups:
|
1227 |
+
block_group.reset_parameters()
|
1228 |
+
|
1229 |
+
def get_alibi_attention_bias(self, seq_len: int, device: torch.device) -> torch.Tensor:
|
1230 |
+
if (alibi_bias := self.__cache.get("alibi_attention_bias")) is not None and alibi_bias.shape[
|
1231 |
+
-1
|
1232 |
+
] >= seq_len:
|
1233 |
+
if alibi_bias.device != device:
|
1234 |
+
alibi_bias = alibi_bias.to(device)
|
1235 |
+
self.__cache["alibi_attention_bias"] = alibi_bias
|
1236 |
+
return alibi_bias
|
1237 |
+
with torch.autocast(device.type, enabled=False):
|
1238 |
+
alibi_bias = alibi_attention_bias(seq_len, self.config, device)
|
1239 |
+
self.__cache["alibi_attention_bias"] = alibi_bias
|
1240 |
+
return alibi_bias
|
1241 |
+
|
1242 |
+
def forward(
|
1243 |
+
self,
|
1244 |
+
input_ids: torch.LongTensor,
|
1245 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1246 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1247 |
+
attention_bias: Optional[torch.Tensor] = None,
|
1248 |
+
past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
1249 |
+
use_cache: bool = False,
|
1250 |
+
last_logits_only: bool = False,
|
1251 |
+
output_hidden_states: Optional[bool] = None,
|
1252 |
+
) -> OLMoOutput:
|
1253 |
+
"""
|
1254 |
+
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
|
1255 |
+
:param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
|
1256 |
+
embeddings. When provided, it is treated as the output of the input embedding layer.
|
1257 |
+
:param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
|
1258 |
+
which input IDs are masked. A `1` value in the mask means that
|
1259 |
+
the corresponding input ID should *not* be ignored. A `0` means
|
1260 |
+
that the corresponding input ID is masked.
|
1261 |
+
|
1262 |
+
This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
|
1263 |
+
library.
|
1264 |
+
:param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
|
1265 |
+
`(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
|
1266 |
+
to introduce causal or other biases.
|
1267 |
+
|
1268 |
+
If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
|
1269 |
+
indicates that the i-th element in the sequence is allowed to attend to the j-th
|
1270 |
+
element in the sequence.
|
1271 |
+
|
1272 |
+
If the tensor is a float tensor, it will just be added to the attention
|
1273 |
+
scores before the softmax.
|
1274 |
+
|
1275 |
+
The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
|
1276 |
+
:param past_key_values: Pre-computed keys and values for each attention block.
|
1277 |
+
Can be used to speed up sequential decoding. The `input_ids` which have
|
1278 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
1279 |
+
:param use_cache: If `True`, return key and value tensors for each block.
|
1280 |
+
:param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
|
1281 |
+
This can speed up decoding when you only care about the next token.
|
1282 |
+
"""
|
1283 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
|
1284 |
+
|
1285 |
+
if past_key_values:
|
1286 |
+
assert len(past_key_values) == self.config.n_layers
|
1287 |
+
|
1288 |
+
batch_size, seq_len = input_ids.size() if inputs_embeds is None else inputs_embeds.size()[:2]
|
1289 |
+
if past_key_values is None:
|
1290 |
+
past_length = 0
|
1291 |
+
else:
|
1292 |
+
past_length = past_key_values[0][0].size(-2)
|
1293 |
+
|
1294 |
+
# Get embeddings of input.
|
1295 |
+
# shape: (batch_size, seq_len, d_model)
|
1296 |
+
x = self.transformer.wte(input_ids) if inputs_embeds is None else inputs_embeds # type: ignore
|
1297 |
+
|
1298 |
+
if not (self.config.alibi or self.config.rope):
|
1299 |
+
# Get positional embeddings.
|
1300 |
+
# shape: (1, seq_len)
|
1301 |
+
pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0)
|
1302 |
+
# shape: (1, seq_len, d_model)
|
1303 |
+
pos_emb = self.transformer.wpe(pos) # type: ignore
|
1304 |
+
x = pos_emb + x
|
1305 |
+
|
1306 |
+
# Add input + positional embeddings and apply dropout.
|
1307 |
+
# shape: (batch_size, seq_len, d_model)
|
1308 |
+
x = self.transformer.emb_drop(x) # type: ignore
|
1309 |
+
|
1310 |
+
# Transform the attention mask into what the blocks expect.
|
1311 |
+
if attention_mask is not None:
|
1312 |
+
# shape: (batch_size, 1, 1, seq_len)
|
1313 |
+
attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
|
1314 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
|
1315 |
+
|
1316 |
+
# Merge attention mask with attention bias.
|
1317 |
+
if (
|
1318 |
+
attention_bias is not None
|
1319 |
+
or attention_mask is not None
|
1320 |
+
or self.config.alibi
|
1321 |
+
# NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
|
1322 |
+
# with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
|
1323 |
+
# scores correctly.
|
1324 |
+
or past_key_values is not None
|
1325 |
+
):
|
1326 |
+
if attention_bias is None and self.config.alibi:
|
1327 |
+
attention_bias = get_causal_attention_bias(
|
1328 |
+
self.__cache, past_length + seq_len, x.device
|
1329 |
+
) + self.get_alibi_attention_bias(past_length + seq_len, x.device)
|
1330 |
+
elif attention_bias is None:
|
1331 |
+
attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
|
1332 |
+
elif attention_bias.dtype in (torch.int8, torch.bool):
|
1333 |
+
attention_bias = attention_bias.to(dtype=torch.float)
|
1334 |
+
attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)
|
1335 |
+
|
1336 |
+
# Transform to the right shape and data type.
|
1337 |
+
mask_len = seq_len
|
1338 |
+
if attention_mask is not None:
|
1339 |
+
mask_len = attention_mask.shape[-1]
|
1340 |
+
elif past_key_values is not None:
|
1341 |
+
mask_len = past_key_values[0][0].shape[-2] + seq_len
|
1342 |
+
attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)
|
1343 |
+
|
1344 |
+
# Add in the masking bias.
|
1345 |
+
if attention_mask is not None:
|
1346 |
+
attention_bias = attention_bias + attention_mask
|
1347 |
+
# Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
|
1348 |
+
# `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
|
1349 |
+
# it can produce NaNs.
|
1350 |
+
ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)
|
1351 |
+
|
1352 |
+
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
|
1353 |
+
|
1354 |
+
# decoder layers
|
1355 |
+
all_hidden_states = []
|
1356 |
+
|
1357 |
+
# Apply blocks one-by-one.
|
1358 |
+
if self.config.block_group_size == 1:
|
1359 |
+
for block_idx, block in enumerate(self.transformer.blocks):
|
1360 |
+
if output_hidden_states:
|
1361 |
+
# add hidden states
|
1362 |
+
all_hidden_states.append(x)
|
1363 |
+
|
1364 |
+
layer_past = None if past_key_values is None else past_key_values[block_idx]
|
1365 |
+
if (
|
1366 |
+
(self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer)
|
1367 |
+
or (
|
1368 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two
|
1369 |
+
and block_idx % 2 == 0
|
1370 |
+
)
|
1371 |
+
or (
|
1372 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three
|
1373 |
+
and block_idx % 3 == 0
|
1374 |
+
)
|
1375 |
+
or (
|
1376 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four
|
1377 |
+
and block_idx % 4 == 0
|
1378 |
+
)
|
1379 |
+
):
|
1380 |
+
# shape: (batch_size, seq_len, d_model)
|
1381 |
+
x, cache = self._activation_checkpoint_fn(
|
1382 |
+
block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache
|
1383 |
+
)
|
1384 |
+
else:
|
1385 |
+
# shape: (batch_size, seq_len, d_model)
|
1386 |
+
x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache)
|
1387 |
+
if attn_key_values is not None:
|
1388 |
+
assert cache is not None
|
1389 |
+
attn_key_values.append(cache)
|
1390 |
+
else:
|
1391 |
+
for group_idx, block_group in enumerate(self.transformer.block_groups):
|
1392 |
+
if output_hidden_states:
|
1393 |
+
# add hidden states
|
1394 |
+
all_hidden_states.append(x)
|
1395 |
+
|
1396 |
+
layers_past = (
|
1397 |
+
None
|
1398 |
+
if past_key_values is None
|
1399 |
+
else past_key_values[
|
1400 |
+
group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size
|
1401 |
+
]
|
1402 |
+
)
|
1403 |
+
x, cache = block_group(
|
1404 |
+
x, attention_bias=attention_bias, layers_past=layers_past, use_cache=use_cache
|
1405 |
+
)
|
1406 |
+
if attn_key_values is not None:
|
1407 |
+
assert cache is not None
|
1408 |
+
attn_key_values.extend(cache)
|
1409 |
+
|
1410 |
+
if last_logits_only:
|
1411 |
+
# shape: (batch_size, 1, d_model)
|
1412 |
+
x = x[:, -1, :].unsqueeze(1)
|
1413 |
+
|
1414 |
+
# Apply final layer norm.
|
1415 |
+
# shape: (batch_size, seq_len or 1, d_model)
|
1416 |
+
x = self.transformer.ln_f(x) # type: ignore
|
1417 |
+
if output_hidden_states:
|
1418 |
+
# add final hidden state post-final-layernorm, following HuggingFace's convention
|
1419 |
+
all_hidden_states.append(x)
|
1420 |
+
|
1421 |
+
# Get logits.
|
1422 |
+
# shape: (batch_size, seq_len or 1, vocab_size)
|
1423 |
+
if self.config.weight_tying:
|
1424 |
+
logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore
|
1425 |
+
else:
|
1426 |
+
logits = self.transformer.ff_out(x) # type: ignore
|
1427 |
+
if self.config.scale_logits:
|
1428 |
+
logits.mul_(1 / math.sqrt(self.config.d_model))
|
1429 |
+
|
1430 |
+
return BaseModelOutputWithPast(
|
1431 |
+
last_hidden_state=x,
|
1432 |
+
past_key_values=tuple(attn_key_values) if attn_key_values is not None else None,
|
1433 |
+
hidden_states=tuple(all_hidden_states) if output_hidden_states else None,
|
1434 |
+
)
|
1435 |
+
|
1436 |
+
def get_fsdp_wrap_policy(self, wrap_strategy: Optional[FSDPWrapStrategy] = None):
|
1437 |
+
if wrap_strategy is None:
|
1438 |
+
return None
|
1439 |
+
|
1440 |
+
# The 'recurse' mode for the wrap function does not behave like you'd expect.
|
1441 |
+
# Even if we return False, it may still recurse because PyTorch does what it wants,
|
1442 |
+
# not what you want. This causes issues when, for example, we want to wrap 'ff_out' (a linear layer)
|
1443 |
+
# but not other linear layers within a block.
|
1444 |
+
# So we have to explicitly tell PyTorch which linear layers to wrap, and we also just
|
1445 |
+
# return True in 'recurse' mode for simplicity.
|
1446 |
+
size_based_module_to_wrap = {self.transformer.wte}
|
1447 |
+
if hasattr(self.transformer, "ff_out"):
|
1448 |
+
size_based_module_to_wrap.add(self.transformer.ff_out)
|
1449 |
+
|
1450 |
+
if wrap_strategy == FSDPWrapStrategy.by_block:
|
1451 |
+
|
1452 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1453 |
+
del nonwrapped_numel
|
1454 |
+
wrap = isinstance(module, OLMoBlock)
|
1455 |
+
if recurse:
|
1456 |
+
return True
|
1457 |
+
else:
|
1458 |
+
return wrap
|
1459 |
+
|
1460 |
+
return fsdp_wrap_fn
|
1461 |
+
elif wrap_strategy == FSDPWrapStrategy.by_block_and_size:
|
1462 |
+
|
1463 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1464 |
+
del nonwrapped_numel
|
1465 |
+
wrap = isinstance(module, (OLMoBlock,)) or module in size_based_module_to_wrap
|
1466 |
+
if recurse:
|
1467 |
+
return True
|
1468 |
+
else:
|
1469 |
+
return wrap
|
1470 |
+
|
1471 |
+
return fsdp_wrap_fn
|
1472 |
+
elif wrap_strategy == FSDPWrapStrategy.by_block_group:
|
1473 |
+
if self.config.block_group_size <= 1:
|
1474 |
+
raise OLMoConfigurationError(
|
1475 |
+
"'by_block_group' FSDP wrapping strategy requires block group size greater than 1"
|
1476 |
+
)
|
1477 |
+
|
1478 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1479 |
+
del nonwrapped_numel
|
1480 |
+
wrap = isinstance(module, OLMoBlockGroup)
|
1481 |
+
if recurse:
|
1482 |
+
return True
|
1483 |
+
else:
|
1484 |
+
return wrap
|
1485 |
+
|
1486 |
+
return fsdp_wrap_fn
|
1487 |
+
elif wrap_strategy == FSDPWrapStrategy.by_block_group_and_size:
|
1488 |
+
if self.config.block_group_size <= 1:
|
1489 |
+
raise OLMoConfigurationError(
|
1490 |
+
"'by_block_group_and_size' FSDP wrapping strategy requires block group size greater than 1"
|
1491 |
+
)
|
1492 |
+
|
1493 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1494 |
+
del nonwrapped_numel
|
1495 |
+
wrap = isinstance(module, (OLMoBlockGroup,)) or module in size_based_module_to_wrap
|
1496 |
+
if recurse:
|
1497 |
+
return True
|
1498 |
+
else:
|
1499 |
+
return wrap
|
1500 |
+
|
1501 |
+
return fsdp_wrap_fn
|
1502 |
+
elif wrap_strategy == FSDPWrapStrategy.size_based:
|
1503 |
+
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
|
1504 |
+
|
1505 |
+
return size_based_auto_wrap_policy
|
1506 |
+
elif wrap_strategy in {
|
1507 |
+
FSDPWrapStrategy.one_in_two,
|
1508 |
+
FSDPWrapStrategy.one_in_three,
|
1509 |
+
FSDPWrapStrategy.one_in_four,
|
1510 |
+
FSDPWrapStrategy.one_in_five,
|
1511 |
+
}:
|
1512 |
+
c = {
|
1513 |
+
FSDPWrapStrategy.one_in_two: 2,
|
1514 |
+
FSDPWrapStrategy.one_in_three: 3,
|
1515 |
+
FSDPWrapStrategy.one_in_four: 4,
|
1516 |
+
FSDPWrapStrategy.one_in_five: 5,
|
1517 |
+
}[wrap_strategy]
|
1518 |
+
|
1519 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1520 |
+
del nonwrapped_numel
|
1521 |
+
wrap = isinstance(module, OLMoBlock) and module.layer_id % c == 0
|
1522 |
+
if recurse:
|
1523 |
+
return True
|
1524 |
+
else:
|
1525 |
+
return wrap
|
1526 |
+
|
1527 |
+
return fsdp_wrap_fn
|
1528 |
+
else:
|
1529 |
+
raise NotImplementedError(wrap_strategy)
|
1530 |
+
|
1531 |
+
def num_params(self, include_embedding: bool = True) -> int:
|
1532 |
+
"""
|
1533 |
+
Get the total number of parameters.
|
1534 |
+
"""
|
1535 |
+
params = (np for np in self.named_parameters())
|
1536 |
+
if not include_embedding:
|
1537 |
+
params = filter( # type: ignore
|
1538 |
+
lambda np: ".wte." not in np[0] and ".wpe." not in np[0],
|
1539 |
+
params,
|
1540 |
+
)
|
1541 |
+
return sum(p.numel() for _, p in params)
|
1542 |
+
|
1543 |
+
@property
|
1544 |
+
def num_fwd_flops(self):
|
1545 |
+
if self.__num_fwd_flops:
|
1546 |
+
return self.__num_fwd_flops
|
1547 |
+
n_params = self.num_params()
|
1548 |
+
# the number of parameters is approximately the number of multiply-accumulates (MAC) in the network
|
1549 |
+
# each MAC has 2 FLOPs - we multiply by 2 ie 2 * n_param
|
1550 |
+
# this gets us FLOPs / token
|
1551 |
+
params_flops_per_token = 2 * n_params
|
1552 |
+
params_flops_per_seq = params_flops_per_token * self.config.max_sequence_length
|
1553 |
+
# there are 2 FLOPS per mac; there is A=Q*K^T and out=A*V ops (ie mult by 2)
|
1554 |
+
attn_flops_per_seq = (
|
1555 |
+
self.config.n_layers * 2 * 2 * (self.config.d_model * (self.config.max_sequence_length**2))
|
1556 |
+
)
|
1557 |
+
self.__num_fwd_flops = params_flops_per_seq + attn_flops_per_seq
|
1558 |
+
return self.__num_fwd_flops
|
1559 |
+
|
1560 |
+
def generate(
|
1561 |
+
self,
|
1562 |
+
input_ids: torch.LongTensor,
|
1563 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1564 |
+
attention_bias: Optional[torch.Tensor] = None,
|
1565 |
+
max_steps: int = 10,
|
1566 |
+
beam_size: int = 1,
|
1567 |
+
per_node_beam_size: Optional[int] = None,
|
1568 |
+
sampler: Optional[Sampler] = None,
|
1569 |
+
min_steps: Optional[int] = None,
|
1570 |
+
final_sequence_scorer: Optional[FinalSequenceScorer] = None,
|
1571 |
+
constraints: Optional[List[Constraint]] = None,
|
1572 |
+
) -> OLMoGenerateOutput:
|
1573 |
+
"""
|
1574 |
+
Generate token IDs using beam search.
|
1575 |
+
|
1576 |
+
Note that by default ``beam_size`` is set to 1, which is greedy decoding.
|
1577 |
+
|
1578 |
+
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
|
1579 |
+
:param attention_mask: A optional tensor of shape `(batch_size, seq_len)`, the same
|
1580 |
+
as for the forward method.
|
1581 |
+
:param attention_bias: A tensor of shape
|
1582 |
+
`(batch_size, 1, seq_len + tokens_to_generate, seq_len + tokens_to_generate)`,
|
1583 |
+
the same as for the forward method except only one shape is excepted here.
|
1584 |
+
|
1585 |
+
For an explanation of the other arguments, see :class:`BeamSearch`.
|
1586 |
+
"""
|
1587 |
+
beam_search = BeamSearch(
|
1588 |
+
self.config.eos_token_id,
|
1589 |
+
max_steps=max_steps,
|
1590 |
+
beam_size=beam_size,
|
1591 |
+
per_node_beam_size=per_node_beam_size,
|
1592 |
+
sampler=sampler,
|
1593 |
+
min_steps=min_steps,
|
1594 |
+
final_sequence_scorer=final_sequence_scorer,
|
1595 |
+
constraints=constraints,
|
1596 |
+
)
|
1597 |
+
|
1598 |
+
# Validate inputs.
|
1599 |
+
batch_size, seq_len = input_ids.shape
|
1600 |
+
if attention_mask is not None:
|
1601 |
+
assert attention_mask.shape == (batch_size, seq_len)
|
1602 |
+
if attention_bias is not None:
|
1603 |
+
assert len(attention_bias.shape) == 4
|
1604 |
+
assert attention_bias.shape[:2] == (batch_size, 1)
|
1605 |
+
assert (
|
1606 |
+
seq_len + beam_search.max_steps
|
1607 |
+
<= attention_bias.shape[2]
|
1608 |
+
== attention_bias.shape[3]
|
1609 |
+
<= self.config.max_sequence_length
|
1610 |
+
)
|
1611 |
+
|
1612 |
+
tokens_generated = 0
|
1613 |
+
|
1614 |
+
def flatten_past_key_values(
|
1615 |
+
past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
|
1616 |
+
) -> Dict[str, torch.Tensor]:
|
1617 |
+
out = {}
|
1618 |
+
for i, (key, value) in enumerate(past_key_values):
|
1619 |
+
out[f"past_key_{i}"] = key
|
1620 |
+
out[f"past_value_{i}"] = value
|
1621 |
+
return out
|
1622 |
+
|
1623 |
+
def unflatten_past_key_values(
|
1624 |
+
past_key_values: Dict[str, torch.Tensor],
|
1625 |
+
) -> List[Tuple[torch.Tensor, torch.Tensor]]:
|
1626 |
+
out = []
|
1627 |
+
for i in range(self.config.n_layers):
|
1628 |
+
past_key = past_key_values[f"past_key_{i}"]
|
1629 |
+
past_value = past_key_values[f"past_value_{i}"]
|
1630 |
+
out.append((past_key, past_value))
|
1631 |
+
return out
|
1632 |
+
|
1633 |
+
def step(
|
1634 |
+
last_predictions: torch.Tensor, state: dict[str, torch.Tensor]
|
1635 |
+
) -> tuple[torch.Tensor, dict[str, torch.Tensor]]:
|
1636 |
+
nonlocal tokens_generated
|
1637 |
+
|
1638 |
+
attention_mask = state.get("attention_mask")
|
1639 |
+
attention_bias = state.get("attention_bias")
|
1640 |
+
|
1641 |
+
if tokens_generated > 0:
|
1642 |
+
past_key_values = unflatten_past_key_values(state)
|
1643 |
+
input_ids = last_predictions.unsqueeze(1)
|
1644 |
+
if attention_mask is not None:
|
1645 |
+
group_size = input_ids.shape[0]
|
1646 |
+
attention_mask = torch.cat((attention_mask, attention_mask.new_ones((group_size, 1))), dim=-1)
|
1647 |
+
else:
|
1648 |
+
past_key_values = None
|
1649 |
+
input_ids = state["input_ids"]
|
1650 |
+
|
1651 |
+
tokens_generated += 1
|
1652 |
+
|
1653 |
+
# Run forward pass of model to get logits, then normalize to get log probs.
|
1654 |
+
output = self(
|
1655 |
+
input_ids,
|
1656 |
+
attention_mask=attention_mask,
|
1657 |
+
attention_bias=attention_bias,
|
1658 |
+
past_key_values=past_key_values,
|
1659 |
+
use_cache=True,
|
1660 |
+
last_logits_only=True,
|
1661 |
+
)
|
1662 |
+
log_probs = F.log_softmax(output.logits[:, -1, :], dim=-1)
|
1663 |
+
|
1664 |
+
# Create new state.
|
1665 |
+
state = flatten_past_key_values(output.attn_key_values)
|
1666 |
+
if attention_mask is not None:
|
1667 |
+
state["attention_mask"] = attention_mask
|
1668 |
+
if attention_bias is not None:
|
1669 |
+
state["attention_bias"] = attention_bias
|
1670 |
+
|
1671 |
+
return log_probs, state
|
1672 |
+
|
1673 |
+
initial_preds = input_ids.new_zeros((batch_size,)) # This is arbitrary, we won't use this.
|
1674 |
+
state: dict[str, torch.Tensor] = {"input_ids": input_ids}
|
1675 |
+
if attention_mask is not None:
|
1676 |
+
state["attention_mask"] = attention_mask
|
1677 |
+
if attention_bias is not None:
|
1678 |
+
state["attention_bias"] = attention_bias
|
1679 |
+
with torch.no_grad():
|
1680 |
+
token_ids, scores = beam_search.search(initial_preds, state, step)
|
1681 |
+
|
1682 |
+
return OLMoGenerateOutput(
|
1683 |
+
token_ids=token_ids, # type: ignore[arg-type]
|
1684 |
+
scores=scores, # type: ignore[arg-type]
|
1685 |
+
)
|
1686 |
+
|
1687 |
+
@classmethod
|
1688 |
+
def from_checkpoint(
|
1689 |
+
cls, checkpoint_dir: PathOrStr, device: str = "cpu", checkpoint_type: Optional[CheckpointType] = None
|
1690 |
+
) -> OLMo:
|
1691 |
+
"""
|
1692 |
+
Load an OLMo model from a checkpoint.
|
1693 |
+
"""
|
1694 |
+
from .util import resource_path
|
1695 |
+
|
1696 |
+
# Guess checkpoint type.
|
1697 |
+
if checkpoint_type is None:
|
1698 |
+
try:
|
1699 |
+
if resource_path(checkpoint_dir, "model.pt").is_file():
|
1700 |
+
checkpoint_type = CheckpointType.unsharded
|
1701 |
+
else:
|
1702 |
+
checkpoint_type = CheckpointType.sharded
|
1703 |
+
except FileNotFoundError:
|
1704 |
+
checkpoint_type = CheckpointType.sharded
|
1705 |
+
|
1706 |
+
# Load config.
|
1707 |
+
config_path = resource_path(checkpoint_dir, "config.yaml")
|
1708 |
+
model_config = ModelConfig.load(config_path, key="model", validate_paths=False)
|
1709 |
+
|
1710 |
+
if checkpoint_type == CheckpointType.unsharded:
|
1711 |
+
# Initialize model (always on CPU to start with so we don't run out of GPU memory).
|
1712 |
+
model_config.init_device = "cpu"
|
1713 |
+
model = OLMo(model_config)
|
1714 |
+
|
1715 |
+
# Load state dict directly to target device.
|
1716 |
+
state_dict_path = resource_path(checkpoint_dir, "model.pt")
|
1717 |
+
state_dict = torch.load(state_dict_path, map_location="cpu")
|
1718 |
+
model.load_state_dict(model._make_state_dict_compatible(state_dict)[0])
|
1719 |
+
model = model.to(torch.device(device))
|
1720 |
+
else:
|
1721 |
+
from .checkpoint import load_model_state
|
1722 |
+
|
1723 |
+
# Initialize model on target device. In this case the state dict is loaded in-place
|
1724 |
+
# so it's not necessary to start on CPU if the target device is a GPU.
|
1725 |
+
model_config.init_device = device
|
1726 |
+
model = OLMo(model_config)
|
1727 |
+
|
1728 |
+
# Load state dict in place.
|
1729 |
+
load_model_state(checkpoint_dir, model)
|
1730 |
+
|
1731 |
+
return model.eval()
|
1732 |
+
|
1733 |
+
def _make_state_dict_compatible(
|
1734 |
+
self, state_dict: Dict[str, torch.Tensor]
|
1735 |
+
) -> Tuple[Dict[str, torch.Tensor], Dict[str, Set[str]]]:
|
1736 |
+
"""
|
1737 |
+
Handles some cases where the state dict is valid yet may need to be transformed in order to
|
1738 |
+
be loaded.
|
1739 |
+
|
1740 |
+
This modifies the state dict in-place and also returns it, along with a mapping of original key
|
1741 |
+
names to new key names in cases where the keys were simply renamed. That mapping can be used
|
1742 |
+
to make a corresponding optimizer state dict compatible as well.
|
1743 |
+
"""
|
1744 |
+
import re
|
1745 |
+
from fnmatch import fnmatch
|
1746 |
+
|
1747 |
+
new_keys_to_og_keys: Dict[str, str] = {}
|
1748 |
+
|
1749 |
+
# Remove "_fsdp_wrapped_module." prefix from all keys. We don't want this prefix when the model is
|
1750 |
+
# not wrapped in FSDP. And when the model is wrapped in FSDP, loading this state dict will still work
|
1751 |
+
# fine without the prefixes. This also simplifies the other steps below.
|
1752 |
+
for key in list(state_dict.keys()):
|
1753 |
+
state_dict[(new_key := key.replace("_fsdp_wrapped_module.", ""))] = state_dict.pop(key)
|
1754 |
+
new_keys_to_og_keys[new_key] = key
|
1755 |
+
|
1756 |
+
# For backwards compatibility prior to fixing https://github.com/allenai/LLM/issues/222
|
1757 |
+
if self.config.block_type == BlockType.sequential:
|
1758 |
+
for key in list(state_dict.keys()):
|
1759 |
+
if fnmatch(key, "transformer.*.norm.weight"):
|
1760 |
+
tensor = state_dict.pop(key)
|
1761 |
+
state_dict[(new_key := key.replace("norm.weight", "attn_norm.weight"))] = tensor
|
1762 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1763 |
+
state_dict[(new_key := key.replace("norm.weight", "ff_norm.weight"))] = tensor.clone()
|
1764 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1765 |
+
del new_keys_to_og_keys[key]
|
1766 |
+
elif fnmatch(key, "transformer.*.norm.bias"):
|
1767 |
+
tensor = state_dict.pop(key)
|
1768 |
+
state_dict[(new_key := key.replace("norm.bias", "attn_norm.bias"))] = tensor
|
1769 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1770 |
+
state_dict[(new_key := key.replace("norm.bias", "ff_norm.bias"))] = tensor.clone()
|
1771 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1772 |
+
del new_keys_to_og_keys[key]
|
1773 |
+
|
1774 |
+
# For loading a state dict that was saved with a different `block_group_size`.
|
1775 |
+
if "transformer.block_groups.0.0.attn_out.weight" in state_dict.keys():
|
1776 |
+
state_dict_block_group_size = len(
|
1777 |
+
[k for k in state_dict.keys() if fnmatch(k, "transformer.block_groups.0.*.attn_out.weight")]
|
1778 |
+
)
|
1779 |
+
else:
|
1780 |
+
state_dict_block_group_size = 1
|
1781 |
+
if self.config.block_group_size != state_dict_block_group_size:
|
1782 |
+
log.info(
|
1783 |
+
f"Regrouping state dict blocks from group size {state_dict_block_group_size} to "
|
1784 |
+
f"group size {self.config.block_group_size}"
|
1785 |
+
)
|
1786 |
+
# For simplicity we're first going to flatten out the block groups in the state dict (if necessary)
|
1787 |
+
# and then (re-)group them into the right block sizes.
|
1788 |
+
if state_dict_block_group_size > 1:
|
1789 |
+
for key in list(state_dict.keys()):
|
1790 |
+
if (m := re.match(r"transformer.block_groups\.(\d+)\.(\d+)\..*", key)) is not None:
|
1791 |
+
group_idx, group_block_idx = int(m.group(1)), int(m.group(2))
|
1792 |
+
block_idx = (group_idx * state_dict_block_group_size) + group_block_idx
|
1793 |
+
state_dict[
|
1794 |
+
(
|
1795 |
+
new_key := key.replace(
|
1796 |
+
f"block_groups.{group_idx}.{group_block_idx}.", f"blocks.{block_idx}."
|
1797 |
+
)
|
1798 |
+
)
|
1799 |
+
] = state_dict.pop(key)
|
1800 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys.pop(key)
|
1801 |
+
|
1802 |
+
if self.config.block_group_size > 1:
|
1803 |
+
# Group the state dict blocks into the right block size.
|
1804 |
+
for key in list(state_dict.keys()):
|
1805 |
+
if (m := re.match(r"transformer.blocks\.(\d+)\..*", key)) is not None:
|
1806 |
+
block_idx = int(m.group(1))
|
1807 |
+
group_idx, group_block_idx = (
|
1808 |
+
block_idx // self.config.block_group_size,
|
1809 |
+
block_idx % self.config.block_group_size,
|
1810 |
+
)
|
1811 |
+
state_dict[
|
1812 |
+
(
|
1813 |
+
new_key := key.replace(
|
1814 |
+
f"blocks.{block_idx}.", f"block_groups.{group_idx}.{group_block_idx}."
|
1815 |
+
)
|
1816 |
+
)
|
1817 |
+
] = state_dict.pop(key)
|
1818 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys.pop(key)
|
1819 |
+
|
1820 |
+
og_keys_to_new: Dict[str, Set[str]] = defaultdict(set)
|
1821 |
+
for new_key, og_key in new_keys_to_og_keys.items():
|
1822 |
+
og_keys_to_new[og_key].add(new_key)
|
1823 |
+
|
1824 |
+
return state_dict, og_keys_to_new
|