Upload safetensors_util.py with huggingface_hub
Browse files- safetensors_util.py +81 -0
safetensors_util.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import pickle
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Dict, Optional, Tuple
|
5 |
+
|
6 |
+
import safetensors.torch
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from .aliases import PathOrStr
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
"state_dict_to_safetensors_file",
|
13 |
+
"safetensors_file_to_state_dict",
|
14 |
+
]
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass(eq=True, frozen=True)
|
18 |
+
class STKey:
|
19 |
+
keys: Tuple
|
20 |
+
value_is_pickled: bool
|
21 |
+
|
22 |
+
|
23 |
+
def encode_key(key: STKey) -> str:
|
24 |
+
b = pickle.dumps((key.keys, key.value_is_pickled))
|
25 |
+
b = base64.urlsafe_b64encode(b)
|
26 |
+
return str(b, "ASCII")
|
27 |
+
|
28 |
+
|
29 |
+
def decode_key(key: str) -> STKey:
|
30 |
+
b = base64.urlsafe_b64decode(key)
|
31 |
+
keys, value_is_pickled = pickle.loads(b)
|
32 |
+
return STKey(keys, value_is_pickled)
|
33 |
+
|
34 |
+
|
35 |
+
def flatten_dict(d: Dict) -> Dict[STKey, torch.Tensor]:
|
36 |
+
result = {}
|
37 |
+
for key, value in d.items():
|
38 |
+
if isinstance(value, torch.Tensor):
|
39 |
+
result[STKey((key,), False)] = value
|
40 |
+
elif isinstance(value, dict):
|
41 |
+
value = flatten_dict(value)
|
42 |
+
for inner_key, inner_value in value.items():
|
43 |
+
result[STKey((key,) + inner_key.keys, inner_key.value_is_pickled)] = inner_value
|
44 |
+
else:
|
45 |
+
pickled = bytearray(pickle.dumps(value))
|
46 |
+
pickled_tensor = torch.frombuffer(pickled, dtype=torch.uint8)
|
47 |
+
result[STKey((key,), True)] = pickled_tensor
|
48 |
+
return result
|
49 |
+
|
50 |
+
|
51 |
+
def unflatten_dict(d: Dict[STKey, torch.Tensor]) -> Dict:
|
52 |
+
result: Dict = {}
|
53 |
+
|
54 |
+
for key, value in d.items():
|
55 |
+
if key.value_is_pickled:
|
56 |
+
value = pickle.loads(value.numpy().data)
|
57 |
+
|
58 |
+
target_dict = result
|
59 |
+
for k in key.keys[:-1]:
|
60 |
+
new_target_dict = target_dict.get(k)
|
61 |
+
if new_target_dict is None:
|
62 |
+
new_target_dict = {}
|
63 |
+
target_dict[k] = new_target_dict
|
64 |
+
target_dict = new_target_dict
|
65 |
+
target_dict[key.keys[-1]] = value
|
66 |
+
|
67 |
+
return result
|
68 |
+
|
69 |
+
|
70 |
+
def state_dict_to_safetensors_file(state_dict: Dict, filename: PathOrStr):
|
71 |
+
state_dict = flatten_dict(state_dict)
|
72 |
+
state_dict = {encode_key(k): v for k, v in state_dict.items()}
|
73 |
+
safetensors.torch.save_file(state_dict, filename)
|
74 |
+
|
75 |
+
|
76 |
+
def safetensors_file_to_state_dict(filename: PathOrStr, map_location: Optional[str] = None) -> Dict:
|
77 |
+
if map_location is None:
|
78 |
+
map_location = "cpu"
|
79 |
+
state_dict = safetensors.torch.load_file(filename, device=map_location)
|
80 |
+
state_dict = {decode_key(k): v for k, v in state_dict.items()}
|
81 |
+
return unflatten_dict(state_dict)
|