English
naveensp commited on
Commit
efb31ab
·
verified ·
1 Parent(s): 9b5ebda

Delete torch_util.py

Browse files
Files changed (1) hide show
  1. torch_util.py +0 -139
torch_util.py DELETED
@@ -1,139 +0,0 @@
1
- import gc
2
- import os
3
- from typing import Optional, TypeVar
4
-
5
- import torch
6
- import torch.distributed as dist
7
-
8
- T = TypeVar("T")
9
-
10
-
11
- def seed_all(seed: int):
12
- """Seed all rng objects."""
13
- import random
14
-
15
- import numpy as np
16
-
17
- if seed < 0 or seed > 2**32 - 1:
18
- raise ValueError(f"Seed {seed} is invalid. It must be on [0; 2^32 - 1]")
19
- random.seed(seed)
20
- np.random.seed(seed)
21
- torch.manual_seed(seed)
22
- # torch.manual_seed may call manual_seed_all but calling it again here
23
- # to make sure it gets called at least once
24
- torch.cuda.manual_seed_all(seed)
25
-
26
-
27
- def is_distributed() -> bool:
28
- return dist.is_available() and dist.is_initialized()
29
-
30
-
31
- def get_node_rank() -> int:
32
- return int(os.environ.get("NODE_RANK") or (get_global_rank() - get_local_rank()) // get_local_world_size())
33
-
34
-
35
- def get_world_size() -> int:
36
- if is_distributed():
37
- return dist.get_world_size()
38
- else:
39
- return 1
40
-
41
-
42
- def get_local_world_size() -> int:
43
- return int(os.environ.get("LOCAL_WORLD_SIZE") or 1)
44
-
45
-
46
- def get_global_rank() -> int:
47
- return int(os.environ.get("RANK") or dist.get_rank())
48
-
49
-
50
- def get_local_rank() -> int:
51
- return int(os.environ.get("LOCAL_RANK") or 0)
52
-
53
-
54
- def get_fs_local_rank() -> int:
55
- """Get the local rank per filesystem, meaning that, regardless of the number of nodes,
56
- if all ranks share the same filesystem then `get_fs_local_rank()` will be equivalent to `get_global_rank()`,
57
- but if nodes do not share the same filesystem then `get_fs_local_rank()` will be equivalent to `get_local_rank()`.
58
- """
59
- return int(os.environ.get("FS_LOCAL_RANK") or get_local_rank())
60
-
61
-
62
- def move_to_device(o: T, device: torch.device) -> T:
63
- if isinstance(o, torch.Tensor):
64
- return o.to(device) # type: ignore[return-value]
65
- elif isinstance(o, dict):
66
- return {k: move_to_device(v, device) for k, v in o.items()} # type: ignore[return-value]
67
- elif isinstance(o, list):
68
- return [move_to_device(x, device) for x in o] # type: ignore[return-value]
69
- elif isinstance(o, tuple):
70
- return tuple((move_to_device(x, device) for x in o)) # type: ignore[return-value]
71
- else:
72
- return o
73
-
74
-
75
- def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False):
76
- """
77
- Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf``
78
- is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``.
79
- """
80
- if check_neg_inf:
81
- x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min)
82
- if check_pos_inf:
83
- x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max)
84
-
85
-
86
- def get_default_device() -> torch.device:
87
- if torch.cuda.is_available() and torch.cuda.is_initialized():
88
- return torch.device("cuda")
89
- else:
90
- return torch.device("cpu")
91
-
92
-
93
- def barrier() -> None:
94
- if is_distributed():
95
- dist.barrier()
96
-
97
-
98
- def peak_gpu_memory(reset: bool = False) -> Optional[float]:
99
- """
100
- Get the peak GPU memory usage in MB across all ranks.
101
- Only rank 0 will get the final result.
102
- """
103
- if not torch.cuda.is_available():
104
- return None
105
-
106
- device = torch.device("cuda")
107
- peak_mb = torch.cuda.max_memory_allocated(device) / 1000000
108
- if is_distributed():
109
- peak_mb_tensor = torch.tensor(peak_mb, device=device)
110
- dist.reduce(peak_mb_tensor, 0, dist.ReduceOp.MAX)
111
- peak_mb = peak_mb_tensor.item()
112
-
113
- if reset:
114
- # Reset peak stats.
115
- torch.cuda.reset_max_memory_allocated(device)
116
-
117
- return peak_mb
118
-
119
-
120
- V = TypeVar("V", bool, int, float)
121
-
122
-
123
- def synchronize_value(value: V, device: torch.device) -> V:
124
- if dist.is_available() and dist.is_initialized():
125
- value_tensor = torch.tensor(value, device=device)
126
- dist.broadcast(value_tensor, 0)
127
- return value_tensor.item() # type: ignore
128
- else:
129
- return value
130
-
131
-
132
- def synchronize_flag(flag: bool, device: torch.device) -> bool:
133
- return synchronize_value(flag, device)
134
-
135
-
136
- def gc_cuda():
137
- gc.collect()
138
- if torch.cuda.is_available():
139
- torch.cuda.empty_cache()