Delete torch_util.py
Browse files- torch_util.py +0 -139
torch_util.py
DELETED
@@ -1,139 +0,0 @@
|
|
1 |
-
import gc
|
2 |
-
import os
|
3 |
-
from typing import Optional, TypeVar
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import torch.distributed as dist
|
7 |
-
|
8 |
-
T = TypeVar("T")
|
9 |
-
|
10 |
-
|
11 |
-
def seed_all(seed: int):
|
12 |
-
"""Seed all rng objects."""
|
13 |
-
import random
|
14 |
-
|
15 |
-
import numpy as np
|
16 |
-
|
17 |
-
if seed < 0 or seed > 2**32 - 1:
|
18 |
-
raise ValueError(f"Seed {seed} is invalid. It must be on [0; 2^32 - 1]")
|
19 |
-
random.seed(seed)
|
20 |
-
np.random.seed(seed)
|
21 |
-
torch.manual_seed(seed)
|
22 |
-
# torch.manual_seed may call manual_seed_all but calling it again here
|
23 |
-
# to make sure it gets called at least once
|
24 |
-
torch.cuda.manual_seed_all(seed)
|
25 |
-
|
26 |
-
|
27 |
-
def is_distributed() -> bool:
|
28 |
-
return dist.is_available() and dist.is_initialized()
|
29 |
-
|
30 |
-
|
31 |
-
def get_node_rank() -> int:
|
32 |
-
return int(os.environ.get("NODE_RANK") or (get_global_rank() - get_local_rank()) // get_local_world_size())
|
33 |
-
|
34 |
-
|
35 |
-
def get_world_size() -> int:
|
36 |
-
if is_distributed():
|
37 |
-
return dist.get_world_size()
|
38 |
-
else:
|
39 |
-
return 1
|
40 |
-
|
41 |
-
|
42 |
-
def get_local_world_size() -> int:
|
43 |
-
return int(os.environ.get("LOCAL_WORLD_SIZE") or 1)
|
44 |
-
|
45 |
-
|
46 |
-
def get_global_rank() -> int:
|
47 |
-
return int(os.environ.get("RANK") or dist.get_rank())
|
48 |
-
|
49 |
-
|
50 |
-
def get_local_rank() -> int:
|
51 |
-
return int(os.environ.get("LOCAL_RANK") or 0)
|
52 |
-
|
53 |
-
|
54 |
-
def get_fs_local_rank() -> int:
|
55 |
-
"""Get the local rank per filesystem, meaning that, regardless of the number of nodes,
|
56 |
-
if all ranks share the same filesystem then `get_fs_local_rank()` will be equivalent to `get_global_rank()`,
|
57 |
-
but if nodes do not share the same filesystem then `get_fs_local_rank()` will be equivalent to `get_local_rank()`.
|
58 |
-
"""
|
59 |
-
return int(os.environ.get("FS_LOCAL_RANK") or get_local_rank())
|
60 |
-
|
61 |
-
|
62 |
-
def move_to_device(o: T, device: torch.device) -> T:
|
63 |
-
if isinstance(o, torch.Tensor):
|
64 |
-
return o.to(device) # type: ignore[return-value]
|
65 |
-
elif isinstance(o, dict):
|
66 |
-
return {k: move_to_device(v, device) for k, v in o.items()} # type: ignore[return-value]
|
67 |
-
elif isinstance(o, list):
|
68 |
-
return [move_to_device(x, device) for x in o] # type: ignore[return-value]
|
69 |
-
elif isinstance(o, tuple):
|
70 |
-
return tuple((move_to_device(x, device) for x in o)) # type: ignore[return-value]
|
71 |
-
else:
|
72 |
-
return o
|
73 |
-
|
74 |
-
|
75 |
-
def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False):
|
76 |
-
"""
|
77 |
-
Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf``
|
78 |
-
is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``.
|
79 |
-
"""
|
80 |
-
if check_neg_inf:
|
81 |
-
x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min)
|
82 |
-
if check_pos_inf:
|
83 |
-
x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max)
|
84 |
-
|
85 |
-
|
86 |
-
def get_default_device() -> torch.device:
|
87 |
-
if torch.cuda.is_available() and torch.cuda.is_initialized():
|
88 |
-
return torch.device("cuda")
|
89 |
-
else:
|
90 |
-
return torch.device("cpu")
|
91 |
-
|
92 |
-
|
93 |
-
def barrier() -> None:
|
94 |
-
if is_distributed():
|
95 |
-
dist.barrier()
|
96 |
-
|
97 |
-
|
98 |
-
def peak_gpu_memory(reset: bool = False) -> Optional[float]:
|
99 |
-
"""
|
100 |
-
Get the peak GPU memory usage in MB across all ranks.
|
101 |
-
Only rank 0 will get the final result.
|
102 |
-
"""
|
103 |
-
if not torch.cuda.is_available():
|
104 |
-
return None
|
105 |
-
|
106 |
-
device = torch.device("cuda")
|
107 |
-
peak_mb = torch.cuda.max_memory_allocated(device) / 1000000
|
108 |
-
if is_distributed():
|
109 |
-
peak_mb_tensor = torch.tensor(peak_mb, device=device)
|
110 |
-
dist.reduce(peak_mb_tensor, 0, dist.ReduceOp.MAX)
|
111 |
-
peak_mb = peak_mb_tensor.item()
|
112 |
-
|
113 |
-
if reset:
|
114 |
-
# Reset peak stats.
|
115 |
-
torch.cuda.reset_max_memory_allocated(device)
|
116 |
-
|
117 |
-
return peak_mb
|
118 |
-
|
119 |
-
|
120 |
-
V = TypeVar("V", bool, int, float)
|
121 |
-
|
122 |
-
|
123 |
-
def synchronize_value(value: V, device: torch.device) -> V:
|
124 |
-
if dist.is_available() and dist.is_initialized():
|
125 |
-
value_tensor = torch.tensor(value, device=device)
|
126 |
-
dist.broadcast(value_tensor, 0)
|
127 |
-
return value_tensor.item() # type: ignore
|
128 |
-
else:
|
129 |
-
return value
|
130 |
-
|
131 |
-
|
132 |
-
def synchronize_flag(flag: bool, device: torch.device) -> bool:
|
133 |
-
return synchronize_value(flag, device)
|
134 |
-
|
135 |
-
|
136 |
-
def gc_cuda():
|
137 |
-
gc.collect()
|
138 |
-
if torch.cuda.is_available():
|
139 |
-
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|