English
jinjieyuan commited on
Commit
8b2b639
·
verified ·
1 Parent(s): c7af67a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -83
README.md CHANGED
@@ -1,83 +1,100 @@
1
- ---
2
- language: en
3
- license: apache-2.0
4
- ---
5
-
6
- # LoNAS Model Card: lonas-bloomz-7b-math
7
-
8
- The super-network fine-tuned on BLOOMZ-7B with some math reasoning datasets using LoNAS.
9
-
10
- ## Model Details
11
-
12
- ### Information
13
-
14
- - **Model name:** lonas-bloomz-7b-math
15
- - **Base model:** [BLOOMZ-7b](https://huggingface.co/bigscience/bloomz-7b1)
16
- - **Domain:** Math
17
- - **Subnetwork version:** Super-network
18
- - **NNCF Configuration:** [nncf_lonas_bloomz_7b.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/nncf_config/unified_math/nncf_lonas_bloomz_7b.json)
19
-
20
- ### Adapter Configuration
21
-
22
- - **LoRA rank:** 32
23
- - **LoRA alpha:** 64
24
- - **LoRA target modules:** query_key_value, dense_h_to_4h, dense_4h_to_h
25
-
26
- ### Training Hyperparameters
27
-
28
- - **Batch size:** 16
29
- - **Learning rate:** 3e-4
30
- - **Epoch:** 8
31
-
32
- ### Training Data
33
-
34
- Unified math reasoning dataset: [math_10k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/math_10k.json) (collected with the training sets of GSM8K, MAWPS, and AQuA).
35
-
36
- ### Evaluation Data
37
-
38
- [GSM8K](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/gsm8k/test.json), [AQuA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/AQuA/test.json), [MAWPS](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/mawps/test.json) and [SVAMP](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/SVAMP/test.json)
39
-
40
-
41
- ## How to use
42
-
43
- Refer to [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation):
44
- ```bash
45
- CUDA_VISIBLE_DEVICES=${DEVICES} python run_math.py \
46
- --dataset_path None \
47
- --model_name_or_path bigscience/bloomz-7b1 \
48
- --lora \
49
- --lora_weights lonas-bloomz-7b-math \
50
- --nncf_config nncf_config/unified_math/nncf_lonas_bloomz_7b.json \
51
- --do_test \
52
- --output_dir lonas-bloomz-7b-math/results
53
- ```
54
-
55
- ## Evaluation Results
56
-
57
- Results of the heuristic sub-network discoverd from the super-network:
58
-
59
- | Method | Total Params. | TFLOPs | GSM8K | AQuA | MAWPS | SVAMP | Average |
60
- |------------|---------------|-----------|-------|------|-------|-------|-----------|
61
- | LoRA | 7.1B | 1.8 | 17.4 | 21.3 | 70.2 | 41.0 | **37.5** |
62
- | **LoNAS** | **6.1B** | **1.5** | 18.6 | 22.0 | 76.5 | 31.8 | 37.2 |
63
-
64
-
65
- ## Model Sources
66
-
67
- - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS)
68
- - **Paper:** [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models]()
69
-
70
- ## Citation
71
-
72
- ```bibtex
73
- @article{munoz2024lonas,
74
- title = {LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models},
75
- author={J. Pablo Munoz and Jinjie Yuan and Yi Zheng and Nilesh Jain},
76
- journal={},
77
- year={2024}
78
- }
79
- ```
80
-
81
- ## License
82
-
83
- Apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ ---
5
+
6
+ # LoNAS Model Card: lonas-bloomz-7b-math
7
+
8
+ The super-network fine-tuned on BLOOMZ-7B with some math reasoning datasets using LoNAS.
9
+
10
+ ## Model Details
11
+
12
+ ### Information
13
+
14
+ - **Model name:** lonas-bloomz-7b-math
15
+ - **Base model:** [BLOOMZ-7b](https://huggingface.co/bigscience/bloomz-7b1)
16
+ - **Domain:** Math
17
+ - **Subnetwork version:** Super-network
18
+ - **NNCF Configuration:** [nncf_lonas_bloomz_7b.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/nncf_config/unified_math/nncf_lonas_bloomz_7b.json)
19
+
20
+ ### Adapter Configuration
21
+
22
+ - **LoRA rank:** 32
23
+ - **LoRA alpha:** 64
24
+ - **LoRA target modules:** query_key_value, dense_h_to_4h, dense_4h_to_h
25
+
26
+ ### Training Hyperparameters
27
+
28
+ - **Batch size:** 16
29
+ - **Learning rate:** 3e-4
30
+ - **Epoch:** 8
31
+
32
+ ### Training Data
33
+
34
+ Unified math reasoning dataset: [math_10k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/math_10k.json) (collected with the training sets of GSM8K, MAWPS, and AQuA).
35
+
36
+ ### Evaluation Data
37
+
38
+ [GSM8K](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/gsm8k/test.json), [AQuA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/AQuA/test.json), [MAWPS](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/mawps/test.json) and [SVAMP](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/SVAMP/test.json)
39
+
40
+
41
+ ## How to use
42
+
43
+ Refer to [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation):
44
+ ```bash
45
+ CUDA_VISIBLE_DEVICES=${DEVICES} python run_math.py \
46
+ --dataset_path None \
47
+ --model_name_or_path bigscience/bloomz-7b1 \
48
+ --lora \
49
+ --lora_weights lonas-bloomz-7b-math \
50
+ --nncf_config nncf_config/unified_math/nncf_lonas_bloomz_7b.json \
51
+ --do_test \
52
+ --output_dir lonas-bloomz-7b-math/results
53
+ ```
54
+
55
+ ## Evaluation Results
56
+
57
+ Results of the heuristic sub-network discoverd from the super-network:
58
+
59
+ | Method | Total Params. | TFLOPs | GSM8K | AQuA | MAWPS | SVAMP | Average |
60
+ |------------|---------------|-----------|-------|------|-------|-------|-----------|
61
+ | LoRA | 7.1B | 1.8 | 17.4 | 21.3 | 70.2 | 41.0 | **37.5** |
62
+ | **LoNAS** | **6.1B** | **1.5** | 18.6 | 22.0 | 76.5 | 31.8 | 37.2 |
63
+
64
+
65
+ ## Model Sources
66
+
67
+ **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS)
68
+
69
+ **Paper:**
70
+ - [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models](https://aclanthology.org/2024.lrec-main.940)
71
+ - [Low-Rank Adapters Meet Neural Architecture Search for LLM Compression](https://arxiv.org/abs/2501.16372)
72
+
73
+ ## Citation
74
+
75
+ ```bibtex
76
+ @inproceedings{munoz-etal-2024-lonas,
77
+ title = "{L}o{NAS}: Elastic Low-Rank Adapters for Efficient Large Language Models",
78
+ author = "Munoz, Juan Pablo and
79
+ Yuan, Jinjie and
80
+ Zheng, Yi and
81
+ Jain, Nilesh",
82
+ editor = "Calzolari, Nicoletta and
83
+ Kan, Min-Yen and
84
+ Hoste, Veronique and
85
+ Lenci, Alessandro and
86
+ Sakti, Sakriani and
87
+ Xue, Nianwen",
88
+ booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
89
+ month = may,
90
+ year = "2024",
91
+ address = "Torino, Italia",
92
+ publisher = "ELRA and ICCL",
93
+ url = "https://aclanthology.org/2024.lrec-main.940",
94
+ pages = "10760--10776",
95
+ }
96
+ ```
97
+
98
+ ## License
99
+
100
+ Apache-2.0