jinjieyuan commited on
Commit
e22e8dd
·
verified ·
1 Parent(s): b915912

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -0
README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ library_name: transformers
5
+ ---
6
+
7
+ # SQFT Base Model: sqft-mistral-7b-v0.3-30-base
8
+
9
+ - Source Model: [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3)
10
+ - Sparse Method: [Wanda](https://github.com/locuslab/wanda)
11
+ - Sparsity: 30%
12
+ - Quantization: No
13
+
14
+ ## Model Sources
15
+
16
+ - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
17
+ - **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models]()
18
+
19
+ ## How to get this model
20
+
21
+ Refer to the command in [SQFT/run_command/mistral-7b-v0.3/sparse_quantization.sh#11](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT/run_command/mistral-7b-v0.3/sparse_quantization.sh#11).
22
+
23
+ ## Citation
24
+
25
+ ```bash
26
+ @article{munoz2024sqft,
27
+ title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
28
+ author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
29
+ journal={},
30
+ year={2024}
31
+ }
32
+ ```
33
+
34
+ ## Acknowledgement
35
+
36
+ Thanks to the work Wanda ([paper](https://arxiv.org/abs/2306.11695), [code](https://github.com/locuslab/wanda)), which provides a simple but effective pruning approach.
37
+
38
+ ## License
39
+
40
+ Apache-2.0