jinjieyuan
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
library_name: transformers
|
5 |
+
---
|
6 |
+
|
7 |
+
# SQFT Base Model: sqft-mistral-7b-v0.3-30-base
|
8 |
+
|
9 |
+
- Source Model: [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3)
|
10 |
+
- Sparse Method: [Wanda](https://github.com/locuslab/wanda)
|
11 |
+
- Sparsity: 30%
|
12 |
+
- Quantization: No
|
13 |
+
|
14 |
+
## Model Sources
|
15 |
+
|
16 |
+
- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
|
17 |
+
- **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models]()
|
18 |
+
|
19 |
+
## How to get this model
|
20 |
+
|
21 |
+
Refer to the command in [SQFT/run_command/mistral-7b-v0.3/sparse_quantization.sh#11](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT/run_command/mistral-7b-v0.3/sparse_quantization.sh#11).
|
22 |
+
|
23 |
+
## Citation
|
24 |
+
|
25 |
+
```bash
|
26 |
+
@article{munoz2024sqft,
|
27 |
+
title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
|
28 |
+
author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
|
29 |
+
journal={},
|
30 |
+
year={2024}
|
31 |
+
}
|
32 |
+
```
|
33 |
+
|
34 |
+
## Acknowledgement
|
35 |
+
|
36 |
+
Thanks to the work Wanda ([paper](https://arxiv.org/abs/2306.11695), [code](https://github.com/locuslab/wanda)), which provides a simple but effective pruning approach.
|
37 |
+
|
38 |
+
## License
|
39 |
+
|
40 |
+
Apache-2.0
|