Text Generation
Transformers
Safetensors
English
mistral
text-generation-inference
File size: 1,859 Bytes
5d4d175
3ff629d
 
89254f5
5d4d175
 
3ff629d
5d4d175
3ff629d
 
 
 
5d4d175
3ff629d
5d4d175
7f589c1
 
 
8945be6
7f589c1
5d4d175
3ff629d
5d4d175
7f589c1
5d4d175
3ff629d
5d4d175
3ff629d
7f589c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ff629d
 
5d4d175
3ff629d
5d4d175
3ff629d
5d4d175
3ff629d
5d4d175
89254f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
language: en
license: apache-2.0
library_name: transformers
---

# SQFT Base Model: sqft-mistral-7b-v0.3-50-base

- Source Model: [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3)
- Sparse Method: [Wanda](https://github.com/locuslab/wanda)
- Sparsity: 50%
- Quantization: No

## Model Sources

**Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)

**Paper:**
- [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750)
- [Low-Rank Adapters Meet Neural Architecture Search for LLM Compression](https://arxiv.org/abs/2501.16372)

## How to get this model

Refer to the command in [SQFT/run_command/mistral-7b-v0.3/sparse_quantization.sh#11](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT/legacy/run_command/mistral-7b-v0.3/sparse_quantization.sh#11).

## Citation

```bash
@inproceedings{munoz-etal-2024-sqft,
    title = "{SQFT}: Low-cost Model Adaptation in Low-precision Sparse Foundation Models",
    author = "Munoz, Juan Pablo  and
      Yuan, Jinjie  and
      Jain, Nilesh",
    editor = "Al-Onaizan, Yaser  and
      Bansal, Mohit  and
      Chen, Yun-Nung",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
    month = nov,
    year = "2024",
    address = "Miami, Florida, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.findings-emnlp.749",
    pages = "12817--12832",
}
```

## Acknowledgement

Thanks to the work Wanda ([paper](https://arxiv.org/abs/2306.11695), [code](https://github.com/locuslab/wanda)), which provides a simple but effective pruning approach.

## License

Apache-2.0