--- language: en license: apache-2.0 base_model: - IntelLabs/sqft-phi-3-mini-4k-50-base-gptq library_name: peft --- # SQFT Fine-tuned Model: sqft-phi-3-mini-4k-50-gptq-cs-heu-adapter - Base Model: [IntelLabs/sqft-phi-3-mini-4k-50-base-gptq](https://huggingface.co/IntelLabs/sqft-phi-3-mini-4k-50-base-gptq) - Sparsity: 50% - Quantization: INT4 (GPTQ) - Finetune Method: SQFT - Finetune data: [winogrande](https://huggingface.co/datasets/winogrande), [boolq](https://huggingface.co/datasets/google/boolq), [openbookqa](https://huggingface.co/datasets/allenai/openbookqa), [hellaswag](https://huggingface.co/datasets/Rowan/hellaswag), [piqa](https://huggingface.co/datasets/piqa), [ai2_arc](https://huggingface.co/datasets/allenai/ai2_arc) training dataset (83k) - Sub-Adapter: Heuristic ### Evaluation ```bash BASE_MODEL_NAME=IntelLabs/sqft-phi-3-mini-4k-50-base-gptq ADAPTER_MODEL_NAME=IntelLabs/sqft-phi-3-mini-4k-50-gptq-cs-heu-adapter lm_eval --model hf --model_args pretrained=${BASE_MODEL_NAME},peft=${ADAPTER_MODEL_NAME},add_bos_token=True,trust_remote_code=True --tasks piqa,arc_easy,arc_challenge,hellaswag,openbookqa,boolq,winogrande --batch_size auto:4 ``` Refer to our [repo](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) for the environment information to run this command. ## Model Sources **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) **Paper:** - [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750) - [Low-Rank Adapters Meet Neural Architecture Search for LLM Compression](https://arxiv.org/abs/2501.16372) ## Citation ```bash @inproceedings{munoz-etal-2024-sqft, title = "{SQFT}: Low-cost Model Adaptation in Low-precision Sparse Foundation Models", author = "Munoz, Juan Pablo and Yuan, Jinjie and Jain, Nilesh", editor = "Al-Onaizan, Yaser and Bansal, Mohit and Chen, Yun-Nung", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024", month = nov, year = "2024", address = "Miami, Florida, USA", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.findings-emnlp.749", pages = "12817--12832", } ``` ## License Apache-2.0