# Stable Diffusion 3 Inpaint Pipeline | input image | input mask image | output | |:-------------------------:|:-------------------------:|:-------------------------:| | | | | **Please ensure that the version of diffusers >= 0.29.1** # Demo ```python import torch from torchvision import transforms from pipeline_stable_diffusion_3_inpaint import StableDiffusion3InpaintPipeline from diffusers.utils import load_image def preprocess_image(image): image = image.convert("RGB") image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image) image = transforms.ToTensor()(image) image = image * 2 - 1 image = image.unsqueeze(0).to("cuda") return image def preprocess_mask(mask): mask = mask.convert("L") mask = transforms.CenterCrop((mask.size[1] // 64 * 64, mask.size[0] // 64 * 64))(mask) mask = transforms.ToTensor()(mask) mask = mask.to("cuda") return mask pipe = StableDiffusion3InpaintPipeline.from_pretrained( "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16, ).to("cuda") prompt = "Face of a yellow cat, high resolution, sitting on a park bench" source_image = load_image( "./overture-creations-5sI6fQgYIuo.png" ) source = preprocess_image(source_image) mask = preprocess_mask( load_image( "./overture-creations-5sI6fQgYIuo_mask.png" ) ) image = pipe( prompt=prompt, image=source, mask_image=1-mask, height=1024, width=1024, num_inference_steps=28, guidance_scale=7.0, strength=0.6, ).images[0] image.save("output.png") ```