Isaacgv commited on
Commit
3dee52c
·
1 Parent(s): d1991ce

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1448.43 +/- 75.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33fa98e7b4ec5c4c568f54e50829530a85c7dbc17951bf1474470ad6ebc25abd
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3d20d800d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3d20d80160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3d20d801f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3d20d80280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3d20d80310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3d20d803a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3d20d80430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3d20d804c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3d20d80550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3d20d805e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3d20d80670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3d20d80700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f3d20dfeec0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1680347017464781095,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMvmdb5iiHc+qnQoP9GwdT9h59g/XRoNP/0CKr8UcxM+HJ32PmANfD+6q+++VqYZP27PUj9/ErQ/1QgUP7sVar156ag/U/nxvfn0Qr8CVmA/SEuHvobhxT48JKw+5D6mvxHgLj9L3bE+EyzoPh3tfD/EkSM+qgYGv+llnD7U+ac/x7ZNPxYcqD4iKYW9S9YXv/SNKj8vhcA/1B+/Pn3Pmj7fMYw/z2K2PxFxEj/Et0o/GdtoP407ED2xwHG+eItQP+iZJT+rjOQ/6fUeP3uig74R4C4/S92xPhMs6D45joG/l1x5vjjhsb6dCN8+fzJYPtKwnz+wiuA+/TRFPy3bAj9gFae/ZFAKwM2Heb8OtSY9fdauvoErAT9BDGW/bTCCPneauj7n+A1AWXpyP4NHN0Cx5O+9egivv0ytuL53NTs+GGG7v0vdsT76Ig3AHe18P8qLzj5PfUQ9TFQeP9c5YT9z1KA/0N2qPhJs1T+CzMi/k+u2v/2pIr/e+F+/LIAXP2Qeoj9Q21M/hZ6LPoREXT+R6Kc/ETFNvtf5YD/nezA/lN+FP6VJnb6oz5A/0inJPRhhu79L3bE+EyzoPh3tfD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADuaDE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbptDvQAAAABg3d6/AAAAAA/Tqr0AAAAA0DnjPwAAAAC0ZvM8AAAAAJJg8z8AAAAAj70EvQAAAACREtm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEANZNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG205rwAAAAAnd7uvwAAAAB9T9i9AAAAAN0f9z8AAAAAppfGPQAAAACWS+w/AAAAAHekZLwAAAAAHqbuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEodQ7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAouKu8AAAAAORi578AAAAAyLflOwAAAAAc7uE/AAAAAH9bWb0AAAAAL4P6PwAAAAA4l8Q9AAAAAJoi7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhgtQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgUwQvQAAAABDaPi/AAAAAO36AT4AAAAAKR36PwAAAACBObM9AAAAAHcj4j8AAAAAexaovAAAAACZ4/+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJRWYl2NedGMAWyUTegDjAF0lEdAqkwD/VAiV3V9lChoBkdAk/NrOZ9d/2gHTegDaAhHQKpQiAuIyj51fZQoaAZHQJNL1+rlvIhoB03oA2gIR0CqVKzyjHn2dX2UKGgGR0CV5Cd+XqqwaAdN6ANoCEdAqljlfVqesnV9lChoBkdAkk6UrK/202gHTegDaAhHQKpamctGus91fZQoaAZHQJWkEWj4595oB03oA2gIR0CqYBrGBFuvdX2UKGgGR0CW2dWnCO3laAdN6ANoCEdAqmPpLGrCFnV9lChoBkdAlOTvyCnP3WgHTegDaAhHQKpmwwcHWz51fZQoaAZHQJTer2lEZzhoB03oA2gIR0CqZ92FvhqCdX2UKGgGR0CSydNjbzshaAdN6ANoCEdAqmxFS4vvjXV9lChoBkdAliV5prULD2gHTegDaAhHQKpwDM5fdAR1fZQoaAZHQJV5nAZbY9RoB03oA2gIR0Cqc5b2+PBBdX2UKGgGR0CXSh+fRNRFaAdN6ANoCEdAqnUkv/R3NnV9lChoBkdAk/m9gnc+JWgHTegDaAhHQKp70BtDUmV1fZQoaAZHQJP46lP8AJdoB03oA2gIR0Cqf5jpC8e0dX2UKGgGR0CVa1RISUTtaAdN6ANoCEdAqoJ+ahHsknV9lChoBkdAljhwmZ3LWGgHTegDaAhHQKqDlnq3VkN1fZQoaAZHQJQ9rdrO7g9oB03oA2gIR0CqiBKlP8AJdX2UKGgGR0CXo2aMrEtNaAdN6ANoCEdAqovV/OMVDnV9lChoBkdAlF3dJrcj7mgHTegDaAhHQKqOrtaY/ml1fZQoaAZHQJd/bYYixFBoB03oA2gIR0Cqj/wmeDnOdX2UKGgGR0CYSSngpBomaAdN6ANoCEdAqpae4XoC+3V9lChoBkdAlwHrCvX9SGgHTegDaAhHQKqbU9EkSmJ1fZQoaAZHQJaDOiEg4fhoB03oA2gIR0Cqnj9Hc1wYdX2UKGgGR0CWIhVmBe5XaAdN6ANoCEdAqp9navicXnV9lChoBkdAliSY2XLNfWgHTegDaAhHQKqj5qoqCpZ1fZQoaAZHQJR2vLlmvntoB03oA2gIR0Cqp5sDOkckdX2UKGgGR0CUT7b8WKuTaAdN6ANoCEdAqqpsBXCCSXV9lChoBkdAlFk3ogV45mgHTegDaAhHQKqrjJz1bq11fZQoaAZHQJU6iWSlnAZoB03oA2gIR0CqsRnYQJ5WdX2UKGgGR0CWQ8fYSQHSaAdN6ANoCEdAqrbOy9mHxnV9lChoBkdAlDbtO6/Zd2gHTegDaAhHQKq52DXe3x51fZQoaAZHQJV7rIBBAwBoB03oA2gIR0CquuggxJumdX2UKGgGR0CV/kzz3AVPaAdN6ANoCEdAqr9evyLAHnV9lChoBkdAl1yZHAh0Q2gHTegDaAhHQKrDH433pOh1fZQoaAZHQJYCBuuRs/JoB03oA2gIR0Cqxf7gCOm0dX2UKGgGR0CXUdUfgaWHaAdN6ANoCEdAqscchouf3HV9lChoBkdAlhd2saKk22gHTegDaAhHQKrLp3cHnlp1fZQoaAZHQJS3rQ5WBBloB03oA2gIR0Cq0Sv3SKFadX2UKGgGR0CWCxatLcsUaAdN6ANoCEdAqtWMVi4J/3V9lChoBkdAlmuqsySFG2gHTegDaAhHQKrWpw2l2vB1fZQoaAZHQJPOP7N0NjNoB03oA2gIR0Cq2wgTqSowdX2UKGgGR0CWBBNoJzDGaAdN6ANoCEdAqt7JK8L8aXV9lChoBkdAkuZxcE/0NGgHTegDaAhHQKrhvp9qk/N1fZQoaAZHQJa3u/8EV35oB03oA2gIR0Cq4tbN8ma6dX2UKGgGR0CXZAeeFtbcaAdN6ANoCEdAqudOVE/jbXV9lChoBkdAlYXIa1kUbmgHTegDaAhHQKrr2H/tICl1fZQoaAZHQJcYIyJsO5JoB03oA2gIR0Cq8CZDRc/udX2UKGgGR0CYT7R5kbxWaAdN6ANoCEdAqvHXKQq7RXV9lChoBkdAlay4zabnYGgHTegDaAhHQKr3FeD3/Px1fZQoaAZHQJJ3WwgTyrhoB03oA2gIR0Cq+u3B55Z9dX2UKGgGR0CV7nd4mkWRaAdN6ANoCEdAqv3ElZ5iVnV9lChoBkdAlJl5kGzKLmgHTegDaAhHQKr+4Fjd56d1fZQoaAZHQJRzJ7PY4AFoB03oA2gIR0CrA1t4JNTMdX2UKGgGR0CW/zl4keIVaAdN6ANoCEdAqwchaePJaXV9lChoBkdAlACCoS+QEWgHTegDaAhHQKsLADYAbQ11fZQoaAZHQJRJGE384xVoB03oA2gIR0CrDJ14HHFQdX2UKGgGR0CTnZymQ8wIaAdN6ANoCEdAqxLLNOdoWnV9lChoBkdAkpIzgZTAFmgHTegDaAhHQKsWgTqSowV1fZQoaAZHQJUGvueBg/loB03oA2gIR0CrGVet0V8DdX2UKGgGR0CSF6QDV6NVaAdN6ANoCEdAqxpwOvt+kXV9lChoBkdAlHdkD2alUWgHTegDaAhHQKse8NRWLgp1fZQoaAZHQIWIuUB4lhRoB03oA2gIR0CrIqNJnQIEdX2UKGgGR0CX4dNcW0qpaAdN6ANoCEdAqyVz0J4SpXV9lChoBkdAhQmMfzSThmgHTegDaAhHQKsm8ydnTRZ1fZQoaAZHQJIxG+ueSSxoB03oA2gIR0CrLbDdxhlUdX2UKGgGR0CEKe2pAD7qaAdN6ANoCEdAqzInPJJXhnV9lChoBkdAkyyueWfK6mgHTegDaAhHQKs1CemNzbN1fZQoaAZHQJU4HqIJqqRoB03oA2gIR0CrNiaGYa5xdX2UKGgGR0CSYlwe/5+IaAdN6ANoCEdAqzqEg8r7O3V9lChoBkdAlJ05MlC1JGgHTegDaAhHQKs+KHP/rB11fZQoaAZHQJO9o8ZDRdBoB03oA2gIR0CrQQho/RmcdX2UKGgGR0CTtD22Xsw+aAdN6ANoCEdAq0IVOKwY+HV9lChoBkdAljVdWdVebGgHTegDaAhHQKtHt3h4t6J1fZQoaAZHQJMLgeOn2qVoB03oA2gIR0CrTXFfzBhydX2UKGgGR0CXNTk43m3faAdN6ANoCEdAq1BEoUi6hHV9lChoBkdAk4U2orFwUGgHTegDaAhHQKtRVqj8DSx1fZQoaAZHQJbWHNdJJ5FoB03oA2gIR0CrVb9fsu3+dX2UKGgGR0CU+poJzDGcaAdN6ANoCEdAq1lyPjn3c3V9lChoBkdAlfVhrvb48GgHTegDaAhHQKtcU6UaAFx1fZQoaAZHQJcIaQ0XP7hoB03oA2gIR0CrXWwtjCpFdX2UKGgGR0CTehHnlnyvaAdN6ANoCEdAq2H7I/7iynV9lChoBkdAkuo8IzFdcGgHTegDaAhHQKtnfzCk43p1fZQoaAZHQJPagx7AtWdoB03oA2gIR0Cra94KhL5AdX2UKGgGR0CUQne4Cp3paAdN6ANoCEdAq2z4mXw9aHV9lChoBkdAk3HBYFJQL2gHTegDaAhHQKtxbw1BMSN1fZQoaAZHQJDEUlXzUZxoB03oA2gIR0CrdTV63RXwdX2UKGgGR0CQGwMQEpy7aAdN6ANoCEdAq3gLyFwkxHV9lChoBkdAkj11OoHcDmgHTegDaAhHQKt5JJMg2ZR1fZQoaAZHQJZ9/Dn/1g9oB03oA2gIR0CrfXKI7/4qdX2UKGgGR0CWDsa3I+4caAdN6ANoCEdAq4HkOI68x3V9lChoBkdAlRqT6FdszmgHTegDaAhHQKuGKnbZezF1fZQoaAZHQJW9yhkAggZoB03oA2gIR0Crh9m9xp+MdX2UKGgGR0CWrt5sTFl1aAdN6ANoCEdAq4zpFCswL3V9lChoBkdAl07AhStNjGgHTegDaAhHQKuQmtnwob51fZQoaAZHQJegRa0QbuNoB03oA2gIR0Crk2CFbmlqdX2UKGgGR0CXXak43m3faAdN6ANoCEdAq5TKlUIcBHV9lChoBkdAl9fylzltCWgHTegDaAhHQKubg4xUNrl1fZQoaAZHQJLE67Ackt5oB03oA2gIR0CroK6PKdQPdX2UKGgGR0CYA4qveP7vaAdN6ANoCEdAq6UCUPhAGHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcd6583b1e44a94d08850471a02cd107d77e73cff8843c66798c02d82f02826f
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28eb50644763b2c5cbc8a5dee44e002194d1ed35154400ae10e4f52d775fc36c
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3d20d800d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3d20d80160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3d20d801f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3d20d80280>", "_build": "<function ActorCriticPolicy._build at 0x7f3d20d80310>", "forward": "<function ActorCriticPolicy.forward at 0x7f3d20d803a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3d20d80430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3d20d804c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3d20d80550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3d20d805e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3d20d80670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3d20d80700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3d20dfeec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680347017464781095, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMvmdb5iiHc+qnQoP9GwdT9h59g/XRoNP/0CKr8UcxM+HJ32PmANfD+6q+++VqYZP27PUj9/ErQ/1QgUP7sVar156ag/U/nxvfn0Qr8CVmA/SEuHvobhxT48JKw+5D6mvxHgLj9L3bE+EyzoPh3tfD/EkSM+qgYGv+llnD7U+ac/x7ZNPxYcqD4iKYW9S9YXv/SNKj8vhcA/1B+/Pn3Pmj7fMYw/z2K2PxFxEj/Et0o/GdtoP407ED2xwHG+eItQP+iZJT+rjOQ/6fUeP3uig74R4C4/S92xPhMs6D45joG/l1x5vjjhsb6dCN8+fzJYPtKwnz+wiuA+/TRFPy3bAj9gFae/ZFAKwM2Heb8OtSY9fdauvoErAT9BDGW/bTCCPneauj7n+A1AWXpyP4NHN0Cx5O+9egivv0ytuL53NTs+GGG7v0vdsT76Ig3AHe18P8qLzj5PfUQ9TFQeP9c5YT9z1KA/0N2qPhJs1T+CzMi/k+u2v/2pIr/e+F+/LIAXP2Qeoj9Q21M/hZ6LPoREXT+R6Kc/ETFNvtf5YD/nezA/lN+FP6VJnb6oz5A/0inJPRhhu79L3bE+EyzoPh3tfD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADuaDE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbptDvQAAAABg3d6/AAAAAA/Tqr0AAAAA0DnjPwAAAAC0ZvM8AAAAAJJg8z8AAAAAj70EvQAAAACREtm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEANZNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG205rwAAAAAnd7uvwAAAAB9T9i9AAAAAN0f9z8AAAAAppfGPQAAAACWS+w/AAAAAHekZLwAAAAAHqbuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEodQ7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAouKu8AAAAAORi578AAAAAyLflOwAAAAAc7uE/AAAAAH9bWb0AAAAAL4P6PwAAAAA4l8Q9AAAAAJoi7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhgtQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgUwQvQAAAABDaPi/AAAAAO36AT4AAAAAKR36PwAAAACBObM9AAAAAHcj4j8AAAAAexaovAAAAACZ4/+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJRWYl2NedGMAWyUTegDjAF0lEdAqkwD/VAiV3V9lChoBkdAk/NrOZ9d/2gHTegDaAhHQKpQiAuIyj51fZQoaAZHQJNL1+rlvIhoB03oA2gIR0CqVKzyjHn2dX2UKGgGR0CV5Cd+XqqwaAdN6ANoCEdAqljlfVqesnV9lChoBkdAkk6UrK/202gHTegDaAhHQKpamctGus91fZQoaAZHQJWkEWj4595oB03oA2gIR0CqYBrGBFuvdX2UKGgGR0CW2dWnCO3laAdN6ANoCEdAqmPpLGrCFnV9lChoBkdAlOTvyCnP3WgHTegDaAhHQKpmwwcHWz51fZQoaAZHQJTer2lEZzhoB03oA2gIR0CqZ92FvhqCdX2UKGgGR0CSydNjbzshaAdN6ANoCEdAqmxFS4vvjXV9lChoBkdAliV5prULD2gHTegDaAhHQKpwDM5fdAR1fZQoaAZHQJV5nAZbY9RoB03oA2gIR0Cqc5b2+PBBdX2UKGgGR0CXSh+fRNRFaAdN6ANoCEdAqnUkv/R3NnV9lChoBkdAk/m9gnc+JWgHTegDaAhHQKp70BtDUmV1fZQoaAZHQJP46lP8AJdoB03oA2gIR0Cqf5jpC8e0dX2UKGgGR0CVa1RISUTtaAdN6ANoCEdAqoJ+ahHsknV9lChoBkdAljhwmZ3LWGgHTegDaAhHQKqDlnq3VkN1fZQoaAZHQJQ9rdrO7g9oB03oA2gIR0CqiBKlP8AJdX2UKGgGR0CXo2aMrEtNaAdN6ANoCEdAqovV/OMVDnV9lChoBkdAlF3dJrcj7mgHTegDaAhHQKqOrtaY/ml1fZQoaAZHQJd/bYYixFBoB03oA2gIR0Cqj/wmeDnOdX2UKGgGR0CYSSngpBomaAdN6ANoCEdAqpae4XoC+3V9lChoBkdAlwHrCvX9SGgHTegDaAhHQKqbU9EkSmJ1fZQoaAZHQJaDOiEg4fhoB03oA2gIR0Cqnj9Hc1wYdX2UKGgGR0CWIhVmBe5XaAdN6ANoCEdAqp9navicXnV9lChoBkdAliSY2XLNfWgHTegDaAhHQKqj5qoqCpZ1fZQoaAZHQJR2vLlmvntoB03oA2gIR0Cqp5sDOkckdX2UKGgGR0CUT7b8WKuTaAdN6ANoCEdAqqpsBXCCSXV9lChoBkdAlFk3ogV45mgHTegDaAhHQKqrjJz1bq11fZQoaAZHQJU6iWSlnAZoB03oA2gIR0CqsRnYQJ5WdX2UKGgGR0CWQ8fYSQHSaAdN6ANoCEdAqrbOy9mHxnV9lChoBkdAlDbtO6/Zd2gHTegDaAhHQKq52DXe3x51fZQoaAZHQJV7rIBBAwBoB03oA2gIR0CquuggxJumdX2UKGgGR0CV/kzz3AVPaAdN6ANoCEdAqr9evyLAHnV9lChoBkdAl1yZHAh0Q2gHTegDaAhHQKrDH433pOh1fZQoaAZHQJYCBuuRs/JoB03oA2gIR0Cqxf7gCOm0dX2UKGgGR0CXUdUfgaWHaAdN6ANoCEdAqscchouf3HV9lChoBkdAlhd2saKk22gHTegDaAhHQKrLp3cHnlp1fZQoaAZHQJS3rQ5WBBloB03oA2gIR0Cq0Sv3SKFadX2UKGgGR0CWCxatLcsUaAdN6ANoCEdAqtWMVi4J/3V9lChoBkdAlmuqsySFG2gHTegDaAhHQKrWpw2l2vB1fZQoaAZHQJPOP7N0NjNoB03oA2gIR0Cq2wgTqSowdX2UKGgGR0CWBBNoJzDGaAdN6ANoCEdAqt7JK8L8aXV9lChoBkdAkuZxcE/0NGgHTegDaAhHQKrhvp9qk/N1fZQoaAZHQJa3u/8EV35oB03oA2gIR0Cq4tbN8ma6dX2UKGgGR0CXZAeeFtbcaAdN6ANoCEdAqudOVE/jbXV9lChoBkdAlYXIa1kUbmgHTegDaAhHQKrr2H/tICl1fZQoaAZHQJcYIyJsO5JoB03oA2gIR0Cq8CZDRc/udX2UKGgGR0CYT7R5kbxWaAdN6ANoCEdAqvHXKQq7RXV9lChoBkdAlay4zabnYGgHTegDaAhHQKr3FeD3/Px1fZQoaAZHQJJ3WwgTyrhoB03oA2gIR0Cq+u3B55Z9dX2UKGgGR0CV7nd4mkWRaAdN6ANoCEdAqv3ElZ5iVnV9lChoBkdAlJl5kGzKLmgHTegDaAhHQKr+4Fjd56d1fZQoaAZHQJRzJ7PY4AFoB03oA2gIR0CrA1t4JNTMdX2UKGgGR0CW/zl4keIVaAdN6ANoCEdAqwchaePJaXV9lChoBkdAlACCoS+QEWgHTegDaAhHQKsLADYAbQ11fZQoaAZHQJRJGE384xVoB03oA2gIR0CrDJ14HHFQdX2UKGgGR0CTnZymQ8wIaAdN6ANoCEdAqxLLNOdoWnV9lChoBkdAkpIzgZTAFmgHTegDaAhHQKsWgTqSowV1fZQoaAZHQJUGvueBg/loB03oA2gIR0CrGVet0V8DdX2UKGgGR0CSF6QDV6NVaAdN6ANoCEdAqxpwOvt+kXV9lChoBkdAlHdkD2alUWgHTegDaAhHQKse8NRWLgp1fZQoaAZHQIWIuUB4lhRoB03oA2gIR0CrIqNJnQIEdX2UKGgGR0CX4dNcW0qpaAdN6ANoCEdAqyVz0J4SpXV9lChoBkdAhQmMfzSThmgHTegDaAhHQKsm8ydnTRZ1fZQoaAZHQJIxG+ueSSxoB03oA2gIR0CrLbDdxhlUdX2UKGgGR0CEKe2pAD7qaAdN6ANoCEdAqzInPJJXhnV9lChoBkdAkyyueWfK6mgHTegDaAhHQKs1CemNzbN1fZQoaAZHQJU4HqIJqqRoB03oA2gIR0CrNiaGYa5xdX2UKGgGR0CSYlwe/5+IaAdN6ANoCEdAqzqEg8r7O3V9lChoBkdAlJ05MlC1JGgHTegDaAhHQKs+KHP/rB11fZQoaAZHQJO9o8ZDRdBoB03oA2gIR0CrQQho/RmcdX2UKGgGR0CTtD22Xsw+aAdN6ANoCEdAq0IVOKwY+HV9lChoBkdAljVdWdVebGgHTegDaAhHQKtHt3h4t6J1fZQoaAZHQJMLgeOn2qVoB03oA2gIR0CrTXFfzBhydX2UKGgGR0CXNTk43m3faAdN6ANoCEdAq1BEoUi6hHV9lChoBkdAk4U2orFwUGgHTegDaAhHQKtRVqj8DSx1fZQoaAZHQJbWHNdJJ5FoB03oA2gIR0CrVb9fsu3+dX2UKGgGR0CU+poJzDGcaAdN6ANoCEdAq1lyPjn3c3V9lChoBkdAlfVhrvb48GgHTegDaAhHQKtcU6UaAFx1fZQoaAZHQJcIaQ0XP7hoB03oA2gIR0CrXWwtjCpFdX2UKGgGR0CTehHnlnyvaAdN6ANoCEdAq2H7I/7iynV9lChoBkdAkuo8IzFdcGgHTegDaAhHQKtnfzCk43p1fZQoaAZHQJPagx7AtWdoB03oA2gIR0Cra94KhL5AdX2UKGgGR0CUQne4Cp3paAdN6ANoCEdAq2z4mXw9aHV9lChoBkdAk3HBYFJQL2gHTegDaAhHQKtxbw1BMSN1fZQoaAZHQJDEUlXzUZxoB03oA2gIR0CrdTV63RXwdX2UKGgGR0CQGwMQEpy7aAdN6ANoCEdAq3gLyFwkxHV9lChoBkdAkj11OoHcDmgHTegDaAhHQKt5JJMg2ZR1fZQoaAZHQJZ9/Dn/1g9oB03oA2gIR0CrfXKI7/4qdX2UKGgGR0CWDsa3I+4caAdN6ANoCEdAq4HkOI68x3V9lChoBkdAlRqT6FdszmgHTegDaAhHQKuGKnbZezF1fZQoaAZHQJW9yhkAggZoB03oA2gIR0Crh9m9xp+MdX2UKGgGR0CWrt5sTFl1aAdN6ANoCEdAq4zpFCswL3V9lChoBkdAl07AhStNjGgHTegDaAhHQKuQmtnwob51fZQoaAZHQJegRa0QbuNoB03oA2gIR0Crk2CFbmlqdX2UKGgGR0CXXak43m3faAdN6ANoCEdAq5TKlUIcBHV9lChoBkdAl9fylzltCWgHTegDaAhHQKubg4xUNrl1fZQoaAZHQJLE67Ackt5oB03oA2gIR0CroK6PKdQPdX2UKGgGR0CYA4qveP7vaAdN6ANoCEdAq6UCUPhAGHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (978 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1448.4291853659147, "std_reward": 75.28283048489038, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-01T12:09:27.033611"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87f3482cbb45f8f4a33b2c4934fa1014adfd7d1e76b27ec73a702942dadad9e9
3
+ size 2136