Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1481.05 +/- 126.18
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:746ae6c41daa316d08a1fbbc6c85a90689dc32af1261eaa3cc24867d1b35d1fa
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f37b7c01940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f37b7c019d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37b7c01a60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f37b7c01af0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f37b7c01b80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f37b7c01c10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f37b7c01ca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f37b7c01d30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f37b7c01dc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f37b7c01e50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f37b7c01ee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f37b7c01f70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f37b7beac60>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1677066592590919259,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAD4PD5K9Xc/N2nqvvq4475Bsxs/Wts/vcJUxz7y+ls+DCeGvuAoEMCMTU8/HqOFPrr+Hz5fVAnAu/kjPu6eML8lj42+ykmhvypX5D1LjjM/J3kpP5DXuj2mK+G+KCxtvxw1cT/jYfS/mxCfPq3dzb8hkYK+HAubP5vpjr/nnZi/pNLAvu7DhD7btXA+8DMLvxlssb+SEHE9pmsqP7Zf4j3RSGk/T4VsPBgyDT80XXC+1CDuvxfc9bxHdSM/PR0UOyB4nT+Svl2+FXf+PhI9oL0cNXE/vxUGP5sQnz7rKx8/h2skv+R3ZD+wSJy+ezZwv47U9757vdk9sADlvb8nmb7QV5W/dO2wvakFHj4q1ci7iG7ZPoJT8LtHai8/x+s4PHuAP7+K4ZC9P9YrPwe+pDtDfYE/xNGkvbxZEj4wdNe7HDVxP78VBj+bEJ8+6ysfPw/LTT9HbQ0/txdTPg8IG0B/mI0/XNypPwwHGj9hlnK/YRfTPTMPiL2KL8s+TvQBwJtqOr/R47Q/xmFtv/FEID5bexM/xAKePfiXLD/H56o+aXEavwiRb79s4e0+0SWjvJDZh7+/FQY/mxCfPusrHz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABOtYk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAI+/CvQAAAABXUf+/AAAAANwTAj4AAAAAgcIAQAAAAABpxls7AAAAAPgcAUAAAAAAeBtsPQAAAAB/Eu+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjsCntgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAnlpbwAAAAAawbhvwAAAACEX/K9AAAAADwh6D8AAAAAwRKBvQAAAAA0PPI/AAAAANXFYz0AAAAA/28AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKfqurUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAK7OI9AAAAAMcA6r8AAAAAyN5ePQAAAABx+Ps/AAAAAJcN+b0AAAAAOOf2PwAAAABv+Pq9AAAAALzn778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHdQ23AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAO4+lPQAAAABBbOq/AAAAAI1RGL0AAAAAgQvpPwAAAABsquy9AAAAAK81AEAAAAAAX/P0PQAAAAAKpP6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJOvUzSCvoyMAWyUTegDjAF0lEdArkPSIUJv53V9lChoBkdAlS5aPwNLDmgHTegDaAhHQK5FrjXnQpp1fZQoaAZHQJKkZNDc/MZoB03oA2gIR0CuR2PoePq+dX2UKGgGR0CT5FIomXw9aAdN6ANoCEdArk001KoQ4HV9lChoBkdAk8MAEyLyc2gHTegDaAhHQK5PUHxBmf51fZQoaAZHQJUdoHAymANoB03oA2gIR0CuUS2OZLIxdX2UKGgGR0CTwEgAIY3vaAdN6ANoCEdArlLPsZ5zHXV9lChoBkdAjpydfb9IgGgHTegDaAhHQK5Y+M1CPZJ1fZQoaAZHQJFxP3Zf2K5oB03oA2gIR0CuWzxLkCFLdX2UKGgGR0CTfmT6zmfXaAdN6ANoCEdArl0q8OCoTHV9lChoBkdAks5BxgiNbWgHTegDaAhHQK5e19+gDih1fZQoaAZHQJOcrrNW2gFoB03oA2gIR0CuZLcDB/I9dX2UKGgGR0CR081jAi3YaAdN6ANoCEdArmbcEaESNHV9lChoBkdAk0XCPhhpg2gHTegDaAhHQK5ousjmjj91fZQoaAZHQJHu/U6PsAxoB03oA2gIR0CualHXVbzLdX2UKGgGR0CRTrcC5mROaAdN6ANoCEdArnAv2mHgxnV9lChoBkdAkvJbuMMqjWgHTegDaAhHQK5yb+EytV91fZQoaAZHQJH/PHn2ZiNoB03oA2gIR0CudG14Pf8/dX2UKGgGR0CM7TtzCDVZaAdN6ANoCEdArnYQMMI/q3V9lChoBkdAkef7NbC79WgHTegDaAhHQK577AVO9Fp1fZQoaAZHQJHadpL26CloB03oA2gIR0CufiMcQyyldX2UKGgGR0CQxbnKW9lFaAdN6ANoCEdAroALxb0OE3V9lChoBkdAkRY+o5xR22gHTegDaAhHQK6BpqY7aIx1fZQoaAZHQJDN0nmaH9FoB03oA2gIR0Cuh7xPO6d2dX2UKGgGR0CR+ls0YTCcaAdN6ANoCEdAron+bVjI73V9lChoBkdAj/aOKO1fFGgHTegDaAhHQK6MIhAWznl1fZQoaAZHQJEowKTjebdoB03oA2gIR0CujdeLFXJYdX2UKGgGR0CRA/tuUD+zaAdN6ANoCEdArpPtoFmnO3V9lChoBkdAkHm7hNucc2gHTegDaAhHQK6WKwPAfuF1fZQoaAZHQJIxCUA1ejVoB03oA2gIR0CumBjfvWpZdX2UKGgGR0CR8/mU4aP0aAdN6ANoCEdArpm9pKzzE3V9lChoBkdAkE9V4keIVWgHTegDaAhHQK6f11RtP551fZQoaAZHQJHbUug6EJ1oB03oA2gIR0Cuoh1UlzEKdX2UKGgGR0CIiVXjlxOtaAdN6ANoCEdArqQIlIEr5XV9lChoBkdAkBstRekYXWgHTegDaAhHQK6lyQ5FPSF1fZQoaAZHQJMGzEyckMVoB03oA2gIR0Cuq+CJoCdSdX2UKGgGR0CTzDV0tAcDaAdN6ANoCEdArq4qJO32EnV9lChoBkdAk0bQ3PzFuWgHTegDaAhHQK6wBrpqynl1fZQoaAZHQJVsLgaWHDdoB03oA2gIR0CusaFJ6IFedX2UKGgGR0CUB+I5o4+9aAdN6ANoCEdArrejnDBMz3V9lChoBkdAl0e0lJHy3GgHTegDaAhHQK655CVrylN1fZQoaAZHQJRQ6kYXO4ZoB03oA2gIR0Cuu8SbYsd1dX2UKGgGR0CT4EBCD28JaAdN6ANoCEdArr1mUfPom3V9lChoBkdAlIWHtBv732gHTegDaAhHQK7D8gf2bod1fZQoaAZHQJOm8EFGG21oB03oA2gIR0Cuxi6fBeoldX2UKGgGR0CLn04b0e2eaAdN6ANoCEdArsgP0oScsnV9lChoBkdAkVfcvduYQmgHTegDaAhHQK7Jr92HLzR1fZQoaAZHQJNJrh73PAxoB03oA2gIR0Cuz4q28Zk1dX2UKGgGR0CNIUMZxaPkaAdN6ANoCEdArtHUtZmqYXV9lChoBkdAkcFbPldTpGgHTegDaAhHQK7TvZcs1891fZQoaAZHQJKRfOIInjRoB03oA2gIR0Cu1WWOp84QdX2UKGgGR0CVBKQtSQ5naAdN6ANoCEdArtuAB/7SA3V9lChoBkdAlMpvM8ox6GgHTegDaAhHQK7d2f1YhdN1fZQoaAZHQJesvxFy7wtoB03oA2gIR0Cu379gv115dX2UKGgGR0CYM4iHZbpvaAdN6ANoCEdAruFZVGTcI3V9lChoBkdAmG8gm7aqTGgHTegDaAhHQK7nUv9LpRp1fZQoaAZHQJa3XfDUExJoB03oA2gIR0Cu6Zb0nPVvdX2UKGgGR0CWHZJ2t+1CaAdN6ANoCEdArutxbnoxH3V9lChoBkdAmC1Ru4wyqWgHTegDaAhHQK7tB5qubI91fZQoaAZHQJaVFsabWmRoB03oA2gIR0Cu8vn13+uOdX2UKGgGR0CW1F0CzTnaaAdN6ANoCEdArvVzdepn6HV9lChoBkdAl6eBzV+ZxGgHTegDaAhHQK73YLa24NJ1fZQoaAZHQJhvzyXlbNdoB03oA2gIR0Cu+PzHKfWddX2UKGgGR0CWU4xGlQ/HaAdN6ANoCEdArv7yaEzwdHV9lChoBkdAlTxCdBjWkWgHTegDaAhHQK8BLDv3JxN1fZQoaAZHQJd1AtXgccVoB03oA2gIR0CvAxAB91EFdX2UKGgGR0CUvKP5pJwsaAdN6ANoCEdArwSwa3qiXnV9lChoBkdAk+F3e3x4IWgHTegDaAhHQK8KlYfW+XZ1fZQoaAZHQJoGAK7ZnL9oB03oA2gIR0CvDM9ELH+7dX2UKGgGR0CYv1oUBXCCaAdN6ANoCEdArw64pz90inV9lChoBkdAl69pJ9RaYGgHTegDaAhHQK8QY+JP69F1fZQoaAZHQJjomIUJv5xoB03oA2gIR0CvFlKlYU35dX2UKGgGR0Ca+xKw6hg3aAdN6ANoCEdArxiUzfrKNnV9lChoBkdAl3he/5+H8GgHTegDaAhHQK8ahlGwzLx1fZQoaAZHQJobvsIE8q5oB03oA2gIR0CvHBhJ7LMcdX2UKGgGR0CalzRtgrpaaAdN6ANoCEdAryHv/FR51XV9lChoBkdAmYlTOC5Et2gHTegDaAhHQK8kHGvOhTR1fZQoaAZHQJbAUWk8A7xoB03oA2gIR0CvJgwgTyrgdX2UKGgGR0CXbtr2QGOdaAdN6ANoCEdAryeuH1vl2nV9lChoBkdAmMZ0yULUkWgHTegDaAhHQK8t02kzoEB1fZQoaAZHQJevYWO6unxoB03oA2gIR0CvMAJxvNu+dX2UKGgGR0CWLCsxfv4NaAdN6ANoCEdArzHmpIczZnV9lChoBkdAmB/8mv4dqGgHTegDaAhHQK8zkTfR/mV1fZQoaAZHQJcs0XfqHGloB03oA2gIR0CvOVvLowEhdX2UKGgGR0CXxSHh0hePaAdN6ANoCEdArzuCtFKChHV9lChoBkdAl9jKh11W82gHTegDaAhHQK89WoDPnjh1fZQoaAZHQJR3bEit7rtoB03oA2gIR0CvPvyLhrFgdX2UKGgGR0CV5IVlPJq7aAdN6ANoCEdAr0Vm4G2TgXV9lChoBkdAlEKkWM0gsGgHTegDaAhHQK9Hl66asp51fZQoaAZHQJInkbMotthoB03oA2gIR0CvSYeI2wV1dX2UKGgGR0CQBetShrWRaAdN6ANoCEdAr0sjZJ04i3V9lChoBkdAlidPD+BH1GgHTegDaAhHQK9RAdGRV6x1fZQoaAZHQJC/iOhkAghoB03oA2gIR0CvUy/5ckdFdX2UKGgGR0CTogMNc4YKaAdN6ANoCEdAr1UaLEUCaXV9lChoBkdAlgfinP3SKGgHTegDaAhHQK9WvjNIK+l1fZQoaAZHQJLqaLEUCaJoB03oA2gIR0CvXNGJ3xFzdX2UKGgGR0CSBpdXko4NaAdN6ANoCEdAr18SUxEfDHV9lChoBkdAlJxyWNWEK2gHTegDaAhHQK9hJkbxVhl1fZQoaAZHQJVcEEt/WlNoB03oA2gIR0CvYucNhE0BdX2UKGgGR0CW8Bay8jA0aAdN6ANoCEdAr2jGT9sJpnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8ea93c28a25cfaacccc3190f162006cb92267f892055ba00c6bf7659561defa
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:413faa5476fe92ce2bf1626645161998e35d8c92d9201053a5a4b7f1ae2cc2d2
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f37b7c01940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f37b7c019d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37b7c01a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f37b7c01af0>", "_build": "<function ActorCriticPolicy._build at 0x7f37b7c01b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f37b7c01c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f37b7c01ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f37b7c01d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f37b7c01dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f37b7c01e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f37b7c01ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f37b7c01f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f37b7beac60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677066592590919259, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAD4PD5K9Xc/N2nqvvq4475Bsxs/Wts/vcJUxz7y+ls+DCeGvuAoEMCMTU8/HqOFPrr+Hz5fVAnAu/kjPu6eML8lj42+ykmhvypX5D1LjjM/J3kpP5DXuj2mK+G+KCxtvxw1cT/jYfS/mxCfPq3dzb8hkYK+HAubP5vpjr/nnZi/pNLAvu7DhD7btXA+8DMLvxlssb+SEHE9pmsqP7Zf4j3RSGk/T4VsPBgyDT80XXC+1CDuvxfc9bxHdSM/PR0UOyB4nT+Svl2+FXf+PhI9oL0cNXE/vxUGP5sQnz7rKx8/h2skv+R3ZD+wSJy+ezZwv47U9757vdk9sADlvb8nmb7QV5W/dO2wvakFHj4q1ci7iG7ZPoJT8LtHai8/x+s4PHuAP7+K4ZC9P9YrPwe+pDtDfYE/xNGkvbxZEj4wdNe7HDVxP78VBj+bEJ8+6ysfPw/LTT9HbQ0/txdTPg8IG0B/mI0/XNypPwwHGj9hlnK/YRfTPTMPiL2KL8s+TvQBwJtqOr/R47Q/xmFtv/FEID5bexM/xAKePfiXLD/H56o+aXEavwiRb79s4e0+0SWjvJDZh7+/FQY/mxCfPusrHz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABOtYk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAI+/CvQAAAABXUf+/AAAAANwTAj4AAAAAgcIAQAAAAABpxls7AAAAAPgcAUAAAAAAeBtsPQAAAAB/Eu+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjsCntgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAnlpbwAAAAAawbhvwAAAACEX/K9AAAAADwh6D8AAAAAwRKBvQAAAAA0PPI/AAAAANXFYz0AAAAA/28AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKfqurUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAK7OI9AAAAAMcA6r8AAAAAyN5ePQAAAABx+Ps/AAAAAJcN+b0AAAAAOOf2PwAAAABv+Pq9AAAAALzn778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHdQ23AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAO4+lPQAAAABBbOq/AAAAAI1RGL0AAAAAgQvpPwAAAABsquy9AAAAAK81AEAAAAAAX/P0PQAAAAAKpP6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJOvUzSCvoyMAWyUTegDjAF0lEdArkPSIUJv53V9lChoBkdAlS5aPwNLDmgHTegDaAhHQK5FrjXnQpp1fZQoaAZHQJKkZNDc/MZoB03oA2gIR0CuR2PoePq+dX2UKGgGR0CT5FIomXw9aAdN6ANoCEdArk001KoQ4HV9lChoBkdAk8MAEyLyc2gHTegDaAhHQK5PUHxBmf51fZQoaAZHQJUdoHAymANoB03oA2gIR0CuUS2OZLIxdX2UKGgGR0CTwEgAIY3vaAdN6ANoCEdArlLPsZ5zHXV9lChoBkdAjpydfb9IgGgHTegDaAhHQK5Y+M1CPZJ1fZQoaAZHQJFxP3Zf2K5oB03oA2gIR0CuWzxLkCFLdX2UKGgGR0CTfmT6zmfXaAdN6ANoCEdArl0q8OCoTHV9lChoBkdAks5BxgiNbWgHTegDaAhHQK5e19+gDih1fZQoaAZHQJOcrrNW2gFoB03oA2gIR0CuZLcDB/I9dX2UKGgGR0CR081jAi3YaAdN6ANoCEdArmbcEaESNHV9lChoBkdAk0XCPhhpg2gHTegDaAhHQK5ousjmjj91fZQoaAZHQJHu/U6PsAxoB03oA2gIR0CualHXVbzLdX2UKGgGR0CRTrcC5mROaAdN6ANoCEdArnAv2mHgxnV9lChoBkdAkvJbuMMqjWgHTegDaAhHQK5yb+EytV91fZQoaAZHQJH/PHn2ZiNoB03oA2gIR0CudG14Pf8/dX2UKGgGR0CM7TtzCDVZaAdN6ANoCEdArnYQMMI/q3V9lChoBkdAkef7NbC79WgHTegDaAhHQK577AVO9Fp1fZQoaAZHQJHadpL26CloB03oA2gIR0CufiMcQyyldX2UKGgGR0CQxbnKW9lFaAdN6ANoCEdAroALxb0OE3V9lChoBkdAkRY+o5xR22gHTegDaAhHQK6BpqY7aIx1fZQoaAZHQJDN0nmaH9FoB03oA2gIR0Cuh7xPO6d2dX2UKGgGR0CR+ls0YTCcaAdN6ANoCEdAron+bVjI73V9lChoBkdAj/aOKO1fFGgHTegDaAhHQK6MIhAWznl1fZQoaAZHQJEowKTjebdoB03oA2gIR0CujdeLFXJYdX2UKGgGR0CRA/tuUD+zaAdN6ANoCEdArpPtoFmnO3V9lChoBkdAkHm7hNucc2gHTegDaAhHQK6WKwPAfuF1fZQoaAZHQJIxCUA1ejVoB03oA2gIR0CumBjfvWpZdX2UKGgGR0CR8/mU4aP0aAdN6ANoCEdArpm9pKzzE3V9lChoBkdAkE9V4keIVWgHTegDaAhHQK6f11RtP551fZQoaAZHQJHbUug6EJ1oB03oA2gIR0Cuoh1UlzEKdX2UKGgGR0CIiVXjlxOtaAdN6ANoCEdArqQIlIEr5XV9lChoBkdAkBstRekYXWgHTegDaAhHQK6lyQ5FPSF1fZQoaAZHQJMGzEyckMVoB03oA2gIR0Cuq+CJoCdSdX2UKGgGR0CTzDV0tAcDaAdN6ANoCEdArq4qJO32EnV9lChoBkdAk0bQ3PzFuWgHTegDaAhHQK6wBrpqynl1fZQoaAZHQJVsLgaWHDdoB03oA2gIR0CusaFJ6IFedX2UKGgGR0CUB+I5o4+9aAdN6ANoCEdArrejnDBMz3V9lChoBkdAl0e0lJHy3GgHTegDaAhHQK655CVrylN1fZQoaAZHQJRQ6kYXO4ZoB03oA2gIR0Cuu8SbYsd1dX2UKGgGR0CT4EBCD28JaAdN6ANoCEdArr1mUfPom3V9lChoBkdAlIWHtBv732gHTegDaAhHQK7D8gf2bod1fZQoaAZHQJOm8EFGG21oB03oA2gIR0Cuxi6fBeoldX2UKGgGR0CLn04b0e2eaAdN6ANoCEdArsgP0oScsnV9lChoBkdAkVfcvduYQmgHTegDaAhHQK7Jr92HLzR1fZQoaAZHQJNJrh73PAxoB03oA2gIR0Cuz4q28Zk1dX2UKGgGR0CNIUMZxaPkaAdN6ANoCEdArtHUtZmqYXV9lChoBkdAkcFbPldTpGgHTegDaAhHQK7TvZcs1891fZQoaAZHQJKRfOIInjRoB03oA2gIR0Cu1WWOp84QdX2UKGgGR0CVBKQtSQ5naAdN6ANoCEdArtuAB/7SA3V9lChoBkdAlMpvM8ox6GgHTegDaAhHQK7d2f1YhdN1fZQoaAZHQJesvxFy7wtoB03oA2gIR0Cu379gv115dX2UKGgGR0CYM4iHZbpvaAdN6ANoCEdAruFZVGTcI3V9lChoBkdAmG8gm7aqTGgHTegDaAhHQK7nUv9LpRp1fZQoaAZHQJa3XfDUExJoB03oA2gIR0Cu6Zb0nPVvdX2UKGgGR0CWHZJ2t+1CaAdN6ANoCEdArutxbnoxH3V9lChoBkdAmC1Ru4wyqWgHTegDaAhHQK7tB5qubI91fZQoaAZHQJaVFsabWmRoB03oA2gIR0Cu8vn13+uOdX2UKGgGR0CW1F0CzTnaaAdN6ANoCEdArvVzdepn6HV9lChoBkdAl6eBzV+ZxGgHTegDaAhHQK73YLa24NJ1fZQoaAZHQJhvzyXlbNdoB03oA2gIR0Cu+PzHKfWddX2UKGgGR0CWU4xGlQ/HaAdN6ANoCEdArv7yaEzwdHV9lChoBkdAlTxCdBjWkWgHTegDaAhHQK8BLDv3JxN1fZQoaAZHQJd1AtXgccVoB03oA2gIR0CvAxAB91EFdX2UKGgGR0CUvKP5pJwsaAdN6ANoCEdArwSwa3qiXnV9lChoBkdAk+F3e3x4IWgHTegDaAhHQK8KlYfW+XZ1fZQoaAZHQJoGAK7ZnL9oB03oA2gIR0CvDM9ELH+7dX2UKGgGR0CYv1oUBXCCaAdN6ANoCEdArw64pz90inV9lChoBkdAl69pJ9RaYGgHTegDaAhHQK8QY+JP69F1fZQoaAZHQJjomIUJv5xoB03oA2gIR0CvFlKlYU35dX2UKGgGR0Ca+xKw6hg3aAdN6ANoCEdArxiUzfrKNnV9lChoBkdAl3he/5+H8GgHTegDaAhHQK8ahlGwzLx1fZQoaAZHQJobvsIE8q5oB03oA2gIR0CvHBhJ7LMcdX2UKGgGR0CalzRtgrpaaAdN6ANoCEdAryHv/FR51XV9lChoBkdAmYlTOC5Et2gHTegDaAhHQK8kHGvOhTR1fZQoaAZHQJbAUWk8A7xoB03oA2gIR0CvJgwgTyrgdX2UKGgGR0CXbtr2QGOdaAdN6ANoCEdAryeuH1vl2nV9lChoBkdAmMZ0yULUkWgHTegDaAhHQK8t02kzoEB1fZQoaAZHQJevYWO6unxoB03oA2gIR0CvMAJxvNu+dX2UKGgGR0CWLCsxfv4NaAdN6ANoCEdArzHmpIczZnV9lChoBkdAmB/8mv4dqGgHTegDaAhHQK8zkTfR/mV1fZQoaAZHQJcs0XfqHGloB03oA2gIR0CvOVvLowEhdX2UKGgGR0CXxSHh0hePaAdN6ANoCEdArzuCtFKChHV9lChoBkdAl9jKh11W82gHTegDaAhHQK89WoDPnjh1fZQoaAZHQJR3bEit7rtoB03oA2gIR0CvPvyLhrFgdX2UKGgGR0CV5IVlPJq7aAdN6ANoCEdAr0Vm4G2TgXV9lChoBkdAlEKkWM0gsGgHTegDaAhHQK9Hl66asp51fZQoaAZHQJInkbMotthoB03oA2gIR0CvSYeI2wV1dX2UKGgGR0CQBetShrWRaAdN6ANoCEdAr0sjZJ04i3V9lChoBkdAlidPD+BH1GgHTegDaAhHQK9RAdGRV6x1fZQoaAZHQJC/iOhkAghoB03oA2gIR0CvUy/5ckdFdX2UKGgGR0CTogMNc4YKaAdN6ANoCEdAr1UaLEUCaXV9lChoBkdAlgfinP3SKGgHTegDaAhHQK9WvjNIK+l1fZQoaAZHQJLqaLEUCaJoB03oA2gIR0CvXNGJ3xFzdX2UKGgGR0CSBpdXko4NaAdN6ANoCEdAr18SUxEfDHV9lChoBkdAlJxyWNWEK2gHTegDaAhHQK9hJkbxVhl1fZQoaAZHQJVcEEt/WlNoB03oA2gIR0CvYucNhE0BdX2UKGgGR0CW8Bay8jA0aAdN6ANoCEdAr2jGT9sJpnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ceecb80cc8904b40da4aa0930d5b5c1a9fd242fba25eac6742c9a80a45b68af
|
3 |
+
size 1109218
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1481.0517716559, "std_reward": 126.18211141263963, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-22T12:52:16.836309"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e5d8c28b54df2117dd6a6afabbea15c67a392f40996947cc1738c0f05a0d7cf
|
3 |
+
size 2136
|