{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f37b7beac60>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677066592590919259, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAD4PD5K9Xc/N2nqvvq4475Bsxs/Wts/vcJUxz7y+ls+DCeGvuAoEMCMTU8/HqOFPrr+Hz5fVAnAu/kjPu6eML8lj42+ykmhvypX5D1LjjM/J3kpP5DXuj2mK+G+KCxtvxw1cT/jYfS/mxCfPq3dzb8hkYK+HAubP5vpjr/nnZi/pNLAvu7DhD7btXA+8DMLvxlssb+SEHE9pmsqP7Zf4j3RSGk/T4VsPBgyDT80XXC+1CDuvxfc9bxHdSM/PR0UOyB4nT+Svl2+FXf+PhI9oL0cNXE/vxUGP5sQnz7rKx8/h2skv+R3ZD+wSJy+ezZwv47U9757vdk9sADlvb8nmb7QV5W/dO2wvakFHj4q1ci7iG7ZPoJT8LtHai8/x+s4PHuAP7+K4ZC9P9YrPwe+pDtDfYE/xNGkvbxZEj4wdNe7HDVxP78VBj+bEJ8+6ysfPw/LTT9HbQ0/txdTPg8IG0B/mI0/XNypPwwHGj9hlnK/YRfTPTMPiL2KL8s+TvQBwJtqOr/R47Q/xmFtv/FEID5bexM/xAKePfiXLD/H56o+aXEavwiRb79s4e0+0SWjvJDZh7+/FQY/mxCfPusrHz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABOtYk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAI+/CvQAAAABXUf+/AAAAANwTAj4AAAAAgcIAQAAAAABpxls7AAAAAPgcAUAAAAAAeBtsPQAAAAB/Eu+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjsCntgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAnlpbwAAAAAawbhvwAAAACEX/K9AAAAADwh6D8AAAAAwRKBvQAAAAA0PPI/AAAAANXFYz0AAAAA/28AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKfqurUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAK7OI9AAAAAMcA6r8AAAAAyN5ePQAAAABx+Ps/AAAAAJcN+b0AAAAAOOf2PwAAAABv+Pq9AAAAALzn778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHdQ23AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAO4+lPQAAAABBbOq/AAAAAI1RGL0AAAAAgQvpPwAAAABsquy9AAAAAK81AEAAAAAAX/P0PQAAAAAKpP6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJOvUzSCvoyMAWyUTegDjAF0lEdArkPSIUJv53V9lChoBkdAlS5aPwNLDmgHTegDaAhHQK5FrjXnQpp1fZQoaAZHQJKkZNDc/MZoB03oA2gIR0CuR2PoePq+dX2UKGgGR0CT5FIomXw9aAdN6ANoCEdArk001KoQ4HV9lChoBkdAk8MAEyLyc2gHTegDaAhHQK5PUHxBmf51fZQoaAZHQJUdoHAymANoB03oA2gIR0CuUS2OZLIxdX2UKGgGR0CTwEgAIY3vaAdN6ANoCEdArlLPsZ5zHXV9lChoBkdAjpydfb9IgGgHTegDaAhHQK5Y+M1CPZJ1fZQoaAZHQJFxP3Zf2K5oB03oA2gIR0CuWzxLkCFLdX2UKGgGR0CTfmT6zmfXaAdN6ANoCEdArl0q8OCoTHV9lChoBkdAks5BxgiNbWgHTegDaAhHQK5e19+gDih1fZQoaAZHQJOcrrNW2gFoB03oA2gIR0CuZLcDB/I9dX2UKGgGR0CR081jAi3YaAdN6ANoCEdArmbcEaESNHV9lChoBkdAk0XCPhhpg2gHTegDaAhHQK5ousjmjj91fZQoaAZHQJHu/U6PsAxoB03oA2gIR0CualHXVbzLdX2UKGgGR0CRTrcC5mROaAdN6ANoCEdArnAv2mHgxnV9lChoBkdAkvJbuMMqjWgHTegDaAhHQK5yb+EytV91fZQoaAZHQJH/PHn2ZiNoB03oA2gIR0CudG14Pf8/dX2UKGgGR0CM7TtzCDVZaAdN6ANoCEdArnYQMMI/q3V9lChoBkdAkef7NbC79WgHTegDaAhHQK577AVO9Fp1fZQoaAZHQJHadpL26CloB03oA2gIR0CufiMcQyyldX2UKGgGR0CQxbnKW9lFaAdN6ANoCEdAroALxb0OE3V9lChoBkdAkRY+o5xR22gHTegDaAhHQK6BpqY7aIx1fZQoaAZHQJDN0nmaH9FoB03oA2gIR0Cuh7xPO6d2dX2UKGgGR0CR+ls0YTCcaAdN6ANoCEdAron+bVjI73V9lChoBkdAj/aOKO1fFGgHTegDaAhHQK6MIhAWznl1fZQoaAZHQJEowKTjebdoB03oA2gIR0CujdeLFXJYdX2UKGgGR0CRA/tuUD+zaAdN6ANoCEdArpPtoFmnO3V9lChoBkdAkHm7hNucc2gHTegDaAhHQK6WKwPAfuF1fZQoaAZHQJIxCUA1ejVoB03oA2gIR0CumBjfvWpZdX2UKGgGR0CR8/mU4aP0aAdN6ANoCEdArpm9pKzzE3V9lChoBkdAkE9V4keIVWgHTegDaAhHQK6f11RtP551fZQoaAZHQJHbUug6EJ1oB03oA2gIR0Cuoh1UlzEKdX2UKGgGR0CIiVXjlxOtaAdN6ANoCEdArqQIlIEr5XV9lChoBkdAkBstRekYXWgHTegDaAhHQK6lyQ5FPSF1fZQoaAZHQJMGzEyckMVoB03oA2gIR0Cuq+CJoCdSdX2UKGgGR0CTzDV0tAcDaAdN6ANoCEdArq4qJO32EnV9lChoBkdAk0bQ3PzFuWgHTegDaAhHQK6wBrpqynl1fZQoaAZHQJVsLgaWHDdoB03oA2gIR0CusaFJ6IFedX2UKGgGR0CUB+I5o4+9aAdN6ANoCEdArrejnDBMz3V9lChoBkdAl0e0lJHy3GgHTegDaAhHQK655CVrylN1fZQoaAZHQJRQ6kYXO4ZoB03oA2gIR0Cuu8SbYsd1dX2UKGgGR0CT4EBCD28JaAdN6ANoCEdArr1mUfPom3V9lChoBkdAlIWHtBv732gHTegDaAhHQK7D8gf2bod1fZQoaAZHQJOm8EFGG21oB03oA2gIR0Cuxi6fBeoldX2UKGgGR0CLn04b0e2eaAdN6ANoCEdArsgP0oScsnV9lChoBkdAkVfcvduYQmgHTegDaAhHQK7Jr92HLzR1fZQoaAZHQJNJrh73PAxoB03oA2gIR0Cuz4q28Zk1dX2UKGgGR0CNIUMZxaPkaAdN6ANoCEdArtHUtZmqYXV9lChoBkdAkcFbPldTpGgHTegDaAhHQK7TvZcs1891fZQoaAZHQJKRfOIInjRoB03oA2gIR0Cu1WWOp84QdX2UKGgGR0CVBKQtSQ5naAdN6ANoCEdArtuAB/7SA3V9lChoBkdAlMpvM8ox6GgHTegDaAhHQK7d2f1YhdN1fZQoaAZHQJesvxFy7wtoB03oA2gIR0Cu379gv115dX2UKGgGR0CYM4iHZbpvaAdN6ANoCEdAruFZVGTcI3V9lChoBkdAmG8gm7aqTGgHTegDaAhHQK7nUv9LpRp1fZQoaAZHQJa3XfDUExJoB03oA2gIR0Cu6Zb0nPVvdX2UKGgGR0CWHZJ2t+1CaAdN6ANoCEdArutxbnoxH3V9lChoBkdAmC1Ru4wyqWgHTegDaAhHQK7tB5qubI91fZQoaAZHQJaVFsabWmRoB03oA2gIR0Cu8vn13+uOdX2UKGgGR0CW1F0CzTnaaAdN6ANoCEdArvVzdepn6HV9lChoBkdAl6eBzV+ZxGgHTegDaAhHQK73YLa24NJ1fZQoaAZHQJhvzyXlbNdoB03oA2gIR0Cu+PzHKfWddX2UKGgGR0CWU4xGlQ/HaAdN6ANoCEdArv7yaEzwdHV9lChoBkdAlTxCdBjWkWgHTegDaAhHQK8BLDv3JxN1fZQoaAZHQJd1AtXgccVoB03oA2gIR0CvAxAB91EFdX2UKGgGR0CUvKP5pJwsaAdN6ANoCEdArwSwa3qiXnV9lChoBkdAk+F3e3x4IWgHTegDaAhHQK8KlYfW+XZ1fZQoaAZHQJoGAK7ZnL9oB03oA2gIR0CvDM9ELH+7dX2UKGgGR0CYv1oUBXCCaAdN6ANoCEdArw64pz90inV9lChoBkdAl69pJ9RaYGgHTegDaAhHQK8QY+JP69F1fZQoaAZHQJjomIUJv5xoB03oA2gIR0CvFlKlYU35dX2UKGgGR0Ca+xKw6hg3aAdN6ANoCEdArxiUzfrKNnV9lChoBkdAl3he/5+H8GgHTegDaAhHQK8ahlGwzLx1fZQoaAZHQJobvsIE8q5oB03oA2gIR0CvHBhJ7LMcdX2UKGgGR0CalzRtgrpaaAdN6ANoCEdAryHv/FR51XV9lChoBkdAmYlTOC5Et2gHTegDaAhHQK8kHGvOhTR1fZQoaAZHQJbAUWk8A7xoB03oA2gIR0CvJgwgTyrgdX2UKGgGR0CXbtr2QGOdaAdN6ANoCEdAryeuH1vl2nV9lChoBkdAmMZ0yULUkWgHTegDaAhHQK8t02kzoEB1fZQoaAZHQJevYWO6unxoB03oA2gIR0CvMAJxvNu+dX2UKGgGR0CWLCsxfv4NaAdN6ANoCEdArzHmpIczZnV9lChoBkdAmB/8mv4dqGgHTegDaAhHQK8zkTfR/mV1fZQoaAZHQJcs0XfqHGloB03oA2gIR0CvOVvLowEhdX2UKGgGR0CXxSHh0hePaAdN6ANoCEdArzuCtFKChHV9lChoBkdAl9jKh11W82gHTegDaAhHQK89WoDPnjh1fZQoaAZHQJR3bEit7rtoB03oA2gIR0CvPvyLhrFgdX2UKGgGR0CV5IVlPJq7aAdN6ANoCEdAr0Vm4G2TgXV9lChoBkdAlEKkWM0gsGgHTegDaAhHQK9Hl66asp51fZQoaAZHQJInkbMotthoB03oA2gIR0CvSYeI2wV1dX2UKGgGR0CQBetShrWRaAdN6ANoCEdAr0sjZJ04i3V9lChoBkdAlidPD+BH1GgHTegDaAhHQK9RAdGRV6x1fZQoaAZHQJC/iOhkAghoB03oA2gIR0CvUy/5ckdFdX2UKGgGR0CTogMNc4YKaAdN6ANoCEdAr1UaLEUCaXV9lChoBkdAlgfinP3SKGgHTegDaAhHQK9WvjNIK+l1fZQoaAZHQJLqaLEUCaJoB03oA2gIR0CvXNGJ3xFzdX2UKGgGR0CSBpdXko4NaAdN6ANoCEdAr18SUxEfDHV9lChoBkdAlJxyWNWEK2gHTegDaAhHQK9hJkbxVhl1fZQoaAZHQJVcEEt/WlNoB03oA2gIR0CvYucNhE0BdX2UKGgGR0CW8Bay8jA0aAdN6ANoCEdAr2jGT9sJpnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}