--- tags: - spacy - token-classification language: - en model-index: - name: en_legal_ner_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.7563683867 - name: NER Recall type: recall value: 0.7121771218 - name: NER F Score type: f_score value: 0.7336078556 --- | Feature | Description | | --- | --- | | **Name** | `en_legal_ner_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.7.6,<3.8.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (14 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `CASE_NUMBER`, `COURT`, `DATE`, `GPE`, `JUDGE`, `LAWYER`, `ORG`, `OTHER_PERSON`, `PETITIONER`, `PRECEDENT`, `PROVISION`, `RESPONDENT`, `STATUTE`, `WITNESS` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 73.36 | | `ENTS_P` | 75.64 | | `ENTS_R` | 71.22 | | `TOK2VEC_LOSS` | 488439.50 | | `NER_LOSS` | 548698.80 |