Upload lm-boosted decoder
Browse files- .gitattributes +1 -0
- added_tokens.json +1 -0
- alphabet.json +1 -0
- config.json +108 -0
- eval.py +128 -0
- language_model/CV_8.0_3gram_correct.arpa +3 -0
- language_model/attrs.json +1 -0
- language_model/unigrams.txt +0 -0
- optimizer.pt +3 -0
- preprocessor_config.json +10 -0
- pytorch_model.bin +3 -0
- rng_state.pth +3 -0
- run_speech_recognition_ctc.py +737 -0
- scaler.pt +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- trainer_state.json +3835 -0
- training_args.bin +3 -0
- vocab.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
language_model/CV_8.0_3gram_correct.arpa filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<s>": 48, "</s>": 49}
|
alphabet.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"labels": ["e", "n", "a", "i", "t", "o", "d", "r", " ", "l", "s", "h", "g", "m", "k", "v", "j", "w", "z", "u", "b", "c", "p", "f", "y", "\u00e9", "'", "x", "\u00eb", "q", "-", "\u00ea", "\u00e0", "\u00e4", "\u00e8", "\u00ef", "\u00e2", "\u00fb", "\u00f6", "\u00f4", "\u00fc", "\u00ee", "\u00e7", "\u00e6", "\u00f9", "\u0153", "\u2047", "", "<s>", "</s>"], "is_bpe": false}
|
config.json
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.1,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 768,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.0,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"gradient_checkpointing": false,
|
56 |
+
"hidden_act": "gelu",
|
57 |
+
"hidden_dropout": 0.1,
|
58 |
+
"hidden_size": 1024,
|
59 |
+
"initializer_range": 0.02,
|
60 |
+
"intermediate_size": 4096,
|
61 |
+
"layer_norm_eps": 1e-05,
|
62 |
+
"layerdrop": 0.1,
|
63 |
+
"mask_feature_length": 10,
|
64 |
+
"mask_feature_min_masks": 0,
|
65 |
+
"mask_feature_prob": 0.0,
|
66 |
+
"mask_time_length": 10,
|
67 |
+
"mask_time_min_masks": 2,
|
68 |
+
"mask_time_prob": 0.05,
|
69 |
+
"model_type": "wav2vec2",
|
70 |
+
"num_adapter_layers": 3,
|
71 |
+
"num_attention_heads": 16,
|
72 |
+
"num_codevector_groups": 2,
|
73 |
+
"num_codevectors_per_group": 320,
|
74 |
+
"num_conv_pos_embedding_groups": 16,
|
75 |
+
"num_conv_pos_embeddings": 128,
|
76 |
+
"num_feat_extract_layers": 7,
|
77 |
+
"num_hidden_layers": 24,
|
78 |
+
"num_negatives": 100,
|
79 |
+
"output_hidden_size": 1024,
|
80 |
+
"pad_token_id": 47,
|
81 |
+
"proj_codevector_dim": 768,
|
82 |
+
"tdnn_dilation": [
|
83 |
+
1,
|
84 |
+
2,
|
85 |
+
3,
|
86 |
+
1,
|
87 |
+
1
|
88 |
+
],
|
89 |
+
"tdnn_dim": [
|
90 |
+
512,
|
91 |
+
512,
|
92 |
+
512,
|
93 |
+
512,
|
94 |
+
1500
|
95 |
+
],
|
96 |
+
"tdnn_kernel": [
|
97 |
+
5,
|
98 |
+
3,
|
99 |
+
3,
|
100 |
+
1,
|
101 |
+
1
|
102 |
+
],
|
103 |
+
"torch_dtype": "float32",
|
104 |
+
"transformers_version": "4.15.0",
|
105 |
+
"use_weighted_layer_sum": false,
|
106 |
+
"vocab_size": 48,
|
107 |
+
"xvector_output_dim": 512
|
108 |
+
}
|
eval.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import re
|
4 |
+
from typing import Dict
|
5 |
+
|
6 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
7 |
+
|
8 |
+
from transformers import AutoFeatureExtractor, pipeline
|
9 |
+
|
10 |
+
|
11 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
12 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
13 |
+
|
14 |
+
log_outputs = args.log_outputs
|
15 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
16 |
+
|
17 |
+
# load metric
|
18 |
+
wer = load_metric("wer")
|
19 |
+
cer = load_metric("cer")
|
20 |
+
|
21 |
+
# compute metrics
|
22 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
23 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
24 |
+
|
25 |
+
# print & log results
|
26 |
+
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
27 |
+
print(result_str)
|
28 |
+
|
29 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
30 |
+
f.write(result_str)
|
31 |
+
|
32 |
+
# log all results in text file. Possibly interesting for analysis
|
33 |
+
if log_outputs is not None:
|
34 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
35 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
36 |
+
|
37 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
38 |
+
|
39 |
+
# mapping function to write output
|
40 |
+
def write_to_file(batch, i):
|
41 |
+
p.write(f"{i}" + "\n")
|
42 |
+
p.write(batch["prediction"] + "\n")
|
43 |
+
t.write(f"{i}" + "\n")
|
44 |
+
t.write(batch["target"] + "\n")
|
45 |
+
|
46 |
+
result.map(write_to_file, with_indices=True)
|
47 |
+
|
48 |
+
|
49 |
+
def normalize_text(text: str) -> str:
|
50 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
51 |
+
|
52 |
+
chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
53 |
+
|
54 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
55 |
+
|
56 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
57 |
+
# note that order is important here!
|
58 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
59 |
+
|
60 |
+
for t in token_sequences_to_ignore:
|
61 |
+
text = " ".join(text.split(t))
|
62 |
+
|
63 |
+
return text
|
64 |
+
|
65 |
+
|
66 |
+
def main(args):
|
67 |
+
# load dataset
|
68 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
69 |
+
|
70 |
+
# for testing: only process the first two examples as a test
|
71 |
+
# dataset = dataset.select(range(10))
|
72 |
+
|
73 |
+
# load processor
|
74 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
75 |
+
sampling_rate = feature_extractor.sampling_rate
|
76 |
+
|
77 |
+
# resample audio
|
78 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
79 |
+
|
80 |
+
# load eval pipeline
|
81 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id)
|
82 |
+
|
83 |
+
# map function to decode audio
|
84 |
+
def map_to_pred(batch):
|
85 |
+
prediction = asr(
|
86 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
87 |
+
)
|
88 |
+
|
89 |
+
batch["prediction"] = prediction["text"]
|
90 |
+
batch["target"] = normalize_text(batch["sentence"])
|
91 |
+
return batch
|
92 |
+
|
93 |
+
# run inference on all examples
|
94 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
95 |
+
|
96 |
+
# compute and log_results
|
97 |
+
# do not change function below
|
98 |
+
log_results(result, args)
|
99 |
+
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
parser = argparse.ArgumentParser()
|
103 |
+
|
104 |
+
parser.add_argument(
|
105 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
106 |
+
)
|
107 |
+
parser.add_argument(
|
108 |
+
"--dataset",
|
109 |
+
type=str,
|
110 |
+
required=True,
|
111 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
112 |
+
)
|
113 |
+
parser.add_argument(
|
114 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
115 |
+
)
|
116 |
+
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
117 |
+
parser.add_argument(
|
118 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
122 |
+
)
|
123 |
+
parser.add_argument(
|
124 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
125 |
+
)
|
126 |
+
args = parser.parse_args()
|
127 |
+
|
128 |
+
main(args)
|
language_model/CV_8.0_3gram_correct.arpa
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eefa2428174a421e4848f01a6af0ea53607c6d0ab03190b3e7985dee09df43e6
|
3 |
+
size 12253807
|
language_model/attrs.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
|
language_model/unigrams.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13864c200105334bc74b14c839995534074b95509bf8d083786727872bd6b244
|
3 |
+
size 2490452561
|
preprocessor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0.0,
|
7 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
8 |
+
"return_attention_mask": true,
|
9 |
+
"sampling_rate": 16000
|
10 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:953b1e8b3f3e89ad3eeea3584fb73612d35e6a7a66a2856d857e4f3457345993
|
3 |
+
size 1262120497
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14af191b274fbff12408b4f1c107029e13ddf71394ee229655ff49c2db675fb5
|
3 |
+
size 14567
|
run_speech_recognition_ctc.py
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
32 |
+
|
33 |
+
import transformers
|
34 |
+
from transformers import (
|
35 |
+
AutoConfig,
|
36 |
+
AutoFeatureExtractor,
|
37 |
+
AutoModelForCTC,
|
38 |
+
AutoProcessor,
|
39 |
+
AutoTokenizer,
|
40 |
+
HfArgumentParser,
|
41 |
+
Trainer,
|
42 |
+
TrainingArguments,
|
43 |
+
Wav2Vec2Processor,
|
44 |
+
set_seed,
|
45 |
+
)
|
46 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
47 |
+
from transformers.utils import check_min_version
|
48 |
+
from transformers.utils.versions import require_version
|
49 |
+
|
50 |
+
|
51 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
52 |
+
check_min_version("4.16.0.dev0")
|
53 |
+
|
54 |
+
require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.getLogger(__name__)
|
58 |
+
|
59 |
+
|
60 |
+
def list_field(default=None, metadata=None):
|
61 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
62 |
+
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class ModelArguments:
|
66 |
+
"""
|
67 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
68 |
+
"""
|
69 |
+
|
70 |
+
model_name_or_path: str = field(
|
71 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
72 |
+
)
|
73 |
+
tokenizer_name_or_path: Optional[str] = field(
|
74 |
+
default=None,
|
75 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
76 |
+
)
|
77 |
+
cache_dir: Optional[str] = field(
|
78 |
+
default=None,
|
79 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
80 |
+
)
|
81 |
+
freeze_feature_encoder: bool = field(
|
82 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
83 |
+
)
|
84 |
+
attention_dropout: float = field(
|
85 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
86 |
+
)
|
87 |
+
activation_dropout: float = field(
|
88 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
89 |
+
)
|
90 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
91 |
+
hidden_dropout: float = field(
|
92 |
+
default=0.0,
|
93 |
+
metadata={
|
94 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
95 |
+
},
|
96 |
+
)
|
97 |
+
final_dropout: float = field(
|
98 |
+
default=0.0,
|
99 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
100 |
+
)
|
101 |
+
mask_time_prob: float = field(
|
102 |
+
default=0.05,
|
103 |
+
metadata={
|
104 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
105 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
106 |
+
"vectors will be masked along the time axis."
|
107 |
+
},
|
108 |
+
)
|
109 |
+
mask_time_length: int = field(
|
110 |
+
default=10,
|
111 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
112 |
+
)
|
113 |
+
mask_feature_prob: float = field(
|
114 |
+
default=0.0,
|
115 |
+
metadata={
|
116 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
117 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
118 |
+
},
|
119 |
+
)
|
120 |
+
mask_feature_length: int = field(
|
121 |
+
default=10,
|
122 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
123 |
+
)
|
124 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
125 |
+
ctc_loss_reduction: Optional[str] = field(
|
126 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
@dataclass
|
131 |
+
class DataTrainingArguments:
|
132 |
+
"""
|
133 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
134 |
+
|
135 |
+
Using `HfArgumentParser` we can turn this class
|
136 |
+
into argparse arguments to be able to specify them on
|
137 |
+
the command line.
|
138 |
+
"""
|
139 |
+
|
140 |
+
dataset_name: str = field(
|
141 |
+
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
142 |
+
)
|
143 |
+
dataset_config_name: str = field(
|
144 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
145 |
+
)
|
146 |
+
train_split_name: str = field(
|
147 |
+
default="train+validation",
|
148 |
+
metadata={
|
149 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
150 |
+
},
|
151 |
+
)
|
152 |
+
eval_split_name: str = field(
|
153 |
+
default="test",
|
154 |
+
metadata={
|
155 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
156 |
+
},
|
157 |
+
)
|
158 |
+
audio_column_name: str = field(
|
159 |
+
default="audio",
|
160 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
161 |
+
)
|
162 |
+
text_column_name: str = field(
|
163 |
+
default="text",
|
164 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
165 |
+
)
|
166 |
+
overwrite_cache: bool = field(
|
167 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
168 |
+
)
|
169 |
+
preprocessing_num_workers: Optional[int] = field(
|
170 |
+
default=None,
|
171 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
172 |
+
)
|
173 |
+
max_train_samples: Optional[int] = field(
|
174 |
+
default=None,
|
175 |
+
metadata={
|
176 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
177 |
+
"value if set."
|
178 |
+
},
|
179 |
+
)
|
180 |
+
max_eval_samples: Optional[int] = field(
|
181 |
+
default=None,
|
182 |
+
metadata={
|
183 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
184 |
+
"value if set."
|
185 |
+
},
|
186 |
+
)
|
187 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
188 |
+
default=None,
|
189 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
190 |
+
)
|
191 |
+
eval_metrics: List[str] = list_field(
|
192 |
+
default=["wer"],
|
193 |
+
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
194 |
+
)
|
195 |
+
max_duration_in_seconds: float = field(
|
196 |
+
default=20.0,
|
197 |
+
metadata={
|
198 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
199 |
+
},
|
200 |
+
)
|
201 |
+
min_duration_in_seconds: float = field(
|
202 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
203 |
+
)
|
204 |
+
preprocessing_only: bool = field(
|
205 |
+
default=False,
|
206 |
+
metadata={
|
207 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
208 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
209 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
210 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
211 |
+
},
|
212 |
+
)
|
213 |
+
use_auth_token: bool = field(
|
214 |
+
default=False,
|
215 |
+
metadata={
|
216 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
217 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
218 |
+
},
|
219 |
+
)
|
220 |
+
unk_token: str = field(
|
221 |
+
default="[UNK]",
|
222 |
+
metadata={"help": "The unk token for the tokenizer"},
|
223 |
+
)
|
224 |
+
pad_token: str = field(
|
225 |
+
default="[PAD]",
|
226 |
+
metadata={"help": "The padding token for the tokenizer"},
|
227 |
+
)
|
228 |
+
word_delimiter_token: str = field(
|
229 |
+
default="|",
|
230 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
231 |
+
)
|
232 |
+
phoneme_language: Optional[str] = field(
|
233 |
+
default=None,
|
234 |
+
metadata={
|
235 |
+
"help": "The target language that should be used be"
|
236 |
+
" passed to the tokenizer for tokenization. Note that"
|
237 |
+
" this is only relevant if the model classifies the"
|
238 |
+
" input audio to a sequence of phoneme sequences."
|
239 |
+
},
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
@dataclass
|
244 |
+
class DataCollatorCTCWithPadding:
|
245 |
+
"""
|
246 |
+
Data collator that will dynamically pad the inputs received.
|
247 |
+
Args:
|
248 |
+
processor (:class:`~transformers.AutoProcessor`)
|
249 |
+
The processor used for proccessing the data.
|
250 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
251 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
252 |
+
among:
|
253 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
254 |
+
sequence if provided).
|
255 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
256 |
+
maximum acceptable input length for the model if that argument is not provided.
|
257 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
258 |
+
different lengths).
|
259 |
+
max_length (:obj:`int`, `optional`):
|
260 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
261 |
+
max_length_labels (:obj:`int`, `optional`):
|
262 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
263 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
264 |
+
If set will pad the sequence to a multiple of the provided value.
|
265 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
266 |
+
7.5 (Volta).
|
267 |
+
"""
|
268 |
+
|
269 |
+
processor: AutoProcessor
|
270 |
+
padding: Union[bool, str] = "longest"
|
271 |
+
pad_to_multiple_of: Optional[int] = None
|
272 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
273 |
+
|
274 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
275 |
+
# split inputs and labels since they have to be of different lenghts and need
|
276 |
+
# different padding methods
|
277 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
278 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
279 |
+
|
280 |
+
batch = self.processor.pad(
|
281 |
+
input_features,
|
282 |
+
padding=self.padding,
|
283 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
284 |
+
return_tensors="pt",
|
285 |
+
)
|
286 |
+
|
287 |
+
with self.processor.as_target_processor():
|
288 |
+
labels_batch = self.processor.pad(
|
289 |
+
label_features,
|
290 |
+
padding=self.padding,
|
291 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
292 |
+
return_tensors="pt",
|
293 |
+
)
|
294 |
+
|
295 |
+
# replace padding with -100 to ignore loss correctly
|
296 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
297 |
+
|
298 |
+
batch["labels"] = labels
|
299 |
+
|
300 |
+
return batch
|
301 |
+
|
302 |
+
|
303 |
+
def create_vocabulary_from_data(
|
304 |
+
datasets: DatasetDict,
|
305 |
+
word_delimiter_token: Optional[str] = None,
|
306 |
+
unk_token: Optional[str] = None,
|
307 |
+
pad_token: Optional[str] = None,
|
308 |
+
):
|
309 |
+
# Given training and test labels create vocabulary
|
310 |
+
def extract_all_chars(batch):
|
311 |
+
all_text = " ".join(batch["target_text"])
|
312 |
+
vocab = list(set(all_text))
|
313 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
314 |
+
|
315 |
+
vocabs = datasets.map(
|
316 |
+
extract_all_chars,
|
317 |
+
batched=True,
|
318 |
+
batch_size=-1,
|
319 |
+
keep_in_memory=True,
|
320 |
+
remove_columns=datasets["train"].column_names,
|
321 |
+
)
|
322 |
+
|
323 |
+
# take union of all unique characters in each dataset
|
324 |
+
vocab_set = functools.reduce(
|
325 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
326 |
+
)
|
327 |
+
|
328 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
329 |
+
|
330 |
+
# replace white space with delimiter token
|
331 |
+
if word_delimiter_token is not None:
|
332 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
333 |
+
del vocab_dict[" "]
|
334 |
+
|
335 |
+
# add unk and pad token
|
336 |
+
if unk_token is not None:
|
337 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
338 |
+
|
339 |
+
if pad_token is not None:
|
340 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
341 |
+
|
342 |
+
return vocab_dict
|
343 |
+
|
344 |
+
|
345 |
+
def main():
|
346 |
+
# See all possible arguments in src/transformers/training_args.py
|
347 |
+
# or by passing the --help flag to this script.
|
348 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
349 |
+
|
350 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
351 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
352 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
353 |
+
# let's parse it to get our arguments.
|
354 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
355 |
+
else:
|
356 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
357 |
+
|
358 |
+
# Detecting last checkpoint.
|
359 |
+
last_checkpoint = None
|
360 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
361 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
362 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
363 |
+
raise ValueError(
|
364 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
365 |
+
"Use --overwrite_output_dir to overcome."
|
366 |
+
)
|
367 |
+
elif last_checkpoint is not None:
|
368 |
+
logger.info(
|
369 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
370 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
371 |
+
)
|
372 |
+
|
373 |
+
# Setup logging
|
374 |
+
logging.basicConfig(
|
375 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
376 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
377 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
378 |
+
)
|
379 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
380 |
+
|
381 |
+
# Log on each process the small summary:
|
382 |
+
logger.warning(
|
383 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
384 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
385 |
+
)
|
386 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
387 |
+
if is_main_process(training_args.local_rank):
|
388 |
+
transformers.utils.logging.set_verbosity_info()
|
389 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
390 |
+
|
391 |
+
# Set seed before initializing model.
|
392 |
+
set_seed(training_args.seed)
|
393 |
+
|
394 |
+
# 1. First, let's load the dataset
|
395 |
+
raw_datasets = DatasetDict()
|
396 |
+
|
397 |
+
if training_args.do_train:
|
398 |
+
raw_datasets["train"] = load_dataset(
|
399 |
+
data_args.dataset_name,
|
400 |
+
data_args.dataset_config_name,
|
401 |
+
split=data_args.train_split_name,
|
402 |
+
use_auth_token=data_args.use_auth_token,
|
403 |
+
)
|
404 |
+
|
405 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
406 |
+
raise ValueError(
|
407 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
408 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
409 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
410 |
+
)
|
411 |
+
|
412 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
413 |
+
raise ValueError(
|
414 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
415 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
416 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
417 |
+
)
|
418 |
+
|
419 |
+
if data_args.max_train_samples is not None:
|
420 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
421 |
+
|
422 |
+
if training_args.do_eval:
|
423 |
+
raw_datasets["eval"] = load_dataset(
|
424 |
+
data_args.dataset_name,
|
425 |
+
data_args.dataset_config_name,
|
426 |
+
split=data_args.eval_split_name,
|
427 |
+
use_auth_token=data_args.use_auth_token,
|
428 |
+
)
|
429 |
+
|
430 |
+
if data_args.max_eval_samples is not None:
|
431 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
432 |
+
|
433 |
+
# 2. We remove some special characters from the datasets
|
434 |
+
# that make training complicated and do not help in transcribing the speech
|
435 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
436 |
+
# that could be easily picked up by the model
|
437 |
+
chars_to_ignore_regex = (
|
438 |
+
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
439 |
+
)
|
440 |
+
text_column_name = data_args.text_column_name
|
441 |
+
|
442 |
+
def remove_special_characters(batch):
|
443 |
+
if chars_to_ignore_regex is not None:
|
444 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
445 |
+
else:
|
446 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
447 |
+
return batch
|
448 |
+
|
449 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
450 |
+
raw_datasets = raw_datasets.map(
|
451 |
+
remove_special_characters,
|
452 |
+
remove_columns=[text_column_name],
|
453 |
+
desc="remove special characters from datasets",
|
454 |
+
)
|
455 |
+
|
456 |
+
# save special tokens for tokenizer
|
457 |
+
word_delimiter_token = data_args.word_delimiter_token
|
458 |
+
unk_token = data_args.unk_token
|
459 |
+
pad_token = data_args.pad_token
|
460 |
+
|
461 |
+
# 3. Next, let's load the config as we might need it to create
|
462 |
+
# the tokenizer
|
463 |
+
# load config
|
464 |
+
config = AutoConfig.from_pretrained(
|
465 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
466 |
+
)
|
467 |
+
|
468 |
+
# 4. Next, if no tokenizer file is defined,
|
469 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
470 |
+
# the training and evaluation datasets
|
471 |
+
# We need to make sure that only first rank saves vocabulary
|
472 |
+
# make sure all processes wait until vocab is created
|
473 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
474 |
+
tokenizer_kwargs = {}
|
475 |
+
if tokenizer_name_or_path is None:
|
476 |
+
# save vocab in training output dir
|
477 |
+
tokenizer_name_or_path = training_args.output_dir
|
478 |
+
|
479 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
480 |
+
|
481 |
+
with training_args.main_process_first():
|
482 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
483 |
+
os.remove(vocab_file)
|
484 |
+
|
485 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
486 |
+
if not os.path.isfile(vocab_file):
|
487 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
488 |
+
vocab_dict = create_vocabulary_from_data(
|
489 |
+
raw_datasets,
|
490 |
+
word_delimiter_token=word_delimiter_token,
|
491 |
+
unk_token=unk_token,
|
492 |
+
pad_token=pad_token,
|
493 |
+
)
|
494 |
+
|
495 |
+
# save vocab dict to be loaded into tokenizer
|
496 |
+
with open(vocab_file, "w") as file:
|
497 |
+
json.dump(vocab_dict, file)
|
498 |
+
|
499 |
+
# if tokenizer has just been created
|
500 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
501 |
+
tokenizer_kwargs = {
|
502 |
+
"config": config if config.tokenizer_class is not None else None,
|
503 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
504 |
+
"unk_token": unk_token,
|
505 |
+
"pad_token": pad_token,
|
506 |
+
"word_delimiter_token": word_delimiter_token,
|
507 |
+
}
|
508 |
+
|
509 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
510 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
511 |
+
# one local process can concurrently download model & vocab.
|
512 |
+
|
513 |
+
# load feature_extractor and tokenizer
|
514 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
515 |
+
tokenizer_name_or_path,
|
516 |
+
use_auth_token=data_args.use_auth_token,
|
517 |
+
**tokenizer_kwargs,
|
518 |
+
)
|
519 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
520 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
521 |
+
)
|
522 |
+
|
523 |
+
# adapt config
|
524 |
+
config.update(
|
525 |
+
{
|
526 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
527 |
+
"attention_dropout": model_args.attention_dropout,
|
528 |
+
"hidden_dropout": model_args.hidden_dropout,
|
529 |
+
"final_dropout": model_args.final_dropout,
|
530 |
+
"mask_time_prob": model_args.mask_time_prob,
|
531 |
+
"mask_time_length": model_args.mask_time_length,
|
532 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
533 |
+
"mask_feature_length": model_args.mask_feature_length,
|
534 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
535 |
+
"layerdrop": model_args.layerdrop,
|
536 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
537 |
+
"pad_token_id": tokenizer.pad_token_id,
|
538 |
+
"vocab_size": len(tokenizer),
|
539 |
+
"activation_dropout": model_args.activation_dropout,
|
540 |
+
}
|
541 |
+
)
|
542 |
+
|
543 |
+
# create model
|
544 |
+
model = AutoModelForCTC.from_pretrained(
|
545 |
+
model_args.model_name_or_path,
|
546 |
+
cache_dir=model_args.cache_dir,
|
547 |
+
config=config,
|
548 |
+
use_auth_token=data_args.use_auth_token,
|
549 |
+
)
|
550 |
+
|
551 |
+
# freeze encoder
|
552 |
+
if model_args.freeze_feature_encoder:
|
553 |
+
model.freeze_feature_encoder()
|
554 |
+
|
555 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
556 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
557 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
558 |
+
# via the `feature_extractor`
|
559 |
+
|
560 |
+
# make sure that dataset decodes audio with correct sampling rate
|
561 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
562 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
563 |
+
raw_datasets = raw_datasets.cast_column(
|
564 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
565 |
+
)
|
566 |
+
|
567 |
+
# derive max & min input length for sample rate & max duration
|
568 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
569 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
570 |
+
audio_column_name = data_args.audio_column_name
|
571 |
+
num_workers = data_args.preprocessing_num_workers
|
572 |
+
|
573 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
574 |
+
phoneme_language = data_args.phoneme_language
|
575 |
+
|
576 |
+
# Preprocessing the datasets.
|
577 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
578 |
+
def prepare_dataset(batch):
|
579 |
+
# load audio
|
580 |
+
sample = batch[audio_column_name]
|
581 |
+
|
582 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
583 |
+
batch["input_values"] = inputs.input_values[0]
|
584 |
+
batch["input_length"] = len(batch["input_values"])
|
585 |
+
|
586 |
+
# encode targets
|
587 |
+
additional_kwargs = {}
|
588 |
+
if phoneme_language is not None:
|
589 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
590 |
+
|
591 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
592 |
+
return batch
|
593 |
+
|
594 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
595 |
+
vectorized_datasets = raw_datasets.map(
|
596 |
+
prepare_dataset,
|
597 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
598 |
+
num_proc=num_workers,
|
599 |
+
desc="preprocess datasets",
|
600 |
+
)
|
601 |
+
|
602 |
+
def is_audio_in_length_range(length):
|
603 |
+
return length > min_input_length and length < max_input_length
|
604 |
+
|
605 |
+
# filter data that is shorter than min_input_length
|
606 |
+
vectorized_datasets = vectorized_datasets.filter(
|
607 |
+
is_audio_in_length_range,
|
608 |
+
num_proc=num_workers,
|
609 |
+
input_columns=["input_length"],
|
610 |
+
)
|
611 |
+
|
612 |
+
# 7. Next, we can prepare the training.
|
613 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
614 |
+
# instantiate a data collator and the trainer
|
615 |
+
|
616 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
617 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
618 |
+
|
619 |
+
# for large datasets it is advised to run the preprocessing on a
|
620 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
621 |
+
# be a timeout when running the script in distributed mode.
|
622 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
623 |
+
# cached dataset
|
624 |
+
if data_args.preprocessing_only:
|
625 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
626 |
+
return
|
627 |
+
|
628 |
+
def compute_metrics(pred):
|
629 |
+
pred_logits = pred.predictions
|
630 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
631 |
+
|
632 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
633 |
+
|
634 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
635 |
+
# we do not want to group tokens when computing the metrics
|
636 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
637 |
+
|
638 |
+
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
|
639 |
+
|
640 |
+
return metrics
|
641 |
+
|
642 |
+
# Now save everything to be able to create a single processor later
|
643 |
+
if is_main_process(training_args.local_rank):
|
644 |
+
# save feature extractor, tokenizer and config
|
645 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
646 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
647 |
+
config.save_pretrained(training_args.output_dir)
|
648 |
+
|
649 |
+
try:
|
650 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
651 |
+
except (OSError, KeyError):
|
652 |
+
warnings.warn(
|
653 |
+
"Loading a processor from a feature extractor config that does not"
|
654 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
655 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
656 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
657 |
+
FutureWarning,
|
658 |
+
)
|
659 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
660 |
+
|
661 |
+
# Instantiate custom data collator
|
662 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
663 |
+
|
664 |
+
# Initialize Trainer
|
665 |
+
trainer = Trainer(
|
666 |
+
model=model,
|
667 |
+
data_collator=data_collator,
|
668 |
+
args=training_args,
|
669 |
+
compute_metrics=compute_metrics,
|
670 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
671 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
672 |
+
tokenizer=feature_extractor,
|
673 |
+
)
|
674 |
+
|
675 |
+
# 8. Finally, we can start training
|
676 |
+
|
677 |
+
# Training
|
678 |
+
if training_args.do_train:
|
679 |
+
|
680 |
+
# use last checkpoint if exist
|
681 |
+
if last_checkpoint is not None:
|
682 |
+
checkpoint = last_checkpoint
|
683 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
684 |
+
checkpoint = model_args.model_name_or_path
|
685 |
+
else:
|
686 |
+
checkpoint = None
|
687 |
+
|
688 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
689 |
+
trainer.save_model()
|
690 |
+
|
691 |
+
metrics = train_result.metrics
|
692 |
+
max_train_samples = (
|
693 |
+
data_args.max_train_samples
|
694 |
+
if data_args.max_train_samples is not None
|
695 |
+
else len(vectorized_datasets["train"])
|
696 |
+
)
|
697 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
698 |
+
|
699 |
+
trainer.log_metrics("train", metrics)
|
700 |
+
trainer.save_metrics("train", metrics)
|
701 |
+
trainer.save_state()
|
702 |
+
|
703 |
+
# Evaluation
|
704 |
+
results = {}
|
705 |
+
if training_args.do_eval:
|
706 |
+
logger.info("*** Evaluate ***")
|
707 |
+
metrics = trainer.evaluate()
|
708 |
+
max_eval_samples = (
|
709 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
710 |
+
)
|
711 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
712 |
+
|
713 |
+
trainer.log_metrics("eval", metrics)
|
714 |
+
trainer.save_metrics("eval", metrics)
|
715 |
+
|
716 |
+
# Write model card and (optionally) push to hub
|
717 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
718 |
+
kwargs = {
|
719 |
+
"finetuned_from": model_args.model_name_or_path,
|
720 |
+
"tasks": "speech-recognition",
|
721 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
722 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
723 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
724 |
+
}
|
725 |
+
if "common_voice" in data_args.dataset_name:
|
726 |
+
kwargs["language"] = config_name
|
727 |
+
|
728 |
+
if training_args.push_to_hub:
|
729 |
+
trainer.push_to_hub(**kwargs)
|
730 |
+
else:
|
731 |
+
trainer.create_model_card(**kwargs)
|
732 |
+
|
733 |
+
return results
|
734 |
+
|
735 |
+
|
736 |
+
if __name__ == "__main__":
|
737 |
+
main()
|
scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1d84b098e761dbe1a7bf47d61c4d85eee1327725e6c25489fcbd7fe8775627f
|
3 |
+
size 559
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10ab802c012038781dab6e6f375004396edc5d8092873b9f9fd25f37a37d2782
|
3 |
+
size 623
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "/dbfs/FileStore/Iskaj/Models/X-LSR_CV_60_EP/checkpoint-26800", "tokenizer_class": "Wav2Vec2CTCTokenizer", "processor_class": "Wav2Vec2ProcessorWithLM"}
|
trainer_state.json
ADDED
@@ -0,0 +1,3835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.4362342655658722,
|
3 |
+
"best_model_checkpoint": "/local_disk0/X-LSR_CV_60_EP/checkpoint-2400",
|
4 |
+
"epoch": 59.55555555555556,
|
5 |
+
"global_step": 26800,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.11,
|
12 |
+
"learning_rate": 2.9999999999999997e-05,
|
13 |
+
"loss": 11.3191,
|
14 |
+
"step": 50
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.22,
|
18 |
+
"learning_rate": 5.9999999999999995e-05,
|
19 |
+
"loss": 5.2444,
|
20 |
+
"step": 100
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.33,
|
24 |
+
"learning_rate": 8.999999999999999e-05,
|
25 |
+
"loss": 3.4938,
|
26 |
+
"step": 150
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.44,
|
30 |
+
"learning_rate": 0.00011999999999999999,
|
31 |
+
"loss": 3.0165,
|
32 |
+
"step": 200
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.56,
|
36 |
+
"learning_rate": 0.00015,
|
37 |
+
"loss": 2.9377,
|
38 |
+
"step": 250
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.67,
|
42 |
+
"learning_rate": 0.00017999999999999998,
|
43 |
+
"loss": 2.9175,
|
44 |
+
"step": 300
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.78,
|
48 |
+
"learning_rate": 0.00020999999999999998,
|
49 |
+
"loss": 2.8908,
|
50 |
+
"step": 350
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.89,
|
54 |
+
"learning_rate": 0.00023999999999999998,
|
55 |
+
"loss": 2.8684,
|
56 |
+
"step": 400
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.89,
|
60 |
+
"eval_loss": 2.944436550140381,
|
61 |
+
"eval_runtime": 232.2253,
|
62 |
+
"eval_samples_per_second": 24.58,
|
63 |
+
"eval_steps_per_second": 3.075,
|
64 |
+
"eval_wer": 0.9999796528781004,
|
65 |
+
"step": 400
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 1.0,
|
69 |
+
"learning_rate": 0.00027,
|
70 |
+
"loss": 2.8525,
|
71 |
+
"step": 450
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 1.11,
|
75 |
+
"learning_rate": 0.0003,
|
76 |
+
"loss": 2.6961,
|
77 |
+
"step": 500
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"epoch": 1.22,
|
81 |
+
"learning_rate": 0.0002994339622641509,
|
82 |
+
"loss": 1.6145,
|
83 |
+
"step": 550
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 1.33,
|
87 |
+
"learning_rate": 0.00029886792452830187,
|
88 |
+
"loss": 1.0359,
|
89 |
+
"step": 600
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 1.44,
|
93 |
+
"learning_rate": 0.0002983018867924528,
|
94 |
+
"loss": 0.8086,
|
95 |
+
"step": 650
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 1.56,
|
99 |
+
"learning_rate": 0.00029773584905660376,
|
100 |
+
"loss": 0.7171,
|
101 |
+
"step": 700
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 1.67,
|
105 |
+
"learning_rate": 0.0002971698113207547,
|
106 |
+
"loss": 0.6152,
|
107 |
+
"step": 750
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 1.78,
|
111 |
+
"learning_rate": 0.00029660377358490565,
|
112 |
+
"loss": 0.5631,
|
113 |
+
"step": 800
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 1.78,
|
117 |
+
"eval_loss": 0.641059398651123,
|
118 |
+
"eval_runtime": 232.9944,
|
119 |
+
"eval_samples_per_second": 24.498,
|
120 |
+
"eval_steps_per_second": 3.064,
|
121 |
+
"eval_wer": 0.5468289010519461,
|
122 |
+
"step": 800
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 1.89,
|
126 |
+
"learning_rate": 0.00029603773584905657,
|
127 |
+
"loss": 0.521,
|
128 |
+
"step": 850
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 2.0,
|
132 |
+
"learning_rate": 0.00029547169811320755,
|
133 |
+
"loss": 0.4953,
|
134 |
+
"step": 900
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 2.11,
|
138 |
+
"learning_rate": 0.00029490566037735847,
|
139 |
+
"loss": 0.4331,
|
140 |
+
"step": 950
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 2.22,
|
144 |
+
"learning_rate": 0.0002943396226415094,
|
145 |
+
"loss": 0.396,
|
146 |
+
"step": 1000
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 2.33,
|
150 |
+
"learning_rate": 0.00029377358490566036,
|
151 |
+
"loss": 0.4066,
|
152 |
+
"step": 1050
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 2.44,
|
156 |
+
"learning_rate": 0.0002932075471698113,
|
157 |
+
"loss": 0.3839,
|
158 |
+
"step": 1100
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 2.56,
|
162 |
+
"learning_rate": 0.00029264150943396225,
|
163 |
+
"loss": 0.3705,
|
164 |
+
"step": 1150
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 2.67,
|
168 |
+
"learning_rate": 0.00029207547169811317,
|
169 |
+
"loss": 0.3707,
|
170 |
+
"step": 1200
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 2.67,
|
174 |
+
"eval_loss": 0.5500322580337524,
|
175 |
+
"eval_runtime": 232.2885,
|
176 |
+
"eval_samples_per_second": 24.573,
|
177 |
+
"eval_steps_per_second": 3.074,
|
178 |
+
"eval_wer": 0.4608012696604065,
|
179 |
+
"step": 1200
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 2.78,
|
183 |
+
"learning_rate": 0.00029150943396226414,
|
184 |
+
"loss": 0.3813,
|
185 |
+
"step": 1250
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 2.89,
|
189 |
+
"learning_rate": 0.00029094339622641506,
|
190 |
+
"loss": 0.3572,
|
191 |
+
"step": 1300
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 3.0,
|
195 |
+
"learning_rate": 0.00029037735849056604,
|
196 |
+
"loss": 0.3483,
|
197 |
+
"step": 1350
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 3.11,
|
201 |
+
"learning_rate": 0.00028981132075471696,
|
202 |
+
"loss": 0.2772,
|
203 |
+
"step": 1400
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"epoch": 3.22,
|
207 |
+
"learning_rate": 0.0002892452830188679,
|
208 |
+
"loss": 0.2977,
|
209 |
+
"step": 1450
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 3.33,
|
213 |
+
"learning_rate": 0.00028867924528301885,
|
214 |
+
"loss": 0.2802,
|
215 |
+
"step": 1500
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 3.44,
|
219 |
+
"learning_rate": 0.00028811320754716977,
|
220 |
+
"loss": 0.2913,
|
221 |
+
"step": 1550
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 3.56,
|
225 |
+
"learning_rate": 0.00028754716981132074,
|
226 |
+
"loss": 0.2899,
|
227 |
+
"step": 1600
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 3.56,
|
231 |
+
"eval_loss": 0.5040135383605957,
|
232 |
+
"eval_runtime": 232.8201,
|
233 |
+
"eval_samples_per_second": 24.517,
|
234 |
+
"eval_steps_per_second": 3.067,
|
235 |
+
"eval_wer": 0.420412232689686,
|
236 |
+
"step": 1600
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 3.67,
|
240 |
+
"learning_rate": 0.00028698113207547166,
|
241 |
+
"loss": 0.2802,
|
242 |
+
"step": 1650
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 3.78,
|
246 |
+
"learning_rate": 0.00028641509433962264,
|
247 |
+
"loss": 0.2769,
|
248 |
+
"step": 1700
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 3.89,
|
252 |
+
"learning_rate": 0.00028584905660377356,
|
253 |
+
"loss": 0.2632,
|
254 |
+
"step": 1750
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 4.0,
|
258 |
+
"learning_rate": 0.00028528301886792453,
|
259 |
+
"loss": 0.2784,
|
260 |
+
"step": 1800
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 4.11,
|
264 |
+
"learning_rate": 0.00028471698113207545,
|
265 |
+
"loss": 0.2341,
|
266 |
+
"step": 1850
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 4.22,
|
270 |
+
"learning_rate": 0.00028415094339622637,
|
271 |
+
"loss": 0.2346,
|
272 |
+
"step": 1900
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 4.33,
|
276 |
+
"learning_rate": 0.00028358490566037734,
|
277 |
+
"loss": 0.2301,
|
278 |
+
"step": 1950
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 4.44,
|
282 |
+
"learning_rate": 0.00028301886792452826,
|
283 |
+
"loss": 0.2376,
|
284 |
+
"step": 2000
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 4.44,
|
288 |
+
"eval_loss": 0.4637417495250702,
|
289 |
+
"eval_runtime": 233.0278,
|
290 |
+
"eval_samples_per_second": 24.495,
|
291 |
+
"eval_steps_per_second": 3.064,
|
292 |
+
"eval_wer": 0.3989663662074999,
|
293 |
+
"step": 2000
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 4.56,
|
297 |
+
"learning_rate": 0.00028245283018867923,
|
298 |
+
"loss": 0.2474,
|
299 |
+
"step": 2050
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 4.67,
|
303 |
+
"learning_rate": 0.00028188679245283015,
|
304 |
+
"loss": 0.2325,
|
305 |
+
"step": 2100
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 4.78,
|
309 |
+
"learning_rate": 0.00028132075471698113,
|
310 |
+
"loss": 0.2477,
|
311 |
+
"step": 2150
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 4.89,
|
315 |
+
"learning_rate": 0.00028075471698113205,
|
316 |
+
"loss": 0.2319,
|
317 |
+
"step": 2200
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 5.0,
|
321 |
+
"learning_rate": 0.000280188679245283,
|
322 |
+
"loss": 0.2342,
|
323 |
+
"step": 2250
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 5.11,
|
327 |
+
"learning_rate": 0.00027962264150943394,
|
328 |
+
"loss": 0.2176,
|
329 |
+
"step": 2300
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 5.22,
|
333 |
+
"learning_rate": 0.00027905660377358486,
|
334 |
+
"loss": 0.2015,
|
335 |
+
"step": 2350
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 5.33,
|
339 |
+
"learning_rate": 0.00027849056603773583,
|
340 |
+
"loss": 0.2063,
|
341 |
+
"step": 2400
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 5.33,
|
345 |
+
"eval_loss": 0.4362342655658722,
|
346 |
+
"eval_runtime": 234.4496,
|
347 |
+
"eval_samples_per_second": 24.346,
|
348 |
+
"eval_steps_per_second": 3.045,
|
349 |
+
"eval_wer": 0.3932488249537103,
|
350 |
+
"step": 2400
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 5.44,
|
354 |
+
"learning_rate": 0.00027792452830188675,
|
355 |
+
"loss": 0.2116,
|
356 |
+
"step": 2450
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 5.56,
|
360 |
+
"learning_rate": 0.0002773584905660377,
|
361 |
+
"loss": 0.2084,
|
362 |
+
"step": 2500
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 5.67,
|
366 |
+
"learning_rate": 0.00027679245283018865,
|
367 |
+
"loss": 0.2122,
|
368 |
+
"step": 2550
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 5.78,
|
372 |
+
"learning_rate": 0.0002762264150943396,
|
373 |
+
"loss": 0.2063,
|
374 |
+
"step": 2600
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 5.89,
|
378 |
+
"learning_rate": 0.00027566037735849054,
|
379 |
+
"loss": 0.1902,
|
380 |
+
"step": 2650
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 6.0,
|
384 |
+
"learning_rate": 0.0002750943396226415,
|
385 |
+
"loss": 0.2067,
|
386 |
+
"step": 2700
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 6.11,
|
390 |
+
"learning_rate": 0.00027452830188679243,
|
391 |
+
"loss": 0.1845,
|
392 |
+
"step": 2750
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 6.22,
|
396 |
+
"learning_rate": 0.0002739622641509434,
|
397 |
+
"loss": 0.1773,
|
398 |
+
"step": 2800
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 6.22,
|
402 |
+
"eval_loss": 0.4410901367664337,
|
403 |
+
"eval_runtime": 235.6532,
|
404 |
+
"eval_samples_per_second": 24.222,
|
405 |
+
"eval_steps_per_second": 3.03,
|
406 |
+
"eval_wer": 0.3876737135532179,
|
407 |
+
"step": 2800
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 6.33,
|
411 |
+
"learning_rate": 0.0002733962264150943,
|
412 |
+
"loss": 0.1793,
|
413 |
+
"step": 2850
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 6.44,
|
417 |
+
"learning_rate": 0.00027283018867924524,
|
418 |
+
"loss": 0.1764,
|
419 |
+
"step": 2900
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 6.56,
|
423 |
+
"learning_rate": 0.0002722641509433962,
|
424 |
+
"loss": 0.1882,
|
425 |
+
"step": 2950
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 6.67,
|
429 |
+
"learning_rate": 0.00027169811320754714,
|
430 |
+
"loss": 0.1892,
|
431 |
+
"step": 3000
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 6.78,
|
435 |
+
"learning_rate": 0.0002711320754716981,
|
436 |
+
"loss": 0.1941,
|
437 |
+
"step": 3050
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 6.89,
|
441 |
+
"learning_rate": 0.00027056603773584903,
|
442 |
+
"loss": 0.1858,
|
443 |
+
"step": 3100
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 7.0,
|
447 |
+
"learning_rate": 0.00027,
|
448 |
+
"loss": 0.1817,
|
449 |
+
"step": 3150
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 7.11,
|
453 |
+
"learning_rate": 0.0002694339622641509,
|
454 |
+
"loss": 0.1676,
|
455 |
+
"step": 3200
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 7.11,
|
459 |
+
"eval_loss": 0.479378342628479,
|
460 |
+
"eval_runtime": 234.1851,
|
461 |
+
"eval_samples_per_second": 24.374,
|
462 |
+
"eval_steps_per_second": 3.049,
|
463 |
+
"eval_wer": 0.38449956253687917,
|
464 |
+
"step": 3200
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 7.22,
|
468 |
+
"learning_rate": 0.0002688679245283019,
|
469 |
+
"loss": 0.1728,
|
470 |
+
"step": 3250
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 7.33,
|
474 |
+
"learning_rate": 0.0002683018867924528,
|
475 |
+
"loss": 0.1597,
|
476 |
+
"step": 3300
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 7.44,
|
480 |
+
"learning_rate": 0.00026773584905660374,
|
481 |
+
"loss": 0.1695,
|
482 |
+
"step": 3350
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 7.56,
|
486 |
+
"learning_rate": 0.0002671698113207547,
|
487 |
+
"loss": 0.1662,
|
488 |
+
"step": 3400
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 7.67,
|
492 |
+
"learning_rate": 0.00026660377358490563,
|
493 |
+
"loss": 0.1612,
|
494 |
+
"step": 3450
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 7.78,
|
498 |
+
"learning_rate": 0.0002660377358490566,
|
499 |
+
"loss": 0.1611,
|
500 |
+
"step": 3500
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 7.89,
|
504 |
+
"learning_rate": 0.0002654716981132075,
|
505 |
+
"loss": 0.1669,
|
506 |
+
"step": 3550
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 8.0,
|
510 |
+
"learning_rate": 0.0002649056603773585,
|
511 |
+
"loss": 0.1728,
|
512 |
+
"step": 3600
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 8.0,
|
516 |
+
"eval_loss": 0.4429037272930145,
|
517 |
+
"eval_runtime": 233.3956,
|
518 |
+
"eval_samples_per_second": 24.456,
|
519 |
+
"eval_steps_per_second": 3.059,
|
520 |
+
"eval_wer": 0.37750015260341424,
|
521 |
+
"step": 3600
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 8.11,
|
525 |
+
"learning_rate": 0.0002643396226415094,
|
526 |
+
"loss": 0.1543,
|
527 |
+
"step": 3650
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 8.22,
|
531 |
+
"learning_rate": 0.0002637735849056604,
|
532 |
+
"loss": 0.152,
|
533 |
+
"step": 3700
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 8.33,
|
537 |
+
"learning_rate": 0.0002632075471698113,
|
538 |
+
"loss": 0.1552,
|
539 |
+
"step": 3750
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 8.44,
|
543 |
+
"learning_rate": 0.0002626415094339622,
|
544 |
+
"loss": 0.16,
|
545 |
+
"step": 3800
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 8.56,
|
549 |
+
"learning_rate": 0.0002620754716981132,
|
550 |
+
"loss": 0.1645,
|
551 |
+
"step": 3850
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 8.67,
|
555 |
+
"learning_rate": 0.0002615094339622641,
|
556 |
+
"loss": 0.158,
|
557 |
+
"step": 3900
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 8.78,
|
561 |
+
"learning_rate": 0.0002609433962264151,
|
562 |
+
"loss": 0.1654,
|
563 |
+
"step": 3950
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 8.89,
|
567 |
+
"learning_rate": 0.000260377358490566,
|
568 |
+
"loss": 0.1556,
|
569 |
+
"step": 4000
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 8.89,
|
573 |
+
"eval_loss": 0.4799572825431824,
|
574 |
+
"eval_runtime": 233.7994,
|
575 |
+
"eval_samples_per_second": 24.414,
|
576 |
+
"eval_steps_per_second": 3.054,
|
577 |
+
"eval_wer": 0.38354324780759763,
|
578 |
+
"step": 4000
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 9.0,
|
582 |
+
"learning_rate": 0.000259811320754717,
|
583 |
+
"loss": 0.1627,
|
584 |
+
"step": 4050
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 9.11,
|
588 |
+
"learning_rate": 0.0002592452830188679,
|
589 |
+
"loss": 0.1443,
|
590 |
+
"step": 4100
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 9.22,
|
594 |
+
"learning_rate": 0.0002586792452830189,
|
595 |
+
"loss": 0.1527,
|
596 |
+
"step": 4150
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 9.33,
|
600 |
+
"learning_rate": 0.0002581132075471698,
|
601 |
+
"loss": 0.1516,
|
602 |
+
"step": 4200
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 9.44,
|
606 |
+
"learning_rate": 0.0002575471698113207,
|
607 |
+
"loss": 0.1554,
|
608 |
+
"step": 4250
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 9.56,
|
612 |
+
"learning_rate": 0.0002569811320754717,
|
613 |
+
"loss": 0.1502,
|
614 |
+
"step": 4300
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 9.67,
|
618 |
+
"learning_rate": 0.0002564150943396226,
|
619 |
+
"loss": 0.1496,
|
620 |
+
"step": 4350
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 9.78,
|
624 |
+
"learning_rate": 0.0002558490566037736,
|
625 |
+
"loss": 0.1514,
|
626 |
+
"step": 4400
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 9.78,
|
630 |
+
"eval_loss": 0.46985962986946106,
|
631 |
+
"eval_runtime": 235.3127,
|
632 |
+
"eval_samples_per_second": 24.257,
|
633 |
+
"eval_steps_per_second": 3.034,
|
634 |
+
"eval_wer": 0.3755264817791523,
|
635 |
+
"step": 4400
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 9.89,
|
639 |
+
"learning_rate": 0.0002552830188679245,
|
640 |
+
"loss": 0.1501,
|
641 |
+
"step": 4450
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 10.0,
|
645 |
+
"learning_rate": 0.0002547169811320755,
|
646 |
+
"loss": 0.1464,
|
647 |
+
"step": 4500
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 10.11,
|
651 |
+
"learning_rate": 0.0002541509433962264,
|
652 |
+
"loss": 0.1354,
|
653 |
+
"step": 4550
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 10.22,
|
657 |
+
"learning_rate": 0.00025358490566037737,
|
658 |
+
"loss": 0.1315,
|
659 |
+
"step": 4600
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"epoch": 10.33,
|
663 |
+
"learning_rate": 0.0002530188679245283,
|
664 |
+
"loss": 0.1365,
|
665 |
+
"step": 4650
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"epoch": 10.44,
|
669 |
+
"learning_rate": 0.0002524528301886792,
|
670 |
+
"loss": 0.1399,
|
671 |
+
"step": 4700
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"epoch": 10.56,
|
675 |
+
"learning_rate": 0.0002518867924528302,
|
676 |
+
"loss": 0.1351,
|
677 |
+
"step": 4750
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"epoch": 10.67,
|
681 |
+
"learning_rate": 0.0002513207547169811,
|
682 |
+
"loss": 0.1405,
|
683 |
+
"step": 4800
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 10.67,
|
687 |
+
"eval_loss": 0.47201868891716003,
|
688 |
+
"eval_runtime": 234.4469,
|
689 |
+
"eval_samples_per_second": 24.347,
|
690 |
+
"eval_steps_per_second": 3.045,
|
691 |
+
"eval_wer": 0.3793517406962785,
|
692 |
+
"step": 4800
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 10.78,
|
696 |
+
"learning_rate": 0.0002507547169811321,
|
697 |
+
"loss": 0.1446,
|
698 |
+
"step": 4850
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 10.89,
|
702 |
+
"learning_rate": 0.000250188679245283,
|
703 |
+
"loss": 0.1402,
|
704 |
+
"step": 4900
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 11.0,
|
708 |
+
"learning_rate": 0.00024962264150943397,
|
709 |
+
"loss": 0.1417,
|
710 |
+
"step": 4950
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 11.11,
|
714 |
+
"learning_rate": 0.0002490566037735849,
|
715 |
+
"loss": 0.1326,
|
716 |
+
"step": 5000
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 11.22,
|
720 |
+
"learning_rate": 0.00024849056603773586,
|
721 |
+
"loss": 0.1409,
|
722 |
+
"step": 5050
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 11.33,
|
726 |
+
"learning_rate": 0.0002479245283018868,
|
727 |
+
"loss": 0.1279,
|
728 |
+
"step": 5100
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 11.44,
|
732 |
+
"learning_rate": 0.0002473584905660377,
|
733 |
+
"loss": 0.1333,
|
734 |
+
"step": 5150
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 11.56,
|
738 |
+
"learning_rate": 0.0002467924528301887,
|
739 |
+
"loss": 0.1317,
|
740 |
+
"step": 5200
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 11.56,
|
744 |
+
"eval_loss": 0.5062007904052734,
|
745 |
+
"eval_runtime": 233.2872,
|
746 |
+
"eval_samples_per_second": 24.468,
|
747 |
+
"eval_steps_per_second": 3.061,
|
748 |
+
"eval_wer": 0.3787006327954911,
|
749 |
+
"step": 5200
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 11.67,
|
753 |
+
"learning_rate": 0.0002462264150943396,
|
754 |
+
"loss": 0.1309,
|
755 |
+
"step": 5250
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 11.78,
|
759 |
+
"learning_rate": 0.00024566037735849057,
|
760 |
+
"loss": 0.1344,
|
761 |
+
"step": 5300
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 11.89,
|
765 |
+
"learning_rate": 0.0002450943396226415,
|
766 |
+
"loss": 0.1339,
|
767 |
+
"step": 5350
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 12.0,
|
771 |
+
"learning_rate": 0.00024452830188679246,
|
772 |
+
"loss": 0.1403,
|
773 |
+
"step": 5400
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 12.11,
|
777 |
+
"learning_rate": 0.00024396226415094338,
|
778 |
+
"loss": 0.1208,
|
779 |
+
"step": 5450
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 12.22,
|
783 |
+
"learning_rate": 0.00024339622641509433,
|
784 |
+
"loss": 0.1278,
|
785 |
+
"step": 5500
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 12.33,
|
789 |
+
"learning_rate": 0.00024283018867924527,
|
790 |
+
"loss": 0.1148,
|
791 |
+
"step": 5550
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 12.44,
|
795 |
+
"learning_rate": 0.00024226415094339622,
|
796 |
+
"loss": 0.1204,
|
797 |
+
"step": 5600
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 12.44,
|
801 |
+
"eval_loss": 0.4777355492115021,
|
802 |
+
"eval_runtime": 233.4682,
|
803 |
+
"eval_samples_per_second": 24.449,
|
804 |
+
"eval_steps_per_second": 3.058,
|
805 |
+
"eval_wer": 0.36860846033328587,
|
806 |
+
"step": 5600
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 12.56,
|
810 |
+
"learning_rate": 0.00024169811320754717,
|
811 |
+
"loss": 0.1237,
|
812 |
+
"step": 5650
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 12.67,
|
816 |
+
"learning_rate": 0.0002411320754716981,
|
817 |
+
"loss": 0.124,
|
818 |
+
"step": 5700
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 12.78,
|
822 |
+
"learning_rate": 0.00024056603773584906,
|
823 |
+
"loss": 0.1358,
|
824 |
+
"step": 5750
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 12.89,
|
828 |
+
"learning_rate": 0.00023999999999999998,
|
829 |
+
"loss": 0.1243,
|
830 |
+
"step": 5800
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 13.0,
|
834 |
+
"learning_rate": 0.00023943396226415093,
|
835 |
+
"loss": 0.1255,
|
836 |
+
"step": 5850
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 13.11,
|
840 |
+
"learning_rate": 0.00023886792452830187,
|
841 |
+
"loss": 0.1158,
|
842 |
+
"step": 5900
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 13.22,
|
846 |
+
"learning_rate": 0.00023830188679245282,
|
847 |
+
"loss": 0.1135,
|
848 |
+
"step": 5950
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 13.33,
|
852 |
+
"learning_rate": 0.00023773584905660377,
|
853 |
+
"loss": 0.12,
|
854 |
+
"step": 6000
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 13.33,
|
858 |
+
"eval_loss": 0.5171375870704651,
|
859 |
+
"eval_runtime": 233.056,
|
860 |
+
"eval_samples_per_second": 24.492,
|
861 |
+
"eval_steps_per_second": 3.064,
|
862 |
+
"eval_wer": 0.3718233055934238,
|
863 |
+
"step": 6000
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 13.44,
|
867 |
+
"learning_rate": 0.0002371698113207547,
|
868 |
+
"loss": 0.1218,
|
869 |
+
"step": 6050
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 13.56,
|
873 |
+
"learning_rate": 0.00023660377358490566,
|
874 |
+
"loss": 0.1244,
|
875 |
+
"step": 6100
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 13.67,
|
879 |
+
"learning_rate": 0.0002360377358490566,
|
880 |
+
"loss": 0.1238,
|
881 |
+
"step": 6150
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 13.78,
|
885 |
+
"learning_rate": 0.00023547169811320755,
|
886 |
+
"loss": 0.1188,
|
887 |
+
"step": 6200
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 13.89,
|
891 |
+
"learning_rate": 0.0002349056603773585,
|
892 |
+
"loss": 0.1167,
|
893 |
+
"step": 6250
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 14.0,
|
897 |
+
"learning_rate": 0.00023433962264150942,
|
898 |
+
"loss": 0.1212,
|
899 |
+
"step": 6300
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 14.11,
|
903 |
+
"learning_rate": 0.00023377358490566036,
|
904 |
+
"loss": 0.1209,
|
905 |
+
"step": 6350
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 14.22,
|
909 |
+
"learning_rate": 0.0002332075471698113,
|
910 |
+
"loss": 0.1176,
|
911 |
+
"step": 6400
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 14.22,
|
915 |
+
"eval_loss": 0.5209046602249146,
|
916 |
+
"eval_runtime": 232.7218,
|
917 |
+
"eval_samples_per_second": 24.527,
|
918 |
+
"eval_steps_per_second": 3.068,
|
919 |
+
"eval_wer": 0.37357315807679004,
|
920 |
+
"step": 6400
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 14.33,
|
924 |
+
"learning_rate": 0.00023264150943396226,
|
925 |
+
"loss": 0.1108,
|
926 |
+
"step": 6450
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 14.44,
|
930 |
+
"learning_rate": 0.0002320754716981132,
|
931 |
+
"loss": 0.1201,
|
932 |
+
"step": 6500
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 14.56,
|
936 |
+
"learning_rate": 0.00023150943396226415,
|
937 |
+
"loss": 0.1135,
|
938 |
+
"step": 6550
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 14.67,
|
942 |
+
"learning_rate": 0.0002309433962264151,
|
943 |
+
"loss": 0.111,
|
944 |
+
"step": 6600
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 14.78,
|
948 |
+
"learning_rate": 0.00023037735849056604,
|
949 |
+
"loss": 0.1169,
|
950 |
+
"step": 6650
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 14.89,
|
954 |
+
"learning_rate": 0.000229811320754717,
|
955 |
+
"loss": 0.12,
|
956 |
+
"step": 6700
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 15.0,
|
960 |
+
"learning_rate": 0.0002292452830188679,
|
961 |
+
"loss": 0.1145,
|
962 |
+
"step": 6750
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 15.11,
|
966 |
+
"learning_rate": 0.00022867924528301886,
|
967 |
+
"loss": 0.1102,
|
968 |
+
"step": 6800
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 15.11,
|
972 |
+
"eval_loss": 0.5242590308189392,
|
973 |
+
"eval_runtime": 233.3294,
|
974 |
+
"eval_samples_per_second": 24.463,
|
975 |
+
"eval_steps_per_second": 3.06,
|
976 |
+
"eval_wer": 0.37780535943190835,
|
977 |
+
"step": 6800
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 15.22,
|
981 |
+
"learning_rate": 0.0002281132075471698,
|
982 |
+
"loss": 0.0994,
|
983 |
+
"step": 6850
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 15.33,
|
987 |
+
"learning_rate": 0.00022754716981132075,
|
988 |
+
"loss": 0.1196,
|
989 |
+
"step": 6900
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 15.44,
|
993 |
+
"learning_rate": 0.0002269811320754717,
|
994 |
+
"loss": 0.1125,
|
995 |
+
"step": 6950
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 15.56,
|
999 |
+
"learning_rate": 0.00022641509433962264,
|
1000 |
+
"loss": 0.1122,
|
1001 |
+
"step": 7000
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"epoch": 15.67,
|
1005 |
+
"learning_rate": 0.0002258490566037736,
|
1006 |
+
"loss": 0.1235,
|
1007 |
+
"step": 7050
|
1008 |
+
},
|
1009 |
+
{
|
1010 |
+
"epoch": 15.78,
|
1011 |
+
"learning_rate": 0.00022528301886792453,
|
1012 |
+
"loss": 0.1088,
|
1013 |
+
"step": 7100
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"epoch": 15.89,
|
1017 |
+
"learning_rate": 0.00022471698113207543,
|
1018 |
+
"loss": 0.1089,
|
1019 |
+
"step": 7150
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 16.0,
|
1023 |
+
"learning_rate": 0.00022415094339622637,
|
1024 |
+
"loss": 0.1097,
|
1025 |
+
"step": 7200
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 16.0,
|
1029 |
+
"eval_loss": 0.4982779622077942,
|
1030 |
+
"eval_runtime": 233.2014,
|
1031 |
+
"eval_samples_per_second": 24.477,
|
1032 |
+
"eval_steps_per_second": 3.062,
|
1033 |
+
"eval_wer": 0.3620159928378131,
|
1034 |
+
"step": 7200
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 16.11,
|
1038 |
+
"learning_rate": 0.00022358490566037732,
|
1039 |
+
"loss": 0.1023,
|
1040 |
+
"step": 7250
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 16.22,
|
1044 |
+
"learning_rate": 0.00022301886792452827,
|
1045 |
+
"loss": 0.097,
|
1046 |
+
"step": 7300
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 16.33,
|
1050 |
+
"learning_rate": 0.0002224528301886792,
|
1051 |
+
"loss": 0.1002,
|
1052 |
+
"step": 7350
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 16.44,
|
1056 |
+
"learning_rate": 0.00022188679245283016,
|
1057 |
+
"loss": 0.1051,
|
1058 |
+
"step": 7400
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 16.56,
|
1062 |
+
"learning_rate": 0.0002213207547169811,
|
1063 |
+
"loss": 0.1114,
|
1064 |
+
"step": 7450
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 16.67,
|
1068 |
+
"learning_rate": 0.00022075471698113205,
|
1069 |
+
"loss": 0.0984,
|
1070 |
+
"step": 7500
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 16.78,
|
1074 |
+
"learning_rate": 0.00022018867924528297,
|
1075 |
+
"loss": 0.1121,
|
1076 |
+
"step": 7550
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 16.89,
|
1080 |
+
"learning_rate": 0.00021962264150943392,
|
1081 |
+
"loss": 0.1091,
|
1082 |
+
"step": 7600
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 16.89,
|
1086 |
+
"eval_loss": 0.4976480007171631,
|
1087 |
+
"eval_runtime": 232.5964,
|
1088 |
+
"eval_samples_per_second": 24.54,
|
1089 |
+
"eval_steps_per_second": 3.07,
|
1090 |
+
"eval_wer": 0.366166805705333,
|
1091 |
+
"step": 7600
|
1092 |
+
},
|
1093 |
+
{
|
1094 |
+
"epoch": 17.0,
|
1095 |
+
"learning_rate": 0.00021905660377358486,
|
1096 |
+
"loss": 0.1061,
|
1097 |
+
"step": 7650
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 17.11,
|
1101 |
+
"learning_rate": 0.0002184905660377358,
|
1102 |
+
"loss": 0.0962,
|
1103 |
+
"step": 7700
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"epoch": 17.22,
|
1107 |
+
"learning_rate": 0.00021792452830188676,
|
1108 |
+
"loss": 0.101,
|
1109 |
+
"step": 7750
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 17.33,
|
1113 |
+
"learning_rate": 0.0002173584905660377,
|
1114 |
+
"loss": 0.1109,
|
1115 |
+
"step": 7800
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 17.44,
|
1119 |
+
"learning_rate": 0.00021679245283018865,
|
1120 |
+
"loss": 0.1021,
|
1121 |
+
"step": 7850
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"epoch": 17.56,
|
1125 |
+
"learning_rate": 0.0002162264150943396,
|
1126 |
+
"loss": 0.1011,
|
1127 |
+
"step": 7900
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"epoch": 17.67,
|
1131 |
+
"learning_rate": 0.00021566037735849054,
|
1132 |
+
"loss": 0.0992,
|
1133 |
+
"step": 7950
|
1134 |
+
},
|
1135 |
+
{
|
1136 |
+
"epoch": 17.78,
|
1137 |
+
"learning_rate": 0.00021509433962264146,
|
1138 |
+
"loss": 0.104,
|
1139 |
+
"step": 8000
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 17.78,
|
1143 |
+
"eval_loss": 0.5483397245407104,
|
1144 |
+
"eval_runtime": 232.4366,
|
1145 |
+
"eval_samples_per_second": 24.557,
|
1146 |
+
"eval_steps_per_second": 3.072,
|
1147 |
+
"eval_wer": 0.3651901438541518,
|
1148 |
+
"step": 8000
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 17.89,
|
1152 |
+
"learning_rate": 0.0002145283018867924,
|
1153 |
+
"loss": 0.1047,
|
1154 |
+
"step": 8050
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 18.0,
|
1158 |
+
"learning_rate": 0.00021396226415094336,
|
1159 |
+
"loss": 0.1026,
|
1160 |
+
"step": 8100
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 18.11,
|
1164 |
+
"learning_rate": 0.0002133962264150943,
|
1165 |
+
"loss": 0.0929,
|
1166 |
+
"step": 8150
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 18.22,
|
1170 |
+
"learning_rate": 0.00021283018867924525,
|
1171 |
+
"loss": 0.0933,
|
1172 |
+
"step": 8200
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 18.33,
|
1176 |
+
"learning_rate": 0.0002122641509433962,
|
1177 |
+
"loss": 0.0971,
|
1178 |
+
"step": 8250
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 18.44,
|
1182 |
+
"learning_rate": 0.00021169811320754714,
|
1183 |
+
"loss": 0.097,
|
1184 |
+
"step": 8300
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 18.56,
|
1188 |
+
"learning_rate": 0.0002111320754716981,
|
1189 |
+
"loss": 0.097,
|
1190 |
+
"step": 8350
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 18.67,
|
1194 |
+
"learning_rate": 0.00021056603773584904,
|
1195 |
+
"loss": 0.1014,
|
1196 |
+
"step": 8400
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 18.67,
|
1200 |
+
"eval_loss": 0.5109674334526062,
|
1201 |
+
"eval_runtime": 233.1396,
|
1202 |
+
"eval_samples_per_second": 24.483,
|
1203 |
+
"eval_steps_per_second": 3.063,
|
1204 |
+
"eval_wer": 0.3620159928378131,
|
1205 |
+
"step": 8400
|
1206 |
+
},
|
1207 |
+
{
|
1208 |
+
"epoch": 18.78,
|
1209 |
+
"learning_rate": 0.00020999999999999998,
|
1210 |
+
"loss": 0.0936,
|
1211 |
+
"step": 8450
|
1212 |
+
},
|
1213 |
+
{
|
1214 |
+
"epoch": 18.89,
|
1215 |
+
"learning_rate": 0.0002094339622641509,
|
1216 |
+
"loss": 0.0948,
|
1217 |
+
"step": 8500
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"epoch": 19.0,
|
1221 |
+
"learning_rate": 0.00020886792452830185,
|
1222 |
+
"loss": 0.0928,
|
1223 |
+
"step": 8550
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 19.11,
|
1227 |
+
"learning_rate": 0.0002083018867924528,
|
1228 |
+
"loss": 0.0912,
|
1229 |
+
"step": 8600
|
1230 |
+
},
|
1231 |
+
{
|
1232 |
+
"epoch": 19.22,
|
1233 |
+
"learning_rate": 0.00020773584905660374,
|
1234 |
+
"loss": 0.0918,
|
1235 |
+
"step": 8650
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 19.33,
|
1239 |
+
"learning_rate": 0.0002071698113207547,
|
1240 |
+
"loss": 0.0902,
|
1241 |
+
"step": 8700
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 19.44,
|
1245 |
+
"learning_rate": 0.00020660377358490563,
|
1246 |
+
"loss": 0.0961,
|
1247 |
+
"step": 8750
|
1248 |
+
},
|
1249 |
+
{
|
1250 |
+
"epoch": 19.56,
|
1251 |
+
"learning_rate": 0.00020603773584905658,
|
1252 |
+
"loss": 0.0921,
|
1253 |
+
"step": 8800
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 19.56,
|
1257 |
+
"eval_loss": 0.4945477545261383,
|
1258 |
+
"eval_runtime": 232.6384,
|
1259 |
+
"eval_samples_per_second": 24.536,
|
1260 |
+
"eval_steps_per_second": 3.069,
|
1261 |
+
"eval_wer": 0.3609375953771339,
|
1262 |
+
"step": 8800
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 19.67,
|
1266 |
+
"learning_rate": 0.00020547169811320753,
|
1267 |
+
"loss": 0.0957,
|
1268 |
+
"step": 8850
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 19.78,
|
1272 |
+
"learning_rate": 0.00020491698113207546,
|
1273 |
+
"loss": 0.0958,
|
1274 |
+
"step": 8900
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 19.89,
|
1278 |
+
"learning_rate": 0.0002043509433962264,
|
1279 |
+
"loss": 0.0952,
|
1280 |
+
"step": 8950
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 20.0,
|
1284 |
+
"learning_rate": 0.00020378490566037735,
|
1285 |
+
"loss": 0.0847,
|
1286 |
+
"step": 9000
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 20.11,
|
1290 |
+
"learning_rate": 0.00020321886792452827,
|
1291 |
+
"loss": 0.0921,
|
1292 |
+
"step": 9050
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 20.22,
|
1296 |
+
"learning_rate": 0.00020265283018867922,
|
1297 |
+
"loss": 0.0885,
|
1298 |
+
"step": 9100
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 20.33,
|
1302 |
+
"learning_rate": 0.00020208679245283017,
|
1303 |
+
"loss": 0.0881,
|
1304 |
+
"step": 9150
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 20.44,
|
1308 |
+
"learning_rate": 0.0002015207547169811,
|
1309 |
+
"loss": 0.0943,
|
1310 |
+
"step": 9200
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 20.44,
|
1314 |
+
"eval_loss": 0.5395381450653076,
|
1315 |
+
"eval_runtime": 232.8056,
|
1316 |
+
"eval_samples_per_second": 24.518,
|
1317 |
+
"eval_steps_per_second": 3.067,
|
1318 |
+
"eval_wer": 0.36470181292856124,
|
1319 |
+
"step": 9200
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 20.56,
|
1323 |
+
"learning_rate": 0.00020095471698113206,
|
1324 |
+
"loss": 0.0888,
|
1325 |
+
"step": 9250
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 20.67,
|
1329 |
+
"learning_rate": 0.000200388679245283,
|
1330 |
+
"loss": 0.0894,
|
1331 |
+
"step": 9300
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"epoch": 20.78,
|
1335 |
+
"learning_rate": 0.00019982264150943395,
|
1336 |
+
"loss": 0.0883,
|
1337 |
+
"step": 9350
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 20.89,
|
1341 |
+
"learning_rate": 0.0001992566037735849,
|
1342 |
+
"loss": 0.0873,
|
1343 |
+
"step": 9400
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 21.0,
|
1347 |
+
"learning_rate": 0.00019869056603773584,
|
1348 |
+
"loss": 0.095,
|
1349 |
+
"step": 9450
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 21.11,
|
1353 |
+
"learning_rate": 0.00019812452830188676,
|
1354 |
+
"loss": 0.087,
|
1355 |
+
"step": 9500
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"epoch": 21.22,
|
1359 |
+
"learning_rate": 0.0001975584905660377,
|
1360 |
+
"loss": 0.0795,
|
1361 |
+
"step": 9550
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 21.33,
|
1365 |
+
"learning_rate": 0.00019699245283018866,
|
1366 |
+
"loss": 0.0877,
|
1367 |
+
"step": 9600
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 21.33,
|
1371 |
+
"eval_loss": 0.516017735004425,
|
1372 |
+
"eval_runtime": 232.5407,
|
1373 |
+
"eval_samples_per_second": 24.546,
|
1374 |
+
"eval_steps_per_second": 3.07,
|
1375 |
+
"eval_wer": 0.37127393330213443,
|
1376 |
+
"step": 9600
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 21.44,
|
1380 |
+
"learning_rate": 0.0001964264150943396,
|
1381 |
+
"loss": 0.0902,
|
1382 |
+
"step": 9650
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 21.56,
|
1386 |
+
"learning_rate": 0.00019586037735849055,
|
1387 |
+
"loss": 0.0898,
|
1388 |
+
"step": 9700
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 21.67,
|
1392 |
+
"learning_rate": 0.0001952943396226415,
|
1393 |
+
"loss": 0.0934,
|
1394 |
+
"step": 9750
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 21.78,
|
1398 |
+
"learning_rate": 0.00019472830188679244,
|
1399 |
+
"loss": 0.0845,
|
1400 |
+
"step": 9800
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 21.89,
|
1404 |
+
"learning_rate": 0.0001941622641509434,
|
1405 |
+
"loss": 0.0916,
|
1406 |
+
"step": 9850
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 22.0,
|
1410 |
+
"learning_rate": 0.00019359622641509434,
|
1411 |
+
"loss": 0.0878,
|
1412 |
+
"step": 9900
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 22.11,
|
1416 |
+
"learning_rate": 0.00019303018867924526,
|
1417 |
+
"loss": 0.0864,
|
1418 |
+
"step": 9950
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 22.22,
|
1422 |
+
"learning_rate": 0.0001924641509433962,
|
1423 |
+
"loss": 0.0768,
|
1424 |
+
"step": 10000
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 22.22,
|
1428 |
+
"eval_loss": 0.5633887052536011,
|
1429 |
+
"eval_runtime": 233.9063,
|
1430 |
+
"eval_samples_per_second": 24.403,
|
1431 |
+
"eval_steps_per_second": 3.053,
|
1432 |
+
"eval_wer": 0.36429487049056913,
|
1433 |
+
"step": 10000
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 22.33,
|
1437 |
+
"learning_rate": 0.00019189811320754715,
|
1438 |
+
"loss": 0.0888,
|
1439 |
+
"step": 10050
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 22.44,
|
1443 |
+
"learning_rate": 0.0001913320754716981,
|
1444 |
+
"loss": 0.0876,
|
1445 |
+
"step": 10100
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 22.56,
|
1449 |
+
"learning_rate": 0.00019076603773584904,
|
1450 |
+
"loss": 0.0835,
|
1451 |
+
"step": 10150
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 22.67,
|
1455 |
+
"learning_rate": 0.0001902,
|
1456 |
+
"loss": 0.0766,
|
1457 |
+
"step": 10200
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"epoch": 22.78,
|
1461 |
+
"learning_rate": 0.00018963396226415093,
|
1462 |
+
"loss": 0.0909,
|
1463 |
+
"step": 10250
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 22.89,
|
1467 |
+
"learning_rate": 0.00018906792452830188,
|
1468 |
+
"loss": 0.08,
|
1469 |
+
"step": 10300
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 23.0,
|
1473 |
+
"learning_rate": 0.00018850188679245283,
|
1474 |
+
"loss": 0.081,
|
1475 |
+
"step": 10350
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 23.11,
|
1479 |
+
"learning_rate": 0.00018793584905660375,
|
1480 |
+
"loss": 0.0744,
|
1481 |
+
"step": 10400
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 23.11,
|
1485 |
+
"eval_loss": 0.5204855799674988,
|
1486 |
+
"eval_runtime": 235.6787,
|
1487 |
+
"eval_samples_per_second": 24.219,
|
1488 |
+
"eval_steps_per_second": 3.03,
|
1489 |
+
"eval_wer": 0.3642745233686695,
|
1490 |
+
"step": 10400
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 23.22,
|
1494 |
+
"learning_rate": 0.0001873698113207547,
|
1495 |
+
"loss": 0.0817,
|
1496 |
+
"step": 10450
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 23.33,
|
1500 |
+
"learning_rate": 0.00018680377358490564,
|
1501 |
+
"loss": 0.0791,
|
1502 |
+
"step": 10500
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 23.44,
|
1506 |
+
"learning_rate": 0.0001862377358490566,
|
1507 |
+
"loss": 0.0779,
|
1508 |
+
"step": 10550
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 23.56,
|
1512 |
+
"learning_rate": 0.00018567169811320753,
|
1513 |
+
"loss": 0.0818,
|
1514 |
+
"step": 10600
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 23.67,
|
1518 |
+
"learning_rate": 0.00018510566037735848,
|
1519 |
+
"loss": 0.0801,
|
1520 |
+
"step": 10650
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 23.78,
|
1524 |
+
"learning_rate": 0.00018453962264150943,
|
1525 |
+
"loss": 0.0843,
|
1526 |
+
"step": 10700
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 23.89,
|
1530 |
+
"learning_rate": 0.00018397358490566037,
|
1531 |
+
"loss": 0.0832,
|
1532 |
+
"step": 10750
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 24.0,
|
1536 |
+
"learning_rate": 0.00018340754716981132,
|
1537 |
+
"loss": 0.0852,
|
1538 |
+
"step": 10800
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 24.0,
|
1542 |
+
"eval_loss": 0.5427780151367188,
|
1543 |
+
"eval_runtime": 234.1837,
|
1544 |
+
"eval_samples_per_second": 24.374,
|
1545 |
+
"eval_steps_per_second": 3.049,
|
1546 |
+
"eval_wer": 0.36130384357132683,
|
1547 |
+
"step": 10800
|
1548 |
+
},
|
1549 |
+
{
|
1550 |
+
"epoch": 24.11,
|
1551 |
+
"learning_rate": 0.00018284150943396224,
|
1552 |
+
"loss": 0.0779,
|
1553 |
+
"step": 10850
|
1554 |
+
},
|
1555 |
+
{
|
1556 |
+
"epoch": 24.22,
|
1557 |
+
"learning_rate": 0.00018227547169811319,
|
1558 |
+
"loss": 0.0734,
|
1559 |
+
"step": 10900
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"epoch": 24.33,
|
1563 |
+
"learning_rate": 0.00018170943396226413,
|
1564 |
+
"loss": 0.0843,
|
1565 |
+
"step": 10950
|
1566 |
+
},
|
1567 |
+
{
|
1568 |
+
"epoch": 24.44,
|
1569 |
+
"learning_rate": 0.00018114339622641508,
|
1570 |
+
"loss": 0.0777,
|
1571 |
+
"step": 11000
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 24.56,
|
1575 |
+
"learning_rate": 0.00018057735849056602,
|
1576 |
+
"loss": 0.0782,
|
1577 |
+
"step": 11050
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 24.67,
|
1581 |
+
"learning_rate": 0.00018001132075471697,
|
1582 |
+
"loss": 0.0783,
|
1583 |
+
"step": 11100
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"epoch": 24.78,
|
1587 |
+
"learning_rate": 0.00017944528301886792,
|
1588 |
+
"loss": 0.076,
|
1589 |
+
"step": 11150
|
1590 |
+
},
|
1591 |
+
{
|
1592 |
+
"epoch": 24.89,
|
1593 |
+
"learning_rate": 0.00017887924528301886,
|
1594 |
+
"loss": 0.0732,
|
1595 |
+
"step": 11200
|
1596 |
+
},
|
1597 |
+
{
|
1598 |
+
"epoch": 24.89,
|
1599 |
+
"eval_loss": 0.551848292350769,
|
1600 |
+
"eval_runtime": 232.8874,
|
1601 |
+
"eval_samples_per_second": 24.51,
|
1602 |
+
"eval_steps_per_second": 3.066,
|
1603 |
+
"eval_wer": 0.3628298777137974,
|
1604 |
+
"step": 11200
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 25.0,
|
1608 |
+
"learning_rate": 0.0001783245283018868,
|
1609 |
+
"loss": 0.0861,
|
1610 |
+
"step": 11250
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 25.11,
|
1614 |
+
"learning_rate": 0.0001777698113207547,
|
1615 |
+
"loss": 0.0812,
|
1616 |
+
"step": 11300
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 25.22,
|
1620 |
+
"learning_rate": 0.00017720377358490565,
|
1621 |
+
"loss": 0.0765,
|
1622 |
+
"step": 11350
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 25.33,
|
1626 |
+
"learning_rate": 0.00017663773584905657,
|
1627 |
+
"loss": 0.0775,
|
1628 |
+
"step": 11400
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 25.44,
|
1632 |
+
"learning_rate": 0.00017607169811320752,
|
1633 |
+
"loss": 0.0762,
|
1634 |
+
"step": 11450
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 25.56,
|
1638 |
+
"learning_rate": 0.00017550566037735846,
|
1639 |
+
"loss": 0.0782,
|
1640 |
+
"step": 11500
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 25.67,
|
1644 |
+
"learning_rate": 0.0001749396226415094,
|
1645 |
+
"loss": 0.077,
|
1646 |
+
"step": 11550
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 25.78,
|
1650 |
+
"learning_rate": 0.00017437358490566036,
|
1651 |
+
"loss": 0.0725,
|
1652 |
+
"step": 11600
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 25.78,
|
1656 |
+
"eval_loss": 0.5757771134376526,
|
1657 |
+
"eval_runtime": 233.1827,
|
1658 |
+
"eval_samples_per_second": 24.479,
|
1659 |
+
"eval_steps_per_second": 3.062,
|
1660 |
+
"eval_wer": 0.37282031456650455,
|
1661 |
+
"step": 11600
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 25.89,
|
1665 |
+
"learning_rate": 0.0001738075471698113,
|
1666 |
+
"loss": 0.08,
|
1667 |
+
"step": 11650
|
1668 |
+
},
|
1669 |
+
{
|
1670 |
+
"epoch": 26.0,
|
1671 |
+
"learning_rate": 0.00017324150943396225,
|
1672 |
+
"loss": 0.0743,
|
1673 |
+
"step": 11700
|
1674 |
+
},
|
1675 |
+
{
|
1676 |
+
"epoch": 26.11,
|
1677 |
+
"learning_rate": 0.0001726754716981132,
|
1678 |
+
"loss": 0.0722,
|
1679 |
+
"step": 11750
|
1680 |
+
},
|
1681 |
+
{
|
1682 |
+
"epoch": 26.22,
|
1683 |
+
"learning_rate": 0.00017210943396226414,
|
1684 |
+
"loss": 0.0725,
|
1685 |
+
"step": 11800
|
1686 |
+
},
|
1687 |
+
{
|
1688 |
+
"epoch": 26.33,
|
1689 |
+
"learning_rate": 0.00017154339622641506,
|
1690 |
+
"loss": 0.0708,
|
1691 |
+
"step": 11850
|
1692 |
+
},
|
1693 |
+
{
|
1694 |
+
"epoch": 26.44,
|
1695 |
+
"learning_rate": 0.000170977358490566,
|
1696 |
+
"loss": 0.081,
|
1697 |
+
"step": 11900
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 26.56,
|
1701 |
+
"learning_rate": 0.00017041132075471695,
|
1702 |
+
"loss": 0.0704,
|
1703 |
+
"step": 11950
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 26.67,
|
1707 |
+
"learning_rate": 0.0001698452830188679,
|
1708 |
+
"loss": 0.0691,
|
1709 |
+
"step": 12000
|
1710 |
+
},
|
1711 |
+
{
|
1712 |
+
"epoch": 26.67,
|
1713 |
+
"eval_loss": 0.5725019574165344,
|
1714 |
+
"eval_runtime": 232.5631,
|
1715 |
+
"eval_samples_per_second": 24.544,
|
1716 |
+
"eval_steps_per_second": 3.07,
|
1717 |
+
"eval_wer": 0.3584552465053818,
|
1718 |
+
"step": 12000
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 26.78,
|
1722 |
+
"learning_rate": 0.00016927924528301885,
|
1723 |
+
"loss": 0.0766,
|
1724 |
+
"step": 12050
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 26.89,
|
1728 |
+
"learning_rate": 0.0001687132075471698,
|
1729 |
+
"loss": 0.0767,
|
1730 |
+
"step": 12100
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 27.0,
|
1734 |
+
"learning_rate": 0.00016814716981132074,
|
1735 |
+
"loss": 0.0748,
|
1736 |
+
"step": 12150
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 27.11,
|
1740 |
+
"learning_rate": 0.0001675811320754717,
|
1741 |
+
"loss": 0.0645,
|
1742 |
+
"step": 12200
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 27.22,
|
1746 |
+
"learning_rate": 0.00016701509433962263,
|
1747 |
+
"loss": 0.0701,
|
1748 |
+
"step": 12250
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 27.33,
|
1752 |
+
"learning_rate": 0.00016644905660377358,
|
1753 |
+
"loss": 0.0702,
|
1754 |
+
"step": 12300
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 27.44,
|
1758 |
+
"learning_rate": 0.0001658830188679245,
|
1759 |
+
"loss": 0.0711,
|
1760 |
+
"step": 12350
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 27.56,
|
1764 |
+
"learning_rate": 0.00016531698113207545,
|
1765 |
+
"loss": 0.0664,
|
1766 |
+
"step": 12400
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 27.56,
|
1770 |
+
"eval_loss": 0.5794127583503723,
|
1771 |
+
"eval_runtime": 233.0106,
|
1772 |
+
"eval_samples_per_second": 24.497,
|
1773 |
+
"eval_steps_per_second": 3.064,
|
1774 |
+
"eval_wer": 0.35994058640405313,
|
1775 |
+
"step": 12400
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 27.67,
|
1779 |
+
"learning_rate": 0.0001647509433962264,
|
1780 |
+
"loss": 0.0692,
|
1781 |
+
"step": 12450
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 27.78,
|
1785 |
+
"learning_rate": 0.00016418490566037734,
|
1786 |
+
"loss": 0.0705,
|
1787 |
+
"step": 12500
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 27.89,
|
1791 |
+
"learning_rate": 0.00016361886792452829,
|
1792 |
+
"loss": 0.0705,
|
1793 |
+
"step": 12550
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 28.0,
|
1797 |
+
"learning_rate": 0.00016305283018867923,
|
1798 |
+
"loss": 0.0655,
|
1799 |
+
"step": 12600
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 28.11,
|
1803 |
+
"learning_rate": 0.00016248679245283018,
|
1804 |
+
"loss": 0.0723,
|
1805 |
+
"step": 12650
|
1806 |
+
},
|
1807 |
+
{
|
1808 |
+
"epoch": 28.22,
|
1809 |
+
"learning_rate": 0.00016192075471698113,
|
1810 |
+
"loss": 0.0716,
|
1811 |
+
"step": 12700
|
1812 |
+
},
|
1813 |
+
{
|
1814 |
+
"epoch": 28.33,
|
1815 |
+
"learning_rate": 0.00016135471698113207,
|
1816 |
+
"loss": 0.0709,
|
1817 |
+
"step": 12750
|
1818 |
+
},
|
1819 |
+
{
|
1820 |
+
"epoch": 28.44,
|
1821 |
+
"learning_rate": 0.000160788679245283,
|
1822 |
+
"loss": 0.0663,
|
1823 |
+
"step": 12800
|
1824 |
+
},
|
1825 |
+
{
|
1826 |
+
"epoch": 28.44,
|
1827 |
+
"eval_loss": 0.5777014493942261,
|
1828 |
+
"eval_runtime": 235.2144,
|
1829 |
+
"eval_samples_per_second": 24.267,
|
1830 |
+
"eval_steps_per_second": 3.036,
|
1831 |
+
"eval_wer": 0.35607463324312777,
|
1832 |
+
"step": 12800
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 28.56,
|
1836 |
+
"learning_rate": 0.00016022264150943394,
|
1837 |
+
"loss": 0.0687,
|
1838 |
+
"step": 12850
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 28.67,
|
1842 |
+
"learning_rate": 0.00015965660377358488,
|
1843 |
+
"loss": 0.0736,
|
1844 |
+
"step": 12900
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 28.78,
|
1848 |
+
"learning_rate": 0.00015909056603773583,
|
1849 |
+
"loss": 0.0675,
|
1850 |
+
"step": 12950
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 28.89,
|
1854 |
+
"learning_rate": 0.00015852452830188678,
|
1855 |
+
"loss": 0.0695,
|
1856 |
+
"step": 13000
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 29.0,
|
1860 |
+
"learning_rate": 0.00015795849056603772,
|
1861 |
+
"loss": 0.0719,
|
1862 |
+
"step": 13050
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 29.11,
|
1866 |
+
"learning_rate": 0.00015739245283018867,
|
1867 |
+
"loss": 0.0675,
|
1868 |
+
"step": 13100
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 29.22,
|
1872 |
+
"learning_rate": 0.00015682641509433962,
|
1873 |
+
"loss": 0.0692,
|
1874 |
+
"step": 13150
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 29.33,
|
1878 |
+
"learning_rate": 0.00015626037735849056,
|
1879 |
+
"loss": 0.0671,
|
1880 |
+
"step": 13200
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 29.33,
|
1884 |
+
"eval_loss": 0.573063850402832,
|
1885 |
+
"eval_runtime": 235.4966,
|
1886 |
+
"eval_samples_per_second": 24.238,
|
1887 |
+
"eval_steps_per_second": 3.032,
|
1888 |
+
"eval_wer": 0.35485380592915133,
|
1889 |
+
"step": 13200
|
1890 |
+
},
|
1891 |
+
{
|
1892 |
+
"epoch": 29.44,
|
1893 |
+
"learning_rate": 0.00015569433962264148,
|
1894 |
+
"loss": 0.0648,
|
1895 |
+
"step": 13250
|
1896 |
+
},
|
1897 |
+
{
|
1898 |
+
"epoch": 29.56,
|
1899 |
+
"learning_rate": 0.00015512830188679243,
|
1900 |
+
"loss": 0.0768,
|
1901 |
+
"step": 13300
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"epoch": 29.67,
|
1905 |
+
"learning_rate": 0.00015456226415094338,
|
1906 |
+
"loss": 0.0627,
|
1907 |
+
"step": 13350
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"epoch": 29.78,
|
1911 |
+
"learning_rate": 0.00015399622641509432,
|
1912 |
+
"loss": 0.0657,
|
1913 |
+
"step": 13400
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 29.89,
|
1917 |
+
"learning_rate": 0.00015343018867924527,
|
1918 |
+
"loss": 0.0698,
|
1919 |
+
"step": 13450
|
1920 |
+
},
|
1921 |
+
{
|
1922 |
+
"epoch": 30.0,
|
1923 |
+
"learning_rate": 0.00015286415094339622,
|
1924 |
+
"loss": 0.0683,
|
1925 |
+
"step": 13500
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"epoch": 30.11,
|
1929 |
+
"learning_rate": 0.00015229811320754716,
|
1930 |
+
"loss": 0.0616,
|
1931 |
+
"step": 13550
|
1932 |
+
},
|
1933 |
+
{
|
1934 |
+
"epoch": 30.22,
|
1935 |
+
"learning_rate": 0.0001517320754716981,
|
1936 |
+
"loss": 0.0649,
|
1937 |
+
"step": 13600
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"epoch": 30.22,
|
1941 |
+
"eval_loss": 0.5660180449485779,
|
1942 |
+
"eval_runtime": 233.6416,
|
1943 |
+
"eval_samples_per_second": 24.431,
|
1944 |
+
"eval_steps_per_second": 3.056,
|
1945 |
+
"eval_wer": 0.3600423220135512,
|
1946 |
+
"step": 13600
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 30.33,
|
1950 |
+
"learning_rate": 0.00015116603773584905,
|
1951 |
+
"loss": 0.0674,
|
1952 |
+
"step": 13650
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 30.44,
|
1956 |
+
"learning_rate": 0.00015059999999999997,
|
1957 |
+
"loss": 0.0645,
|
1958 |
+
"step": 13700
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 30.56,
|
1962 |
+
"learning_rate": 0.00015003396226415092,
|
1963 |
+
"loss": 0.0643,
|
1964 |
+
"step": 13750
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 30.67,
|
1968 |
+
"learning_rate": 0.00014946792452830187,
|
1969 |
+
"loss": 0.0631,
|
1970 |
+
"step": 13800
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 30.78,
|
1974 |
+
"learning_rate": 0.00014890188679245281,
|
1975 |
+
"loss": 0.064,
|
1976 |
+
"step": 13850
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 30.89,
|
1980 |
+
"learning_rate": 0.00014833584905660376,
|
1981 |
+
"loss": 0.0666,
|
1982 |
+
"step": 13900
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 31.0,
|
1986 |
+
"learning_rate": 0.0001477698113207547,
|
1987 |
+
"loss": 0.0656,
|
1988 |
+
"step": 13950
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 31.11,
|
1992 |
+
"learning_rate": 0.00014720377358490565,
|
1993 |
+
"loss": 0.0614,
|
1994 |
+
"step": 14000
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 31.11,
|
1998 |
+
"eval_loss": 0.5769771933555603,
|
1999 |
+
"eval_runtime": 234.4224,
|
2000 |
+
"eval_samples_per_second": 24.349,
|
2001 |
+
"eval_steps_per_second": 3.046,
|
2002 |
+
"eval_wer": 0.35595255051173014,
|
2003 |
+
"step": 14000
|
2004 |
+
},
|
2005 |
+
{
|
2006 |
+
"epoch": 31.22,
|
2007 |
+
"learning_rate": 0.0001466377358490566,
|
2008 |
+
"loss": 0.0609,
|
2009 |
+
"step": 14050
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 31.33,
|
2013 |
+
"learning_rate": 0.00014607169811320755,
|
2014 |
+
"loss": 0.0615,
|
2015 |
+
"step": 14100
|
2016 |
+
},
|
2017 |
+
{
|
2018 |
+
"epoch": 31.44,
|
2019 |
+
"learning_rate": 0.0001455056603773585,
|
2020 |
+
"loss": 0.0595,
|
2021 |
+
"step": 14150
|
2022 |
+
},
|
2023 |
+
{
|
2024 |
+
"epoch": 31.56,
|
2025 |
+
"learning_rate": 0.0001449396226415094,
|
2026 |
+
"loss": 0.0535,
|
2027 |
+
"step": 14200
|
2028 |
+
},
|
2029 |
+
{
|
2030 |
+
"epoch": 31.67,
|
2031 |
+
"learning_rate": 0.00014437358490566036,
|
2032 |
+
"loss": 0.0662,
|
2033 |
+
"step": 14250
|
2034 |
+
},
|
2035 |
+
{
|
2036 |
+
"epoch": 31.78,
|
2037 |
+
"learning_rate": 0.0001438075471698113,
|
2038 |
+
"loss": 0.0636,
|
2039 |
+
"step": 14300
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 31.89,
|
2043 |
+
"learning_rate": 0.00014324150943396225,
|
2044 |
+
"loss": 0.065,
|
2045 |
+
"step": 14350
|
2046 |
+
},
|
2047 |
+
{
|
2048 |
+
"epoch": 32.0,
|
2049 |
+
"learning_rate": 0.0001426754716981132,
|
2050 |
+
"loss": 0.0605,
|
2051 |
+
"step": 14400
|
2052 |
+
},
|
2053 |
+
{
|
2054 |
+
"epoch": 32.0,
|
2055 |
+
"eval_loss": 0.5667794942855835,
|
2056 |
+
"eval_runtime": 236.4511,
|
2057 |
+
"eval_samples_per_second": 24.14,
|
2058 |
+
"eval_steps_per_second": 3.02,
|
2059 |
+
"eval_wer": 0.35633914582782267,
|
2060 |
+
"step": 14400
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 32.11,
|
2064 |
+
"learning_rate": 0.00014210943396226414,
|
2065 |
+
"loss": 0.0576,
|
2066 |
+
"step": 14450
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 32.22,
|
2070 |
+
"learning_rate": 0.0001415433962264151,
|
2071 |
+
"loss": 0.0576,
|
2072 |
+
"step": 14500
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 32.33,
|
2076 |
+
"learning_rate": 0.00014097735849056604,
|
2077 |
+
"loss": 0.0567,
|
2078 |
+
"step": 14550
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 32.44,
|
2082 |
+
"learning_rate": 0.00014041132075471698,
|
2083 |
+
"loss": 0.0638,
|
2084 |
+
"step": 14600
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 32.56,
|
2088 |
+
"learning_rate": 0.0001398452830188679,
|
2089 |
+
"loss": 0.0563,
|
2090 |
+
"step": 14650
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 32.67,
|
2094 |
+
"learning_rate": 0.00013927924528301885,
|
2095 |
+
"loss": 0.0606,
|
2096 |
+
"step": 14700
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 32.78,
|
2100 |
+
"learning_rate": 0.0001387132075471698,
|
2101 |
+
"loss": 0.066,
|
2102 |
+
"step": 14750
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 32.89,
|
2106 |
+
"learning_rate": 0.00013814716981132074,
|
2107 |
+
"loss": 0.0594,
|
2108 |
+
"step": 14800
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 32.89,
|
2112 |
+
"eval_loss": 0.5590910911560059,
|
2113 |
+
"eval_runtime": 236.6548,
|
2114 |
+
"eval_samples_per_second": 24.12,
|
2115 |
+
"eval_steps_per_second": 3.017,
|
2116 |
+
"eval_wer": 0.3464707917065131,
|
2117 |
+
"step": 14800
|
2118 |
+
},
|
2119 |
+
{
|
2120 |
+
"epoch": 33.0,
|
2121 |
+
"learning_rate": 0.0001375811320754717,
|
2122 |
+
"loss": 0.0567,
|
2123 |
+
"step": 14850
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 33.11,
|
2127 |
+
"learning_rate": 0.00013701509433962264,
|
2128 |
+
"loss": 0.0593,
|
2129 |
+
"step": 14900
|
2130 |
+
},
|
2131 |
+
{
|
2132 |
+
"epoch": 33.22,
|
2133 |
+
"learning_rate": 0.00013644905660377358,
|
2134 |
+
"loss": 0.0503,
|
2135 |
+
"step": 14950
|
2136 |
+
},
|
2137 |
+
{
|
2138 |
+
"epoch": 33.33,
|
2139 |
+
"learning_rate": 0.00013588301886792453,
|
2140 |
+
"loss": 0.0548,
|
2141 |
+
"step": 15000
|
2142 |
+
},
|
2143 |
+
{
|
2144 |
+
"epoch": 33.44,
|
2145 |
+
"learning_rate": 0.00013531698113207548,
|
2146 |
+
"loss": 0.058,
|
2147 |
+
"step": 15050
|
2148 |
+
},
|
2149 |
+
{
|
2150 |
+
"epoch": 33.56,
|
2151 |
+
"learning_rate": 0.0001347509433962264,
|
2152 |
+
"loss": 0.0593,
|
2153 |
+
"step": 15100
|
2154 |
+
},
|
2155 |
+
{
|
2156 |
+
"epoch": 33.67,
|
2157 |
+
"learning_rate": 0.00013418490566037734,
|
2158 |
+
"loss": 0.0576,
|
2159 |
+
"step": 15150
|
2160 |
+
},
|
2161 |
+
{
|
2162 |
+
"epoch": 33.78,
|
2163 |
+
"learning_rate": 0.0001336188679245283,
|
2164 |
+
"loss": 0.0622,
|
2165 |
+
"step": 15200
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 33.78,
|
2169 |
+
"eval_loss": 0.6206709742546082,
|
2170 |
+
"eval_runtime": 237.9375,
|
2171 |
+
"eval_samples_per_second": 23.989,
|
2172 |
+
"eval_steps_per_second": 3.001,
|
2173 |
+
"eval_wer": 0.35127271247482045,
|
2174 |
+
"step": 15200
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 33.89,
|
2178 |
+
"learning_rate": 0.00013305283018867923,
|
2179 |
+
"loss": 0.0554,
|
2180 |
+
"step": 15250
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 34.0,
|
2184 |
+
"learning_rate": 0.00013248679245283018,
|
2185 |
+
"loss": 0.0536,
|
2186 |
+
"step": 15300
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 34.11,
|
2190 |
+
"learning_rate": 0.00013192075471698113,
|
2191 |
+
"loss": 0.0585,
|
2192 |
+
"step": 15350
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 34.22,
|
2196 |
+
"learning_rate": 0.00013135471698113207,
|
2197 |
+
"loss": 0.0604,
|
2198 |
+
"step": 15400
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 34.33,
|
2202 |
+
"learning_rate": 0.00013078867924528302,
|
2203 |
+
"loss": 0.0586,
|
2204 |
+
"step": 15450
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 34.44,
|
2208 |
+
"learning_rate": 0.00013023396226415093,
|
2209 |
+
"loss": 0.0648,
|
2210 |
+
"step": 15500
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 34.56,
|
2214 |
+
"learning_rate": 0.00012966792452830187,
|
2215 |
+
"loss": 0.0534,
|
2216 |
+
"step": 15550
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 34.67,
|
2220 |
+
"learning_rate": 0.00012910188679245282,
|
2221 |
+
"loss": 0.0597,
|
2222 |
+
"step": 15600
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 34.67,
|
2226 |
+
"eval_loss": 0.545280933380127,
|
2227 |
+
"eval_runtime": 234.5113,
|
2228 |
+
"eval_samples_per_second": 24.34,
|
2229 |
+
"eval_steps_per_second": 3.045,
|
2230 |
+
"eval_wer": 0.35078438154922986,
|
2231 |
+
"step": 15600
|
2232 |
+
},
|
2233 |
+
{
|
2234 |
+
"epoch": 34.78,
|
2235 |
+
"learning_rate": 0.00012853584905660377,
|
2236 |
+
"loss": 0.058,
|
2237 |
+
"step": 15650
|
2238 |
+
},
|
2239 |
+
{
|
2240 |
+
"epoch": 34.89,
|
2241 |
+
"learning_rate": 0.0001279698113207547,
|
2242 |
+
"loss": 0.0557,
|
2243 |
+
"step": 15700
|
2244 |
+
},
|
2245 |
+
{
|
2246 |
+
"epoch": 35.0,
|
2247 |
+
"learning_rate": 0.00012740377358490566,
|
2248 |
+
"loss": 0.0557,
|
2249 |
+
"step": 15750
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 35.11,
|
2253 |
+
"learning_rate": 0.0001268377358490566,
|
2254 |
+
"loss": 0.0529,
|
2255 |
+
"step": 15800
|
2256 |
+
},
|
2257 |
+
{
|
2258 |
+
"epoch": 35.22,
|
2259 |
+
"learning_rate": 0.00012627169811320753,
|
2260 |
+
"loss": 0.0544,
|
2261 |
+
"step": 15850
|
2262 |
+
},
|
2263 |
+
{
|
2264 |
+
"epoch": 35.33,
|
2265 |
+
"learning_rate": 0.00012570566037735847,
|
2266 |
+
"loss": 0.0538,
|
2267 |
+
"step": 15900
|
2268 |
+
},
|
2269 |
+
{
|
2270 |
+
"epoch": 35.44,
|
2271 |
+
"learning_rate": 0.00012513962264150942,
|
2272 |
+
"loss": 0.0517,
|
2273 |
+
"step": 15950
|
2274 |
+
},
|
2275 |
+
{
|
2276 |
+
"epoch": 35.56,
|
2277 |
+
"learning_rate": 0.00012457358490566037,
|
2278 |
+
"loss": 0.0566,
|
2279 |
+
"step": 16000
|
2280 |
+
},
|
2281 |
+
{
|
2282 |
+
"epoch": 35.56,
|
2283 |
+
"eval_loss": 0.6024277210235596,
|
2284 |
+
"eval_runtime": 233.9908,
|
2285 |
+
"eval_samples_per_second": 24.394,
|
2286 |
+
"eval_steps_per_second": 3.051,
|
2287 |
+
"eval_wer": 0.3531649948114839,
|
2288 |
+
"step": 16000
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 35.67,
|
2292 |
+
"learning_rate": 0.0001240075471698113,
|
2293 |
+
"loss": 0.051,
|
2294 |
+
"step": 16050
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 35.78,
|
2298 |
+
"learning_rate": 0.00012344150943396226,
|
2299 |
+
"loss": 0.0591,
|
2300 |
+
"step": 16100
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 35.89,
|
2304 |
+
"learning_rate": 0.0001228754716981132,
|
2305 |
+
"loss": 0.0569,
|
2306 |
+
"step": 16150
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 36.0,
|
2310 |
+
"learning_rate": 0.00012230943396226415,
|
2311 |
+
"loss": 0.0563,
|
2312 |
+
"step": 16200
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 36.11,
|
2316 |
+
"learning_rate": 0.00012174339622641508,
|
2317 |
+
"loss": 0.0533,
|
2318 |
+
"step": 16250
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 36.22,
|
2322 |
+
"learning_rate": 0.00012117735849056603,
|
2323 |
+
"loss": 0.0566,
|
2324 |
+
"step": 16300
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"epoch": 36.33,
|
2328 |
+
"learning_rate": 0.00012061132075471698,
|
2329 |
+
"loss": 0.0556,
|
2330 |
+
"step": 16350
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 36.44,
|
2334 |
+
"learning_rate": 0.00012004528301886791,
|
2335 |
+
"loss": 0.0524,
|
2336 |
+
"step": 16400
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 36.44,
|
2340 |
+
"eval_loss": 0.6054043173789978,
|
2341 |
+
"eval_runtime": 232.789,
|
2342 |
+
"eval_samples_per_second": 24.52,
|
2343 |
+
"eval_steps_per_second": 3.067,
|
2344 |
+
"eval_wer": 0.3538161027122714,
|
2345 |
+
"step": 16400
|
2346 |
+
},
|
2347 |
+
{
|
2348 |
+
"epoch": 36.56,
|
2349 |
+
"learning_rate": 0.00011947924528301886,
|
2350 |
+
"loss": 0.0568,
|
2351 |
+
"step": 16450
|
2352 |
+
},
|
2353 |
+
{
|
2354 |
+
"epoch": 36.67,
|
2355 |
+
"learning_rate": 0.0001189132075471698,
|
2356 |
+
"loss": 0.0554,
|
2357 |
+
"step": 16500
|
2358 |
+
},
|
2359 |
+
{
|
2360 |
+
"epoch": 36.78,
|
2361 |
+
"learning_rate": 0.00011834716981132075,
|
2362 |
+
"loss": 0.0499,
|
2363 |
+
"step": 16550
|
2364 |
+
},
|
2365 |
+
{
|
2366 |
+
"epoch": 36.89,
|
2367 |
+
"learning_rate": 0.0001177811320754717,
|
2368 |
+
"loss": 0.0518,
|
2369 |
+
"step": 16600
|
2370 |
+
},
|
2371 |
+
{
|
2372 |
+
"epoch": 37.0,
|
2373 |
+
"learning_rate": 0.00011721509433962263,
|
2374 |
+
"loss": 0.0571,
|
2375 |
+
"step": 16650
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 37.11,
|
2379 |
+
"learning_rate": 0.00011664905660377358,
|
2380 |
+
"loss": 0.0542,
|
2381 |
+
"step": 16700
|
2382 |
+
},
|
2383 |
+
{
|
2384 |
+
"epoch": 37.22,
|
2385 |
+
"learning_rate": 0.00011608301886792452,
|
2386 |
+
"loss": 0.0502,
|
2387 |
+
"step": 16750
|
2388 |
+
},
|
2389 |
+
{
|
2390 |
+
"epoch": 37.33,
|
2391 |
+
"learning_rate": 0.00011551698113207547,
|
2392 |
+
"loss": 0.045,
|
2393 |
+
"step": 16800
|
2394 |
+
},
|
2395 |
+
{
|
2396 |
+
"epoch": 37.33,
|
2397 |
+
"eval_loss": 0.6067692041397095,
|
2398 |
+
"eval_runtime": 233.7086,
|
2399 |
+
"eval_samples_per_second": 24.424,
|
2400 |
+
"eval_steps_per_second": 3.055,
|
2401 |
+
"eval_wer": 0.3464097503408143,
|
2402 |
+
"step": 16800
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 37.44,
|
2406 |
+
"learning_rate": 0.0001149509433962264,
|
2407 |
+
"loss": 0.0536,
|
2408 |
+
"step": 16850
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 37.56,
|
2412 |
+
"learning_rate": 0.00011438490566037735,
|
2413 |
+
"loss": 0.0513,
|
2414 |
+
"step": 16900
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"epoch": 37.67,
|
2418 |
+
"learning_rate": 0.0001138188679245283,
|
2419 |
+
"loss": 0.0513,
|
2420 |
+
"step": 16950
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 37.78,
|
2424 |
+
"learning_rate": 0.00011325283018867924,
|
2425 |
+
"loss": 0.0546,
|
2426 |
+
"step": 17000
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 37.89,
|
2430 |
+
"learning_rate": 0.00011268679245283019,
|
2431 |
+
"loss": 0.0552,
|
2432 |
+
"step": 17050
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 38.0,
|
2436 |
+
"learning_rate": 0.00011212075471698112,
|
2437 |
+
"loss": 0.0511,
|
2438 |
+
"step": 17100
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 38.11,
|
2442 |
+
"learning_rate": 0.00011155471698113207,
|
2443 |
+
"loss": 0.0517,
|
2444 |
+
"step": 17150
|
2445 |
+
},
|
2446 |
+
{
|
2447 |
+
"epoch": 38.22,
|
2448 |
+
"learning_rate": 0.00011098867924528301,
|
2449 |
+
"loss": 0.0526,
|
2450 |
+
"step": 17200
|
2451 |
+
},
|
2452 |
+
{
|
2453 |
+
"epoch": 38.22,
|
2454 |
+
"eval_loss": 0.5827322602272034,
|
2455 |
+
"eval_runtime": 234.6281,
|
2456 |
+
"eval_samples_per_second": 24.328,
|
2457 |
+
"eval_steps_per_second": 3.043,
|
2458 |
+
"eval_wer": 0.34946181862575537,
|
2459 |
+
"step": 17200
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 38.33,
|
2463 |
+
"learning_rate": 0.00011042264150943396,
|
2464 |
+
"loss": 0.0452,
|
2465 |
+
"step": 17250
|
2466 |
+
},
|
2467 |
+
{
|
2468 |
+
"epoch": 38.44,
|
2469 |
+
"learning_rate": 0.0001098566037735849,
|
2470 |
+
"loss": 0.0471,
|
2471 |
+
"step": 17300
|
2472 |
+
},
|
2473 |
+
{
|
2474 |
+
"epoch": 38.56,
|
2475 |
+
"learning_rate": 0.00010929056603773584,
|
2476 |
+
"loss": 0.049,
|
2477 |
+
"step": 17350
|
2478 |
+
},
|
2479 |
+
{
|
2480 |
+
"epoch": 38.67,
|
2481 |
+
"learning_rate": 0.00010873584905660376,
|
2482 |
+
"loss": 0.0551,
|
2483 |
+
"step": 17400
|
2484 |
+
},
|
2485 |
+
{
|
2486 |
+
"epoch": 38.78,
|
2487 |
+
"learning_rate": 0.0001081698113207547,
|
2488 |
+
"loss": 0.0522,
|
2489 |
+
"step": 17450
|
2490 |
+
},
|
2491 |
+
{
|
2492 |
+
"epoch": 38.89,
|
2493 |
+
"learning_rate": 0.00010760377358490565,
|
2494 |
+
"loss": 0.0504,
|
2495 |
+
"step": 17500
|
2496 |
+
},
|
2497 |
+
{
|
2498 |
+
"epoch": 39.0,
|
2499 |
+
"learning_rate": 0.0001070377358490566,
|
2500 |
+
"loss": 0.0474,
|
2501 |
+
"step": 17550
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 39.11,
|
2505 |
+
"learning_rate": 0.00010647169811320753,
|
2506 |
+
"loss": 0.0437,
|
2507 |
+
"step": 17600
|
2508 |
+
},
|
2509 |
+
{
|
2510 |
+
"epoch": 39.11,
|
2511 |
+
"eval_loss": 0.6006141901016235,
|
2512 |
+
"eval_runtime": 234.8995,
|
2513 |
+
"eval_samples_per_second": 24.3,
|
2514 |
+
"eval_steps_per_second": 3.04,
|
2515 |
+
"eval_wer": 0.33963415874824504,
|
2516 |
+
"step": 17600
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 39.22,
|
2520 |
+
"learning_rate": 0.00010590566037735848,
|
2521 |
+
"loss": 0.0444,
|
2522 |
+
"step": 17650
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 39.33,
|
2526 |
+
"learning_rate": 0.00010533962264150943,
|
2527 |
+
"loss": 0.0496,
|
2528 |
+
"step": 17700
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 39.44,
|
2532 |
+
"learning_rate": 0.00010477358490566037,
|
2533 |
+
"loss": 0.0514,
|
2534 |
+
"step": 17750
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 39.56,
|
2538 |
+
"learning_rate": 0.0001042075471698113,
|
2539 |
+
"loss": 0.0506,
|
2540 |
+
"step": 17800
|
2541 |
+
},
|
2542 |
+
{
|
2543 |
+
"epoch": 39.67,
|
2544 |
+
"learning_rate": 0.00010364150943396225,
|
2545 |
+
"loss": 0.0494,
|
2546 |
+
"step": 17850
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 39.78,
|
2550 |
+
"learning_rate": 0.0001030754716981132,
|
2551 |
+
"loss": 0.046,
|
2552 |
+
"step": 17900
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 39.89,
|
2556 |
+
"learning_rate": 0.00010250943396226414,
|
2557 |
+
"loss": 0.0515,
|
2558 |
+
"step": 17950
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 40.0,
|
2562 |
+
"learning_rate": 0.00010194339622641509,
|
2563 |
+
"loss": 0.0498,
|
2564 |
+
"step": 18000
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 40.0,
|
2568 |
+
"eval_loss": 0.546351969242096,
|
2569 |
+
"eval_runtime": 234.7053,
|
2570 |
+
"eval_samples_per_second": 24.32,
|
2571 |
+
"eval_steps_per_second": 3.042,
|
2572 |
+
"eval_wer": 0.3422996317170936,
|
2573 |
+
"step": 18000
|
2574 |
+
},
|
2575 |
+
{
|
2576 |
+
"epoch": 40.11,
|
2577 |
+
"learning_rate": 0.00010137735849056602,
|
2578 |
+
"loss": 0.0514,
|
2579 |
+
"step": 18050
|
2580 |
+
},
|
2581 |
+
{
|
2582 |
+
"epoch": 40.22,
|
2583 |
+
"learning_rate": 0.00010081132075471697,
|
2584 |
+
"loss": 0.0454,
|
2585 |
+
"step": 18100
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 40.33,
|
2589 |
+
"learning_rate": 0.00010024528301886792,
|
2590 |
+
"loss": 0.044,
|
2591 |
+
"step": 18150
|
2592 |
+
},
|
2593 |
+
{
|
2594 |
+
"epoch": 40.44,
|
2595 |
+
"learning_rate": 9.967924528301886e-05,
|
2596 |
+
"loss": 0.047,
|
2597 |
+
"step": 18200
|
2598 |
+
},
|
2599 |
+
{
|
2600 |
+
"epoch": 40.56,
|
2601 |
+
"learning_rate": 9.911320754716981e-05,
|
2602 |
+
"loss": 0.0412,
|
2603 |
+
"step": 18250
|
2604 |
+
},
|
2605 |
+
{
|
2606 |
+
"epoch": 40.67,
|
2607 |
+
"learning_rate": 9.854716981132074e-05,
|
2608 |
+
"loss": 0.0484,
|
2609 |
+
"step": 18300
|
2610 |
+
},
|
2611 |
+
{
|
2612 |
+
"epoch": 40.78,
|
2613 |
+
"learning_rate": 9.798113207547169e-05,
|
2614 |
+
"loss": 0.0413,
|
2615 |
+
"step": 18350
|
2616 |
+
},
|
2617 |
+
{
|
2618 |
+
"epoch": 40.89,
|
2619 |
+
"learning_rate": 9.741509433962264e-05,
|
2620 |
+
"loss": 0.0494,
|
2621 |
+
"step": 18400
|
2622 |
+
},
|
2623 |
+
{
|
2624 |
+
"epoch": 40.89,
|
2625 |
+
"eval_loss": 0.6018606424331665,
|
2626 |
+
"eval_runtime": 234.1001,
|
2627 |
+
"eval_samples_per_second": 24.383,
|
2628 |
+
"eval_steps_per_second": 3.05,
|
2629 |
+
"eval_wer": 0.3394713817730482,
|
2630 |
+
"step": 18400
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 41.0,
|
2634 |
+
"learning_rate": 9.684905660377358e-05,
|
2635 |
+
"loss": 0.0462,
|
2636 |
+
"step": 18450
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 41.11,
|
2640 |
+
"learning_rate": 9.628301886792452e-05,
|
2641 |
+
"loss": 0.0404,
|
2642 |
+
"step": 18500
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 41.22,
|
2646 |
+
"learning_rate": 9.571698113207546e-05,
|
2647 |
+
"loss": 0.0452,
|
2648 |
+
"step": 18550
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 41.33,
|
2652 |
+
"learning_rate": 9.515094339622641e-05,
|
2653 |
+
"loss": 0.042,
|
2654 |
+
"step": 18600
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 41.44,
|
2658 |
+
"learning_rate": 9.458490566037736e-05,
|
2659 |
+
"loss": 0.0449,
|
2660 |
+
"step": 18650
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 41.56,
|
2664 |
+
"learning_rate": 9.40188679245283e-05,
|
2665 |
+
"loss": 0.0431,
|
2666 |
+
"step": 18700
|
2667 |
+
},
|
2668 |
+
{
|
2669 |
+
"epoch": 41.67,
|
2670 |
+
"learning_rate": 9.345283018867923e-05,
|
2671 |
+
"loss": 0.0407,
|
2672 |
+
"step": 18750
|
2673 |
+
},
|
2674 |
+
{
|
2675 |
+
"epoch": 41.78,
|
2676 |
+
"learning_rate": 9.288679245283018e-05,
|
2677 |
+
"loss": 0.0476,
|
2678 |
+
"step": 18800
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 41.78,
|
2682 |
+
"eval_loss": 0.5934082865715027,
|
2683 |
+
"eval_runtime": 234.8837,
|
2684 |
+
"eval_samples_per_second": 24.301,
|
2685 |
+
"eval_steps_per_second": 3.04,
|
2686 |
+
"eval_wer": 0.3392068691883533,
|
2687 |
+
"step": 18800
|
2688 |
+
},
|
2689 |
+
{
|
2690 |
+
"epoch": 41.89,
|
2691 |
+
"learning_rate": 9.232075471698113e-05,
|
2692 |
+
"loss": 0.0475,
|
2693 |
+
"step": 18850
|
2694 |
+
},
|
2695 |
+
{
|
2696 |
+
"epoch": 42.0,
|
2697 |
+
"learning_rate": 9.175471698113207e-05,
|
2698 |
+
"loss": 0.0422,
|
2699 |
+
"step": 18900
|
2700 |
+
},
|
2701 |
+
{
|
2702 |
+
"epoch": 42.11,
|
2703 |
+
"learning_rate": 9.118867924528302e-05,
|
2704 |
+
"loss": 0.0424,
|
2705 |
+
"step": 18950
|
2706 |
+
},
|
2707 |
+
{
|
2708 |
+
"epoch": 42.22,
|
2709 |
+
"learning_rate": 9.062264150943395e-05,
|
2710 |
+
"loss": 0.0446,
|
2711 |
+
"step": 19000
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 42.33,
|
2715 |
+
"learning_rate": 9.00566037735849e-05,
|
2716 |
+
"loss": 0.0435,
|
2717 |
+
"step": 19050
|
2718 |
+
},
|
2719 |
+
{
|
2720 |
+
"epoch": 42.44,
|
2721 |
+
"learning_rate": 8.949056603773585e-05,
|
2722 |
+
"loss": 0.0423,
|
2723 |
+
"step": 19100
|
2724 |
+
},
|
2725 |
+
{
|
2726 |
+
"epoch": 42.56,
|
2727 |
+
"learning_rate": 8.892452830188679e-05,
|
2728 |
+
"loss": 0.0403,
|
2729 |
+
"step": 19150
|
2730 |
+
},
|
2731 |
+
{
|
2732 |
+
"epoch": 42.67,
|
2733 |
+
"learning_rate": 8.835849056603773e-05,
|
2734 |
+
"loss": 0.0414,
|
2735 |
+
"step": 19200
|
2736 |
+
},
|
2737 |
+
{
|
2738 |
+
"epoch": 42.67,
|
2739 |
+
"eval_loss": 0.6187946796417236,
|
2740 |
+
"eval_runtime": 235.2867,
|
2741 |
+
"eval_samples_per_second": 24.26,
|
2742 |
+
"eval_steps_per_second": 3.035,
|
2743 |
+
"eval_wer": 0.3374366695830875,
|
2744 |
+
"step": 19200
|
2745 |
+
},
|
2746 |
+
{
|
2747 |
+
"epoch": 42.78,
|
2748 |
+
"learning_rate": 8.779245283018867e-05,
|
2749 |
+
"loss": 0.0444,
|
2750 |
+
"step": 19250
|
2751 |
+
},
|
2752 |
+
{
|
2753 |
+
"epoch": 42.89,
|
2754 |
+
"learning_rate": 8.722641509433962e-05,
|
2755 |
+
"loss": 0.0476,
|
2756 |
+
"step": 19300
|
2757 |
+
},
|
2758 |
+
{
|
2759 |
+
"epoch": 43.0,
|
2760 |
+
"learning_rate": 8.666037735849057e-05,
|
2761 |
+
"loss": 0.0426,
|
2762 |
+
"step": 19350
|
2763 |
+
},
|
2764 |
+
{
|
2765 |
+
"epoch": 43.11,
|
2766 |
+
"learning_rate": 8.609433962264151e-05,
|
2767 |
+
"loss": 0.04,
|
2768 |
+
"step": 19400
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 43.22,
|
2772 |
+
"learning_rate": 8.552830188679245e-05,
|
2773 |
+
"loss": 0.0452,
|
2774 |
+
"step": 19450
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 43.33,
|
2778 |
+
"learning_rate": 8.496226415094339e-05,
|
2779 |
+
"loss": 0.0396,
|
2780 |
+
"step": 19500
|
2781 |
+
},
|
2782 |
+
{
|
2783 |
+
"epoch": 43.44,
|
2784 |
+
"learning_rate": 8.439622641509434e-05,
|
2785 |
+
"loss": 0.0404,
|
2786 |
+
"step": 19550
|
2787 |
+
},
|
2788 |
+
{
|
2789 |
+
"epoch": 43.56,
|
2790 |
+
"learning_rate": 8.383018867924528e-05,
|
2791 |
+
"loss": 0.0382,
|
2792 |
+
"step": 19600
|
2793 |
+
},
|
2794 |
+
{
|
2795 |
+
"epoch": 43.56,
|
2796 |
+
"eval_loss": 0.6085843443870544,
|
2797 |
+
"eval_runtime": 233.4151,
|
2798 |
+
"eval_samples_per_second": 24.454,
|
2799 |
+
"eval_steps_per_second": 3.059,
|
2800 |
+
"eval_wer": 0.33273648442427817,
|
2801 |
+
"step": 19600
|
2802 |
+
},
|
2803 |
+
{
|
2804 |
+
"epoch": 43.67,
|
2805 |
+
"learning_rate": 8.326415094339622e-05,
|
2806 |
+
"loss": 0.0408,
|
2807 |
+
"step": 19650
|
2808 |
+
},
|
2809 |
+
{
|
2810 |
+
"epoch": 43.78,
|
2811 |
+
"learning_rate": 8.269811320754716e-05,
|
2812 |
+
"loss": 0.0443,
|
2813 |
+
"step": 19700
|
2814 |
+
},
|
2815 |
+
{
|
2816 |
+
"epoch": 43.89,
|
2817 |
+
"learning_rate": 8.213207547169811e-05,
|
2818 |
+
"loss": 0.0464,
|
2819 |
+
"step": 19750
|
2820 |
+
},
|
2821 |
+
{
|
2822 |
+
"epoch": 44.0,
|
2823 |
+
"learning_rate": 8.156603773584906e-05,
|
2824 |
+
"loss": 0.0383,
|
2825 |
+
"step": 19800
|
2826 |
+
},
|
2827 |
+
{
|
2828 |
+
"epoch": 44.11,
|
2829 |
+
"learning_rate": 8.1e-05,
|
2830 |
+
"loss": 0.0447,
|
2831 |
+
"step": 19850
|
2832 |
+
},
|
2833 |
+
{
|
2834 |
+
"epoch": 44.22,
|
2835 |
+
"learning_rate": 8.043396226415094e-05,
|
2836 |
+
"loss": 0.0419,
|
2837 |
+
"step": 19900
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 44.33,
|
2841 |
+
"learning_rate": 7.986792452830188e-05,
|
2842 |
+
"loss": 0.0389,
|
2843 |
+
"step": 19950
|
2844 |
+
},
|
2845 |
+
{
|
2846 |
+
"epoch": 44.44,
|
2847 |
+
"learning_rate": 7.930188679245283e-05,
|
2848 |
+
"loss": 0.0403,
|
2849 |
+
"step": 20000
|
2850 |
+
},
|
2851 |
+
{
|
2852 |
+
"epoch": 44.44,
|
2853 |
+
"eval_loss": 0.6319227814674377,
|
2854 |
+
"eval_runtime": 233.7986,
|
2855 |
+
"eval_samples_per_second": 24.414,
|
2856 |
+
"eval_steps_per_second": 3.054,
|
2857 |
+
"eval_wer": 0.3353002217836287,
|
2858 |
+
"step": 20000
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 44.56,
|
2862 |
+
"learning_rate": 7.873584905660378e-05,
|
2863 |
+
"loss": 0.0397,
|
2864 |
+
"step": 20050
|
2865 |
+
},
|
2866 |
+
{
|
2867 |
+
"epoch": 44.67,
|
2868 |
+
"learning_rate": 7.816981132075472e-05,
|
2869 |
+
"loss": 0.0406,
|
2870 |
+
"step": 20100
|
2871 |
+
},
|
2872 |
+
{
|
2873 |
+
"epoch": 44.78,
|
2874 |
+
"learning_rate": 7.760377358490566e-05,
|
2875 |
+
"loss": 0.039,
|
2876 |
+
"step": 20150
|
2877 |
+
},
|
2878 |
+
{
|
2879 |
+
"epoch": 44.89,
|
2880 |
+
"learning_rate": 7.70377358490566e-05,
|
2881 |
+
"loss": 0.0388,
|
2882 |
+
"step": 20200
|
2883 |
+
},
|
2884 |
+
{
|
2885 |
+
"epoch": 45.0,
|
2886 |
+
"learning_rate": 7.647169811320755e-05,
|
2887 |
+
"loss": 0.0391,
|
2888 |
+
"step": 20250
|
2889 |
+
},
|
2890 |
+
{
|
2891 |
+
"epoch": 45.11,
|
2892 |
+
"learning_rate": 7.59056603773585e-05,
|
2893 |
+
"loss": 0.0343,
|
2894 |
+
"step": 20300
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 45.22,
|
2898 |
+
"learning_rate": 7.533962264150943e-05,
|
2899 |
+
"loss": 0.0381,
|
2900 |
+
"step": 20350
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 45.33,
|
2904 |
+
"learning_rate": 7.477358490566037e-05,
|
2905 |
+
"loss": 0.0391,
|
2906 |
+
"step": 20400
|
2907 |
+
},
|
2908 |
+
{
|
2909 |
+
"epoch": 45.33,
|
2910 |
+
"eval_loss": 0.6092292666435242,
|
2911 |
+
"eval_runtime": 234.709,
|
2912 |
+
"eval_samples_per_second": 24.319,
|
2913 |
+
"eval_steps_per_second": 3.042,
|
2914 |
+
"eval_wer": 0.337253545485991,
|
2915 |
+
"step": 20400
|
2916 |
+
},
|
2917 |
+
{
|
2918 |
+
"epoch": 45.44,
|
2919 |
+
"learning_rate": 7.420754716981131e-05,
|
2920 |
+
"loss": 0.0404,
|
2921 |
+
"step": 20450
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 45.56,
|
2925 |
+
"learning_rate": 7.364150943396225e-05,
|
2926 |
+
"loss": 0.0441,
|
2927 |
+
"step": 20500
|
2928 |
+
},
|
2929 |
+
{
|
2930 |
+
"epoch": 45.67,
|
2931 |
+
"learning_rate": 7.30754716981132e-05,
|
2932 |
+
"loss": 0.0374,
|
2933 |
+
"step": 20550
|
2934 |
+
},
|
2935 |
+
{
|
2936 |
+
"epoch": 45.78,
|
2937 |
+
"learning_rate": 7.250943396226415e-05,
|
2938 |
+
"loss": 0.0379,
|
2939 |
+
"step": 20600
|
2940 |
+
},
|
2941 |
+
{
|
2942 |
+
"epoch": 45.89,
|
2943 |
+
"learning_rate": 7.19433962264151e-05,
|
2944 |
+
"loss": 0.04,
|
2945 |
+
"step": 20650
|
2946 |
+
},
|
2947 |
+
{
|
2948 |
+
"epoch": 46.0,
|
2949 |
+
"learning_rate": 7.137735849056603e-05,
|
2950 |
+
"loss": 0.041,
|
2951 |
+
"step": 20700
|
2952 |
+
},
|
2953 |
+
{
|
2954 |
+
"epoch": 46.11,
|
2955 |
+
"learning_rate": 7.081132075471697e-05,
|
2956 |
+
"loss": 0.0367,
|
2957 |
+
"step": 20750
|
2958 |
+
},
|
2959 |
+
{
|
2960 |
+
"epoch": 46.22,
|
2961 |
+
"learning_rate": 7.024528301886792e-05,
|
2962 |
+
"loss": 0.0364,
|
2963 |
+
"step": 20800
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 46.22,
|
2967 |
+
"eval_loss": 0.6104596257209778,
|
2968 |
+
"eval_runtime": 238.3111,
|
2969 |
+
"eval_samples_per_second": 23.952,
|
2970 |
+
"eval_steps_per_second": 2.996,
|
2971 |
+
"eval_wer": 0.33383522900685697,
|
2972 |
+
"step": 20800
|
2973 |
+
},
|
2974 |
+
{
|
2975 |
+
"epoch": 46.33,
|
2976 |
+
"learning_rate": 6.967924528301887e-05,
|
2977 |
+
"loss": 0.0379,
|
2978 |
+
"step": 20850
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 46.44,
|
2982 |
+
"learning_rate": 6.91132075471698e-05,
|
2983 |
+
"loss": 0.0392,
|
2984 |
+
"step": 20900
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 46.56,
|
2988 |
+
"learning_rate": 6.854716981132075e-05,
|
2989 |
+
"loss": 0.0402,
|
2990 |
+
"step": 20950
|
2991 |
+
},
|
2992 |
+
{
|
2993 |
+
"epoch": 46.67,
|
2994 |
+
"learning_rate": 6.798113207547169e-05,
|
2995 |
+
"loss": 0.042,
|
2996 |
+
"step": 21000
|
2997 |
+
},
|
2998 |
+
{
|
2999 |
+
"epoch": 46.78,
|
3000 |
+
"learning_rate": 6.741509433962264e-05,
|
3001 |
+
"loss": 0.0366,
|
3002 |
+
"step": 21050
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 46.89,
|
3006 |
+
"learning_rate": 6.684905660377359e-05,
|
3007 |
+
"loss": 0.0377,
|
3008 |
+
"step": 21100
|
3009 |
+
},
|
3010 |
+
{
|
3011 |
+
"epoch": 47.0,
|
3012 |
+
"learning_rate": 6.628301886792452e-05,
|
3013 |
+
"loss": 0.0345,
|
3014 |
+
"step": 21150
|
3015 |
+
},
|
3016 |
+
{
|
3017 |
+
"epoch": 47.11,
|
3018 |
+
"learning_rate": 6.571698113207546e-05,
|
3019 |
+
"loss": 0.0408,
|
3020 |
+
"step": 21200
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 47.11,
|
3024 |
+
"eval_loss": 0.6161568760871887,
|
3025 |
+
"eval_runtime": 235.8491,
|
3026 |
+
"eval_samples_per_second": 24.202,
|
3027 |
+
"eval_steps_per_second": 3.027,
|
3028 |
+
"eval_wer": 0.3335910635440617,
|
3029 |
+
"step": 21200
|
3030 |
+
},
|
3031 |
+
{
|
3032 |
+
"epoch": 47.22,
|
3033 |
+
"learning_rate": 6.515094339622641e-05,
|
3034 |
+
"loss": 0.0377,
|
3035 |
+
"step": 21250
|
3036 |
+
},
|
3037 |
+
{
|
3038 |
+
"epoch": 47.33,
|
3039 |
+
"learning_rate": 6.459622641509433e-05,
|
3040 |
+
"loss": 0.0387,
|
3041 |
+
"step": 21300
|
3042 |
+
},
|
3043 |
+
{
|
3044 |
+
"epoch": 47.44,
|
3045 |
+
"learning_rate": 6.403018867924528e-05,
|
3046 |
+
"loss": 0.0349,
|
3047 |
+
"step": 21350
|
3048 |
+
},
|
3049 |
+
{
|
3050 |
+
"epoch": 47.56,
|
3051 |
+
"learning_rate": 6.346415094339622e-05,
|
3052 |
+
"loss": 0.0398,
|
3053 |
+
"step": 21400
|
3054 |
+
},
|
3055 |
+
{
|
3056 |
+
"epoch": 47.67,
|
3057 |
+
"learning_rate": 6.289811320754717e-05,
|
3058 |
+
"loss": 0.036,
|
3059 |
+
"step": 21450
|
3060 |
+
},
|
3061 |
+
{
|
3062 |
+
"epoch": 47.78,
|
3063 |
+
"learning_rate": 6.233207547169812e-05,
|
3064 |
+
"loss": 0.0359,
|
3065 |
+
"step": 21500
|
3066 |
+
},
|
3067 |
+
{
|
3068 |
+
"epoch": 47.89,
|
3069 |
+
"learning_rate": 6.176603773584905e-05,
|
3070 |
+
"loss": 0.0363,
|
3071 |
+
"step": 21550
|
3072 |
+
},
|
3073 |
+
{
|
3074 |
+
"epoch": 48.0,
|
3075 |
+
"learning_rate": 6.12e-05,
|
3076 |
+
"loss": 0.0347,
|
3077 |
+
"step": 21600
|
3078 |
+
},
|
3079 |
+
{
|
3080 |
+
"epoch": 48.0,
|
3081 |
+
"eval_loss": 0.5747588276863098,
|
3082 |
+
"eval_runtime": 234.422,
|
3083 |
+
"eval_samples_per_second": 24.349,
|
3084 |
+
"eval_steps_per_second": 3.046,
|
3085 |
+
"eval_wer": 0.32937920931084297,
|
3086 |
+
"step": 21600
|
3087 |
+
},
|
3088 |
+
{
|
3089 |
+
"epoch": 48.11,
|
3090 |
+
"learning_rate": 6.0633962264150937e-05,
|
3091 |
+
"loss": 0.0357,
|
3092 |
+
"step": 21650
|
3093 |
+
},
|
3094 |
+
{
|
3095 |
+
"epoch": 48.22,
|
3096 |
+
"learning_rate": 6.0067924528301876e-05,
|
3097 |
+
"loss": 0.036,
|
3098 |
+
"step": 21700
|
3099 |
+
},
|
3100 |
+
{
|
3101 |
+
"epoch": 48.33,
|
3102 |
+
"learning_rate": 5.950188679245282e-05,
|
3103 |
+
"loss": 0.0362,
|
3104 |
+
"step": 21750
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 48.44,
|
3108 |
+
"learning_rate": 5.893584905660376e-05,
|
3109 |
+
"loss": 0.0313,
|
3110 |
+
"step": 21800
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 48.56,
|
3114 |
+
"learning_rate": 5.836981132075471e-05,
|
3115 |
+
"loss": 0.0365,
|
3116 |
+
"step": 21850
|
3117 |
+
},
|
3118 |
+
{
|
3119 |
+
"epoch": 48.67,
|
3120 |
+
"learning_rate": 5.780377358490565e-05,
|
3121 |
+
"loss": 0.0326,
|
3122 |
+
"step": 21900
|
3123 |
+
},
|
3124 |
+
{
|
3125 |
+
"epoch": 48.78,
|
3126 |
+
"learning_rate": 5.7237735849056595e-05,
|
3127 |
+
"loss": 0.0339,
|
3128 |
+
"step": 21950
|
3129 |
+
},
|
3130 |
+
{
|
3131 |
+
"epoch": 48.89,
|
3132 |
+
"learning_rate": 5.667169811320754e-05,
|
3133 |
+
"loss": 0.0372,
|
3134 |
+
"step": 22000
|
3135 |
+
},
|
3136 |
+
{
|
3137 |
+
"epoch": 48.89,
|
3138 |
+
"eval_loss": 0.5893652439117432,
|
3139 |
+
"eval_runtime": 233.9923,
|
3140 |
+
"eval_samples_per_second": 24.394,
|
3141 |
+
"eval_steps_per_second": 3.051,
|
3142 |
+
"eval_wer": 0.3295826805298391,
|
3143 |
+
"step": 22000
|
3144 |
+
},
|
3145 |
+
{
|
3146 |
+
"epoch": 49.0,
|
3147 |
+
"learning_rate": 5.610566037735848e-05,
|
3148 |
+
"loss": 0.0346,
|
3149 |
+
"step": 22050
|
3150 |
+
},
|
3151 |
+
{
|
3152 |
+
"epoch": 49.11,
|
3153 |
+
"learning_rate": 5.553962264150943e-05,
|
3154 |
+
"loss": 0.0356,
|
3155 |
+
"step": 22100
|
3156 |
+
},
|
3157 |
+
{
|
3158 |
+
"epoch": 49.22,
|
3159 |
+
"learning_rate": 5.497358490566037e-05,
|
3160 |
+
"loss": 0.0371,
|
3161 |
+
"step": 22150
|
3162 |
+
},
|
3163 |
+
{
|
3164 |
+
"epoch": 49.33,
|
3165 |
+
"learning_rate": 5.4407547169811314e-05,
|
3166 |
+
"loss": 0.0342,
|
3167 |
+
"step": 22200
|
3168 |
+
},
|
3169 |
+
{
|
3170 |
+
"epoch": 49.44,
|
3171 |
+
"learning_rate": 5.3841509433962254e-05,
|
3172 |
+
"loss": 0.0323,
|
3173 |
+
"step": 22250
|
3174 |
+
},
|
3175 |
+
{
|
3176 |
+
"epoch": 49.56,
|
3177 |
+
"learning_rate": 5.32754716981132e-05,
|
3178 |
+
"loss": 0.0326,
|
3179 |
+
"step": 22300
|
3180 |
+
},
|
3181 |
+
{
|
3182 |
+
"epoch": 49.67,
|
3183 |
+
"learning_rate": 5.270943396226415e-05,
|
3184 |
+
"loss": 0.0349,
|
3185 |
+
"step": 22350
|
3186 |
+
},
|
3187 |
+
{
|
3188 |
+
"epoch": 49.78,
|
3189 |
+
"learning_rate": 5.214339622641509e-05,
|
3190 |
+
"loss": 0.0378,
|
3191 |
+
"step": 22400
|
3192 |
+
},
|
3193 |
+
{
|
3194 |
+
"epoch": 49.78,
|
3195 |
+
"eval_loss": 0.6031844019889832,
|
3196 |
+
"eval_runtime": 234.1475,
|
3197 |
+
"eval_samples_per_second": 24.378,
|
3198 |
+
"eval_steps_per_second": 3.049,
|
3199 |
+
"eval_wer": 0.33098663194091194,
|
3200 |
+
"step": 22400
|
3201 |
+
},
|
3202 |
+
{
|
3203 |
+
"epoch": 49.89,
|
3204 |
+
"learning_rate": 5.157735849056603e-05,
|
3205 |
+
"loss": 0.03,
|
3206 |
+
"step": 22450
|
3207 |
+
},
|
3208 |
+
{
|
3209 |
+
"epoch": 50.0,
|
3210 |
+
"learning_rate": 5.101132075471697e-05,
|
3211 |
+
"loss": 0.0345,
|
3212 |
+
"step": 22500
|
3213 |
+
},
|
3214 |
+
{
|
3215 |
+
"epoch": 50.11,
|
3216 |
+
"learning_rate": 5.044528301886792e-05,
|
3217 |
+
"loss": 0.0358,
|
3218 |
+
"step": 22550
|
3219 |
+
},
|
3220 |
+
{
|
3221 |
+
"epoch": 50.22,
|
3222 |
+
"learning_rate": 4.987924528301886e-05,
|
3223 |
+
"loss": 0.0345,
|
3224 |
+
"step": 22600
|
3225 |
+
},
|
3226 |
+
{
|
3227 |
+
"epoch": 50.33,
|
3228 |
+
"learning_rate": 4.9313207547169806e-05,
|
3229 |
+
"loss": 0.035,
|
3230 |
+
"step": 22650
|
3231 |
+
},
|
3232 |
+
{
|
3233 |
+
"epoch": 50.44,
|
3234 |
+
"learning_rate": 4.874716981132075e-05,
|
3235 |
+
"loss": 0.0331,
|
3236 |
+
"step": 22700
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 50.56,
|
3240 |
+
"learning_rate": 4.818113207547169e-05,
|
3241 |
+
"loss": 0.0339,
|
3242 |
+
"step": 22750
|
3243 |
+
},
|
3244 |
+
{
|
3245 |
+
"epoch": 50.67,
|
3246 |
+
"learning_rate": 4.761509433962264e-05,
|
3247 |
+
"loss": 0.0371,
|
3248 |
+
"step": 22800
|
3249 |
+
},
|
3250 |
+
{
|
3251 |
+
"epoch": 50.67,
|
3252 |
+
"eval_loss": 0.5830812454223633,
|
3253 |
+
"eval_runtime": 238.3507,
|
3254 |
+
"eval_samples_per_second": 23.948,
|
3255 |
+
"eval_steps_per_second": 2.996,
|
3256 |
+
"eval_wer": 0.3274665798522799,
|
3257 |
+
"step": 22800
|
3258 |
+
},
|
3259 |
+
{
|
3260 |
+
"epoch": 50.78,
|
3261 |
+
"learning_rate": 4.704905660377358e-05,
|
3262 |
+
"loss": 0.0345,
|
3263 |
+
"step": 22850
|
3264 |
+
},
|
3265 |
+
{
|
3266 |
+
"epoch": 50.89,
|
3267 |
+
"learning_rate": 4.6483018867924525e-05,
|
3268 |
+
"loss": 0.0325,
|
3269 |
+
"step": 22900
|
3270 |
+
},
|
3271 |
+
{
|
3272 |
+
"epoch": 51.0,
|
3273 |
+
"learning_rate": 4.5916981132075465e-05,
|
3274 |
+
"loss": 0.0387,
|
3275 |
+
"step": 22950
|
3276 |
+
},
|
3277 |
+
{
|
3278 |
+
"epoch": 51.11,
|
3279 |
+
"learning_rate": 4.535094339622641e-05,
|
3280 |
+
"loss": 0.0367,
|
3281 |
+
"step": 23000
|
3282 |
+
},
|
3283 |
+
{
|
3284 |
+
"epoch": 51.22,
|
3285 |
+
"learning_rate": 4.478490566037736e-05,
|
3286 |
+
"loss": 0.0317,
|
3287 |
+
"step": 23050
|
3288 |
+
},
|
3289 |
+
{
|
3290 |
+
"epoch": 51.33,
|
3291 |
+
"learning_rate": 4.42188679245283e-05,
|
3292 |
+
"loss": 0.0349,
|
3293 |
+
"step": 23100
|
3294 |
+
},
|
3295 |
+
{
|
3296 |
+
"epoch": 51.44,
|
3297 |
+
"learning_rate": 4.3652830188679244e-05,
|
3298 |
+
"loss": 0.0322,
|
3299 |
+
"step": 23150
|
3300 |
+
},
|
3301 |
+
{
|
3302 |
+
"epoch": 51.56,
|
3303 |
+
"learning_rate": 4.3086792452830184e-05,
|
3304 |
+
"loss": 0.0323,
|
3305 |
+
"step": 23200
|
3306 |
+
},
|
3307 |
+
{
|
3308 |
+
"epoch": 51.56,
|
3309 |
+
"eval_loss": 0.5856512784957886,
|
3310 |
+
"eval_runtime": 235.7185,
|
3311 |
+
"eval_samples_per_second": 24.215,
|
3312 |
+
"eval_steps_per_second": 3.029,
|
3313 |
+
"eval_wer": 0.3265713064886972,
|
3314 |
+
"step": 23200
|
3315 |
+
},
|
3316 |
+
{
|
3317 |
+
"epoch": 51.67,
|
3318 |
+
"learning_rate": 4.252075471698113e-05,
|
3319 |
+
"loss": 0.0329,
|
3320 |
+
"step": 23250
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 51.78,
|
3324 |
+
"learning_rate": 4.195471698113207e-05,
|
3325 |
+
"loss": 0.0348,
|
3326 |
+
"step": 23300
|
3327 |
+
},
|
3328 |
+
{
|
3329 |
+
"epoch": 51.89,
|
3330 |
+
"learning_rate": 4.1388679245283016e-05,
|
3331 |
+
"loss": 0.0324,
|
3332 |
+
"step": 23350
|
3333 |
+
},
|
3334 |
+
{
|
3335 |
+
"epoch": 52.0,
|
3336 |
+
"learning_rate": 4.0822641509433956e-05,
|
3337 |
+
"loss": 0.0311,
|
3338 |
+
"step": 23400
|
3339 |
+
},
|
3340 |
+
{
|
3341 |
+
"epoch": 52.11,
|
3342 |
+
"learning_rate": 4.02566037735849e-05,
|
3343 |
+
"loss": 0.031,
|
3344 |
+
"step": 23450
|
3345 |
+
},
|
3346 |
+
{
|
3347 |
+
"epoch": 52.22,
|
3348 |
+
"learning_rate": 3.969056603773585e-05,
|
3349 |
+
"loss": 0.0329,
|
3350 |
+
"step": 23500
|
3351 |
+
},
|
3352 |
+
{
|
3353 |
+
"epoch": 52.33,
|
3354 |
+
"learning_rate": 3.912452830188679e-05,
|
3355 |
+
"loss": 0.031,
|
3356 |
+
"step": 23550
|
3357 |
+
},
|
3358 |
+
{
|
3359 |
+
"epoch": 52.44,
|
3360 |
+
"learning_rate": 3.8558490566037735e-05,
|
3361 |
+
"loss": 0.0313,
|
3362 |
+
"step": 23600
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 52.44,
|
3366 |
+
"eval_loss": 0.591876745223999,
|
3367 |
+
"eval_runtime": 234.2309,
|
3368 |
+
"eval_samples_per_second": 24.369,
|
3369 |
+
"eval_steps_per_second": 3.048,
|
3370 |
+
"eval_wer": 0.3222170224021812,
|
3371 |
+
"step": 23600
|
3372 |
+
},
|
3373 |
+
{
|
3374 |
+
"epoch": 52.56,
|
3375 |
+
"learning_rate": 3.7992452830188675e-05,
|
3376 |
+
"loss": 0.0326,
|
3377 |
+
"step": 23650
|
3378 |
+
},
|
3379 |
+
{
|
3380 |
+
"epoch": 52.67,
|
3381 |
+
"learning_rate": 3.742641509433962e-05,
|
3382 |
+
"loss": 0.0277,
|
3383 |
+
"step": 23700
|
3384 |
+
},
|
3385 |
+
{
|
3386 |
+
"epoch": 52.78,
|
3387 |
+
"learning_rate": 3.686037735849056e-05,
|
3388 |
+
"loss": 0.0316,
|
3389 |
+
"step": 23750
|
3390 |
+
},
|
3391 |
+
{
|
3392 |
+
"epoch": 52.89,
|
3393 |
+
"learning_rate": 3.629433962264151e-05,
|
3394 |
+
"loss": 0.0309,
|
3395 |
+
"step": 23800
|
3396 |
+
},
|
3397 |
+
{
|
3398 |
+
"epoch": 53.0,
|
3399 |
+
"learning_rate": 3.5728301886792454e-05,
|
3400 |
+
"loss": 0.032,
|
3401 |
+
"step": 23850
|
3402 |
+
},
|
3403 |
+
{
|
3404 |
+
"epoch": 53.11,
|
3405 |
+
"learning_rate": 3.5162264150943394e-05,
|
3406 |
+
"loss": 0.0289,
|
3407 |
+
"step": 23900
|
3408 |
+
},
|
3409 |
+
{
|
3410 |
+
"epoch": 53.22,
|
3411 |
+
"learning_rate": 3.459622641509434e-05,
|
3412 |
+
"loss": 0.0284,
|
3413 |
+
"step": 23950
|
3414 |
+
},
|
3415 |
+
{
|
3416 |
+
"epoch": 53.33,
|
3417 |
+
"learning_rate": 3.403018867924528e-05,
|
3418 |
+
"loss": 0.0309,
|
3419 |
+
"step": 24000
|
3420 |
+
},
|
3421 |
+
{
|
3422 |
+
"epoch": 53.33,
|
3423 |
+
"eval_loss": 0.5990718007087708,
|
3424 |
+
"eval_runtime": 234.3903,
|
3425 |
+
"eval_samples_per_second": 24.353,
|
3426 |
+
"eval_steps_per_second": 3.046,
|
3427 |
+
"eval_wer": 0.32537082629662034,
|
3428 |
+
"step": 24000
|
3429 |
+
},
|
3430 |
+
{
|
3431 |
+
"epoch": 53.44,
|
3432 |
+
"learning_rate": 3.346415094339622e-05,
|
3433 |
+
"loss": 0.0284,
|
3434 |
+
"step": 24050
|
3435 |
+
},
|
3436 |
+
{
|
3437 |
+
"epoch": 53.56,
|
3438 |
+
"learning_rate": 3.289811320754717e-05,
|
3439 |
+
"loss": 0.0299,
|
3440 |
+
"step": 24100
|
3441 |
+
},
|
3442 |
+
{
|
3443 |
+
"epoch": 53.67,
|
3444 |
+
"learning_rate": 3.2332075471698106e-05,
|
3445 |
+
"loss": 0.0315,
|
3446 |
+
"step": 24150
|
3447 |
+
},
|
3448 |
+
{
|
3449 |
+
"epoch": 53.78,
|
3450 |
+
"learning_rate": 3.176603773584905e-05,
|
3451 |
+
"loss": 0.0323,
|
3452 |
+
"step": 24200
|
3453 |
+
},
|
3454 |
+
{
|
3455 |
+
"epoch": 53.89,
|
3456 |
+
"learning_rate": 3.119999999999999e-05,
|
3457 |
+
"loss": 0.0319,
|
3458 |
+
"step": 24250
|
3459 |
+
},
|
3460 |
+
{
|
3461 |
+
"epoch": 54.0,
|
3462 |
+
"learning_rate": 3.063396226415094e-05,
|
3463 |
+
"loss": 0.0301,
|
3464 |
+
"step": 24300
|
3465 |
+
},
|
3466 |
+
{
|
3467 |
+
"epoch": 54.11,
|
3468 |
+
"learning_rate": 3.0067924528301882e-05,
|
3469 |
+
"loss": 0.0297,
|
3470 |
+
"step": 24350
|
3471 |
+
},
|
3472 |
+
{
|
3473 |
+
"epoch": 54.22,
|
3474 |
+
"learning_rate": 2.9501886792452825e-05,
|
3475 |
+
"loss": 0.0322,
|
3476 |
+
"step": 24400
|
3477 |
+
},
|
3478 |
+
{
|
3479 |
+
"epoch": 54.22,
|
3480 |
+
"eval_loss": 0.6152312755584717,
|
3481 |
+
"eval_runtime": 234.7575,
|
3482 |
+
"eval_samples_per_second": 24.314,
|
3483 |
+
"eval_steps_per_second": 3.041,
|
3484 |
+
"eval_wer": 0.3252894378090219,
|
3485 |
+
"step": 24400
|
3486 |
+
},
|
3487 |
+
{
|
3488 |
+
"epoch": 54.33,
|
3489 |
+
"learning_rate": 2.893584905660377e-05,
|
3490 |
+
"loss": 0.0283,
|
3491 |
+
"step": 24450
|
3492 |
+
},
|
3493 |
+
{
|
3494 |
+
"epoch": 54.44,
|
3495 |
+
"learning_rate": 2.8369811320754715e-05,
|
3496 |
+
"loss": 0.0322,
|
3497 |
+
"step": 24500
|
3498 |
+
},
|
3499 |
+
{
|
3500 |
+
"epoch": 54.56,
|
3501 |
+
"learning_rate": 2.7803773584905658e-05,
|
3502 |
+
"loss": 0.0297,
|
3503 |
+
"step": 24550
|
3504 |
+
},
|
3505 |
+
{
|
3506 |
+
"epoch": 54.67,
|
3507 |
+
"learning_rate": 2.72377358490566e-05,
|
3508 |
+
"loss": 0.0291,
|
3509 |
+
"step": 24600
|
3510 |
+
},
|
3511 |
+
{
|
3512 |
+
"epoch": 54.78,
|
3513 |
+
"learning_rate": 2.6671698113207544e-05,
|
3514 |
+
"loss": 0.0323,
|
3515 |
+
"step": 24650
|
3516 |
+
},
|
3517 |
+
{
|
3518 |
+
"epoch": 54.89,
|
3519 |
+
"learning_rate": 2.6105660377358488e-05,
|
3520 |
+
"loss": 0.0305,
|
3521 |
+
"step": 24700
|
3522 |
+
},
|
3523 |
+
{
|
3524 |
+
"epoch": 55.0,
|
3525 |
+
"learning_rate": 2.553962264150943e-05,
|
3526 |
+
"loss": 0.0268,
|
3527 |
+
"step": 24750
|
3528 |
+
},
|
3529 |
+
{
|
3530 |
+
"epoch": 55.11,
|
3531 |
+
"learning_rate": 2.4973584905660374e-05,
|
3532 |
+
"loss": 0.0304,
|
3533 |
+
"step": 24800
|
3534 |
+
},
|
3535 |
+
{
|
3536 |
+
"epoch": 55.11,
|
3537 |
+
"eval_loss": 0.603844404220581,
|
3538 |
+
"eval_runtime": 234.1113,
|
3539 |
+
"eval_samples_per_second": 24.382,
|
3540 |
+
"eval_steps_per_second": 3.05,
|
3541 |
+
"eval_wer": 0.3228681303029686,
|
3542 |
+
"step": 24800
|
3543 |
+
},
|
3544 |
+
{
|
3545 |
+
"epoch": 55.22,
|
3546 |
+
"learning_rate": 2.440754716981132e-05,
|
3547 |
+
"loss": 0.0276,
|
3548 |
+
"step": 24850
|
3549 |
+
},
|
3550 |
+
{
|
3551 |
+
"epoch": 55.33,
|
3552 |
+
"learning_rate": 2.3841509433962263e-05,
|
3553 |
+
"loss": 0.0266,
|
3554 |
+
"step": 24900
|
3555 |
+
},
|
3556 |
+
{
|
3557 |
+
"epoch": 55.44,
|
3558 |
+
"learning_rate": 2.3275471698113207e-05,
|
3559 |
+
"loss": 0.0292,
|
3560 |
+
"step": 24950
|
3561 |
+
},
|
3562 |
+
{
|
3563 |
+
"epoch": 55.56,
|
3564 |
+
"learning_rate": 2.270943396226415e-05,
|
3565 |
+
"loss": 0.0316,
|
3566 |
+
"step": 25000
|
3567 |
+
},
|
3568 |
+
{
|
3569 |
+
"epoch": 55.67,
|
3570 |
+
"learning_rate": 2.2143396226415093e-05,
|
3571 |
+
"loss": 0.0288,
|
3572 |
+
"step": 25050
|
3573 |
+
},
|
3574 |
+
{
|
3575 |
+
"epoch": 55.78,
|
3576 |
+
"learning_rate": 2.1577358490566036e-05,
|
3577 |
+
"loss": 0.0293,
|
3578 |
+
"step": 25100
|
3579 |
+
},
|
3580 |
+
{
|
3581 |
+
"epoch": 55.89,
|
3582 |
+
"learning_rate": 2.101132075471698e-05,
|
3583 |
+
"loss": 0.0302,
|
3584 |
+
"step": 25150
|
3585 |
+
},
|
3586 |
+
{
|
3587 |
+
"epoch": 56.0,
|
3588 |
+
"learning_rate": 2.0456603773584902e-05,
|
3589 |
+
"loss": 0.0288,
|
3590 |
+
"step": 25200
|
3591 |
+
},
|
3592 |
+
{
|
3593 |
+
"epoch": 56.0,
|
3594 |
+
"eval_loss": 0.5989021062850952,
|
3595 |
+
"eval_runtime": 235.0378,
|
3596 |
+
"eval_samples_per_second": 24.285,
|
3597 |
+
"eval_steps_per_second": 3.038,
|
3598 |
+
"eval_wer": 0.32227806376788004,
|
3599 |
+
"step": 25200
|
3600 |
+
},
|
3601 |
+
{
|
3602 |
+
"epoch": 56.11,
|
3603 |
+
"learning_rate": 1.9890566037735846e-05,
|
3604 |
+
"loss": 0.0309,
|
3605 |
+
"step": 25250
|
3606 |
+
},
|
3607 |
+
{
|
3608 |
+
"epoch": 56.22,
|
3609 |
+
"learning_rate": 1.9324528301886792e-05,
|
3610 |
+
"loss": 0.0277,
|
3611 |
+
"step": 25300
|
3612 |
+
},
|
3613 |
+
{
|
3614 |
+
"epoch": 56.33,
|
3615 |
+
"learning_rate": 1.8758490566037735e-05,
|
3616 |
+
"loss": 0.031,
|
3617 |
+
"step": 25350
|
3618 |
+
},
|
3619 |
+
{
|
3620 |
+
"epoch": 56.44,
|
3621 |
+
"learning_rate": 1.819245283018868e-05,
|
3622 |
+
"loss": 0.0276,
|
3623 |
+
"step": 25400
|
3624 |
+
},
|
3625 |
+
{
|
3626 |
+
"epoch": 56.56,
|
3627 |
+
"learning_rate": 1.762641509433962e-05,
|
3628 |
+
"loss": 0.0273,
|
3629 |
+
"step": 25450
|
3630 |
+
},
|
3631 |
+
{
|
3632 |
+
"epoch": 56.67,
|
3633 |
+
"learning_rate": 1.7060377358490565e-05,
|
3634 |
+
"loss": 0.028,
|
3635 |
+
"step": 25500
|
3636 |
+
},
|
3637 |
+
{
|
3638 |
+
"epoch": 56.78,
|
3639 |
+
"learning_rate": 1.6494339622641508e-05,
|
3640 |
+
"loss": 0.0287,
|
3641 |
+
"step": 25550
|
3642 |
+
},
|
3643 |
+
{
|
3644 |
+
"epoch": 56.89,
|
3645 |
+
"learning_rate": 1.592830188679245e-05,
|
3646 |
+
"loss": 0.0307,
|
3647 |
+
"step": 25600
|
3648 |
+
},
|
3649 |
+
{
|
3650 |
+
"epoch": 56.89,
|
3651 |
+
"eval_loss": 0.5922682285308838,
|
3652 |
+
"eval_runtime": 236.4109,
|
3653 |
+
"eval_samples_per_second": 24.144,
|
3654 |
+
"eval_steps_per_second": 3.02,
|
3655 |
+
"eval_wer": 0.32016196309032086,
|
3656 |
+
"step": 25600
|
3657 |
+
},
|
3658 |
+
{
|
3659 |
+
"epoch": 57.0,
|
3660 |
+
"learning_rate": 1.5362264150943397e-05,
|
3661 |
+
"loss": 0.027,
|
3662 |
+
"step": 25650
|
3663 |
+
},
|
3664 |
+
{
|
3665 |
+
"epoch": 57.11,
|
3666 |
+
"learning_rate": 1.4796226415094337e-05,
|
3667 |
+
"loss": 0.0277,
|
3668 |
+
"step": 25700
|
3669 |
+
},
|
3670 |
+
{
|
3671 |
+
"epoch": 57.22,
|
3672 |
+
"learning_rate": 1.423018867924528e-05,
|
3673 |
+
"loss": 0.0265,
|
3674 |
+
"step": 25750
|
3675 |
+
},
|
3676 |
+
{
|
3677 |
+
"epoch": 57.33,
|
3678 |
+
"learning_rate": 1.3664150943396225e-05,
|
3679 |
+
"loss": 0.0266,
|
3680 |
+
"step": 25800
|
3681 |
+
},
|
3682 |
+
{
|
3683 |
+
"epoch": 57.44,
|
3684 |
+
"learning_rate": 1.3098113207547168e-05,
|
3685 |
+
"loss": 0.0277,
|
3686 |
+
"step": 25850
|
3687 |
+
},
|
3688 |
+
{
|
3689 |
+
"epoch": 57.56,
|
3690 |
+
"learning_rate": 1.2532075471698111e-05,
|
3691 |
+
"loss": 0.0246,
|
3692 |
+
"step": 25900
|
3693 |
+
},
|
3694 |
+
{
|
3695 |
+
"epoch": 57.67,
|
3696 |
+
"learning_rate": 1.1966037735849054e-05,
|
3697 |
+
"loss": 0.0278,
|
3698 |
+
"step": 25950
|
3699 |
+
},
|
3700 |
+
{
|
3701 |
+
"epoch": 57.78,
|
3702 |
+
"learning_rate": 1.14e-05,
|
3703 |
+
"loss": 0.0258,
|
3704 |
+
"step": 26000
|
3705 |
+
},
|
3706 |
+
{
|
3707 |
+
"epoch": 57.78,
|
3708 |
+
"eval_loss": 0.6004139184951782,
|
3709 |
+
"eval_runtime": 234.8842,
|
3710 |
+
"eval_samples_per_second": 24.301,
|
3711 |
+
"eval_steps_per_second": 3.04,
|
3712 |
+
"eval_wer": 0.31922599548293895,
|
3713 |
+
"step": 26000
|
3714 |
+
},
|
3715 |
+
{
|
3716 |
+
"epoch": 57.89,
|
3717 |
+
"learning_rate": 1.0833962264150942e-05,
|
3718 |
+
"loss": 0.0252,
|
3719 |
+
"step": 26050
|
3720 |
+
},
|
3721 |
+
{
|
3722 |
+
"epoch": 58.0,
|
3723 |
+
"learning_rate": 1.0267924528301886e-05,
|
3724 |
+
"loss": 0.027,
|
3725 |
+
"step": 26100
|
3726 |
+
},
|
3727 |
+
{
|
3728 |
+
"epoch": 58.11,
|
3729 |
+
"learning_rate": 9.701886792452829e-06,
|
3730 |
+
"loss": 0.0277,
|
3731 |
+
"step": 26150
|
3732 |
+
},
|
3733 |
+
{
|
3734 |
+
"epoch": 58.22,
|
3735 |
+
"learning_rate": 9.135849056603773e-06,
|
3736 |
+
"loss": 0.0237,
|
3737 |
+
"step": 26200
|
3738 |
+
},
|
3739 |
+
{
|
3740 |
+
"epoch": 58.33,
|
3741 |
+
"learning_rate": 8.569811320754717e-06,
|
3742 |
+
"loss": 0.0232,
|
3743 |
+
"step": 26250
|
3744 |
+
},
|
3745 |
+
{
|
3746 |
+
"epoch": 58.44,
|
3747 |
+
"learning_rate": 8.00377358490566e-06,
|
3748 |
+
"loss": 0.028,
|
3749 |
+
"step": 26300
|
3750 |
+
},
|
3751 |
+
{
|
3752 |
+
"epoch": 58.56,
|
3753 |
+
"learning_rate": 7.437735849056603e-06,
|
3754 |
+
"loss": 0.0293,
|
3755 |
+
"step": 26350
|
3756 |
+
},
|
3757 |
+
{
|
3758 |
+
"epoch": 58.67,
|
3759 |
+
"learning_rate": 6.871698113207546e-06,
|
3760 |
+
"loss": 0.0261,
|
3761 |
+
"step": 26400
|
3762 |
+
},
|
3763 |
+
{
|
3764 |
+
"epoch": 58.67,
|
3765 |
+
"eval_loss": 0.5958569049835205,
|
3766 |
+
"eval_runtime": 234.8641,
|
3767 |
+
"eval_samples_per_second": 24.303,
|
3768 |
+
"eval_steps_per_second": 3.04,
|
3769 |
+
"eval_wer": 0.3189004415325452,
|
3770 |
+
"step": 26400
|
3771 |
+
},
|
3772 |
+
{
|
3773 |
+
"epoch": 58.78,
|
3774 |
+
"learning_rate": 6.30566037735849e-06,
|
3775 |
+
"loss": 0.0293,
|
3776 |
+
"step": 26450
|
3777 |
+
},
|
3778 |
+
{
|
3779 |
+
"epoch": 58.89,
|
3780 |
+
"learning_rate": 5.739622641509433e-06,
|
3781 |
+
"loss": 0.0278,
|
3782 |
+
"step": 26500
|
3783 |
+
},
|
3784 |
+
{
|
3785 |
+
"epoch": 59.0,
|
3786 |
+
"learning_rate": 5.173584905660377e-06,
|
3787 |
+
"loss": 0.0262,
|
3788 |
+
"step": 26550
|
3789 |
+
},
|
3790 |
+
{
|
3791 |
+
"epoch": 59.11,
|
3792 |
+
"learning_rate": 4.60754716981132e-06,
|
3793 |
+
"loss": 0.025,
|
3794 |
+
"step": 26600
|
3795 |
+
},
|
3796 |
+
{
|
3797 |
+
"epoch": 59.22,
|
3798 |
+
"learning_rate": 4.041509433962263e-06,
|
3799 |
+
"loss": 0.0286,
|
3800 |
+
"step": 26650
|
3801 |
+
},
|
3802 |
+
{
|
3803 |
+
"epoch": 59.33,
|
3804 |
+
"learning_rate": 3.4754716981132073e-06,
|
3805 |
+
"loss": 0.0295,
|
3806 |
+
"step": 26700
|
3807 |
+
},
|
3808 |
+
{
|
3809 |
+
"epoch": 59.44,
|
3810 |
+
"learning_rate": 2.909433962264151e-06,
|
3811 |
+
"loss": 0.0249,
|
3812 |
+
"step": 26750
|
3813 |
+
},
|
3814 |
+
{
|
3815 |
+
"epoch": 59.56,
|
3816 |
+
"learning_rate": 2.343396226415094e-06,
|
3817 |
+
"loss": 0.0277,
|
3818 |
+
"step": 26800
|
3819 |
+
},
|
3820 |
+
{
|
3821 |
+
"epoch": 59.56,
|
3822 |
+
"eval_loss": 0.593723475933075,
|
3823 |
+
"eval_runtime": 234.2801,
|
3824 |
+
"eval_samples_per_second": 24.364,
|
3825 |
+
"eval_steps_per_second": 3.048,
|
3826 |
+
"eval_wer": 0.318188292266059,
|
3827 |
+
"step": 26800
|
3828 |
+
}
|
3829 |
+
],
|
3830 |
+
"max_steps": 27000,
|
3831 |
+
"num_train_epochs": 60,
|
3832 |
+
"total_flos": 1.1861566534187504e+20,
|
3833 |
+
"trial_name": null,
|
3834 |
+
"trial_params": null
|
3835 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dafdf73917d65f6586d3cb1852d033f8740cd2b08fb2897a59ae4a845add7384
|
3 |
+
size 2927
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"e": 0, "n": 1, "a": 2, "i": 3, "t": 4, "o": 5, "d": 6, "r": 7, " ": 8, "l": 9, "s": 10, "h": 11, "g": 12, "m": 13, "k": 14, "v": 15, "j": 16, "w": 17, "z": 18, "u": 19, "b": 20, "c": 21, "p": 22, "f": 23, "y": 24, "é": 25, "'": 26, "x": 27, "ë": 28, "q": 29, "-": 30, "ê": 31, "à": 32, "ä": 33, "è": 34, "ï": 35, "â": 36, "û": 37, "ö": 38, "ô": 39, "ü": 40, "î": 41, "ç": 42, "æ": 43, "ù": 44, "œ": 45, "<unk>": 46, "<pad>": 47}
|