Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.37 +/- 0.85
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:817938269b6fcf884ebd306e7ba29a12a1debee91c1f807877b47717df7bc40e
|
3 |
+
size 108046
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f39ff8769d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f39ff8794c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1681467120583282341,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAavPMPsgd5Tzz8fY+avPMPsgd5Tzz8fY+avPMPsgd5Tzz8fY+avPMPsgd5Tzz8fY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhvKXP2xK0T1+qBE+337Xv2jeZz+Sgv087QjZPrfYnT6urzk/zLfmPP6bg78Q6fO+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABq88w+yB3lPPPx9j6Aiow73DerOr/r5btq88w+yB3lPPPx9j6Aiow73DerOr/r5btq88w+yB3lPPPx9j6Aiow73DerOr/r5btq88w+yB3lPPPx9j6Aiow73DerOr/r5buUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.4002946 0.0279683 0.48231468]\n [0.4002946 0.0279683 0.48231468]\n [0.4002946 0.0279683 0.48231468]\n [0.4002946 0.0279683 0.48231468]]",
|
38 |
+
"desired_goal": "[[ 1.1870887 0.10219273 0.14224431]\n [-1.6835593 0.9057374 0.03094605]\n [ 0.42389622 0.30829403 0.7253369 ]\n [ 0.02816381 -1.028198 -0.4763875 ]]",
|
39 |
+
"observation": "[[ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]\n [ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]\n [ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]\n [ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3nxDPbvl7r0xTH0904ndvZKwSj3ekmU+vA6nPZ4ba7st2KU9AcaqPWXyN70mCIw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.0477265 -0.11664911 0.06184024]\n [-0.10817304 0.0494848 0.22419307]\n [ 0.08157107 -0.00358746 0.08097873]\n [ 0.08338547 -0.0449089 0.06837492]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIs0KR7ufU/7+UhpRSlIwBbJRLMowBdJRHQKegkQYDT0B1fZQoaAZoCWgPQwgoEHaKVUMJwJSGlFKUaBVLMmgWR0CnoFXcQAdXdX2UKGgGaAloD0MINiGtMejkAsCUhpRSlGgVSzJoFkdAp6AaxxDLKXV9lChoBmgJaA9DCGBWKNL9PAbAlIaUUpRoFUsyaBZHQKef3uE25x11fZQoaAZoCWgPQwg4L058teP7v5SGlFKUaBVLMmgWR0CnokSZrpJPdX2UKGgGaAloD0MIG/Z7Yp2q8r+UhpRSlGgVSzJoFkdAp6II/7iyZHV9lChoBmgJaA9DCB+94T5y6/W/lIaUUpRoFUsyaBZHQKehzcCYCyR1fZQoaAZoCWgPQwg8nwH1ZlT0v5SGlFKUaBVLMmgWR0CnoZHGCI1tdX2UKGgGaAloD0MItqD3xhAA97+UhpRSlGgVSzJoFkdAp6QXtIClrXV9lChoBmgJaA9DCNiarbzkP/i/lIaUUpRoFUsyaBZHQKej3C+De0p1fZQoaAZoCWgPQwjHRiBe12/yv5SGlFKUaBVLMmgWR0Cno6ECvHLidX2UKGgGaAloD0MInx9GCI92CcCUhpRSlGgVSzJoFkdAp6NllRP423V9lChoBmgJaA9DCIAomDEFK/W/lIaUUpRoFUsyaBZHQKel9SDRMOB1fZQoaAZoCWgPQwgsmzkktdALwJSGlFKUaBVLMmgWR0CnpbnLaEi/dX2UKGgGaAloD0MIUI9tGXC2BcCUhpRSlGgVSzJoFkdAp6V+56MR6HV9lChoBmgJaA9DCGjO+pRjcvK/lIaUUpRoFUsyaBZHQKelQ11GLDR1fZQoaAZoCWgPQwhvRzgteNH9v5SGlFKUaBVLMmgWR0Cnp9Ef1YhddX2UKGgGaAloD0MIGLX7VYBv9r+UhpRSlGgVSzJoFkdAp6eVqesgdXV9lChoBmgJaA9DCNe+gF64cwTAlIaUUpRoFUsyaBZHQKenWrbQC0Z1fZQoaAZoCWgPQwgS+wRQjOzzv5SGlFKUaBVLMmgWR0Cnpx8Empl0dX2UKGgGaAloD0MI2BGHbCAdBcCUhpRSlGgVSzJoFkdAp6j47aIvanV9lChoBmgJaA9DCGMOgo5W1QnAlIaUUpRoFUsyaBZHQKeovKeTV2B1fZQoaAZoCWgPQwhinwCKkUUIwJSGlFKUaBVLMmgWR0CnqICKJl8PdX2UKGgGaAloD0MIbt3NUx1y8L+UhpRSlGgVSzJoFkdAp6hESRKYiXV9lChoBmgJaA9DCJhNgGH58/O/lIaUUpRoFUsyaBZHQKeqCIv8IiV1fZQoaAZoCWgPQwirP8IwYMkGwJSGlFKUaBVLMmgWR0CnqcxL0z0pdX2UKGgGaAloD0MIU8+CUN7H97+UhpRSlGgVSzJoFkdAp6mQQe3hGnV9lChoBmgJaA9DCLVv7q8e9/m/lIaUUpRoFUsyaBZHQKepU9alk6N1fZQoaAZoCWgPQwihTQ6fdGLzv5SGlFKUaBVLMmgWR0CnqxzbvgFYdX2UKGgGaAloD0MIjj17LlPT/L+UhpRSlGgVSzJoFkdAp6rgrhBJI3V9lChoBmgJaA9DCBIvT+eKsgfAlIaUUpRoFUsyaBZHQKeqpNEgGKR1fZQoaAZoCWgPQwgjgnFw6VgGwJSGlFKUaBVLMmgWR0Cnqmh8x9G7dX2UKGgGaAloD0MIx2MGKuMf+b+UhpRSlGgVSzJoFkdAp6wz/VAiV3V9lChoBmgJaA9DCIHptG6DGvC/lIaUUpRoFUsyaBZHQKer9/hl18t1fZQoaAZoCWgPQwiIhVrTvOP+v5SGlFKUaBVLMmgWR0Cnq7w7T2FndX2UKGgGaAloD0MIgEqVKHuL87+UhpRSlGgVSzJoFkdAp6t/5i3G43V9lChoBmgJaA9DCGcLCK2HjwDAlIaUUpRoFUsyaBZHQKetR1nuiN91fZQoaAZoCWgPQwidY0D2enfjv5SGlFKUaBVLMmgWR0CnrQsabWmQdX2UKGgGaAloD0MI7iO3Jt22AMCUhpRSlGgVSzJoFkdAp6zPS+g133V9lChoBmgJaA9DCBmveVVnNeW/lIaUUpRoFUsyaBZHQKesk8UVSGd1fZQoaAZoCWgPQwiKj0/Izpv0v5SGlFKUaBVLMmgWR0CnrlqkEcKgdX2UKGgGaAloD0MIpWYPtALDA8CUhpRSlGgVSzJoFkdAp64ehufmLnV9lChoBmgJaA9DCFWFBmLZrAnAlIaUUpRoFUsyaBZHQKet4rsjVx11fZQoaAZoCWgPQwgvibMiakIBwJSGlFKUaBVLMmgWR0CnraZ2IO6NdX2UKGgGaAloD0MISWk2j8NADMCUhpRSlGgVSzJoFkdAp69wv6CUYHV9lChoBmgJaA9DCIi4OZUMgP6/lIaUUpRoFUsyaBZHQKevNMINVip1fZQoaAZoCWgPQwhSnKOOjisHwJSGlFKUaBVLMmgWR0CnrvkaESM+dX2UKGgGaAloD0MIdsb3xaUq6r+UhpRSlGgVSzJoFkdAp6686gdwN3V9lChoBmgJaA9DCOf+6nHfKv2/lIaUUpRoFUsyaBZHQKewkMDwH7h1fZQoaAZoCWgPQwinlNdK6G7zv5SGlFKUaBVLMmgWR0CnsFSHEdeZdX2UKGgGaAloD0MIJEVkWMV7BcCUhpRSlGgVSzJoFkdAp7AYsNDtxHV9lChoBmgJaA9DCDs42JsYku6/lIaUUpRoFUsyaBZHQKev3Eehf0F1fZQoaAZoCWgPQwjrAIi7enUAwJSGlFKUaBVLMmgWR0CnsaGCyyD7dX2UKGgGaAloD0MIs5WX/E+++r+UhpRSlGgVSzJoFkdAp7FlV3ljmXV9lChoBmgJaA9DCJq0qbpH9g7AlIaUUpRoFUsyaBZHQKexKXdCVr11fZQoaAZoCWgPQwhcjexKy0j6v5SGlFKUaBVLMmgWR0CnsO0b961LdX2UKGgGaAloD0MIUdobfGFy/7+UhpRSlGgVSzJoFkdAp7K02YOUdXV9lChoBmgJaA9DCP5/nDBhlADAlIaUUpRoFUsyaBZHQKeyeJUHY6J1fZQoaAZoCWgPQwikwthCkEMCwJSGlFKUaBVLMmgWR0CnsjzBInSfdX2UKGgGaAloD0MIQrRWtDlO9L+UhpRSlGgVSzJoFkdAp7IAU+LWJHV9lChoBmgJaA9DCE1LrIxGvu+/lIaUUpRoFUsyaBZHQKezzCOWBz51fZQoaAZoCWgPQwj5ugz/6WYIwJSGlFKUaBVLMmgWR0Cns4/bsWwedX2UKGgGaAloD0MI4WJFDaYh97+UhpRSlGgVSzJoFkdAp7NUBwMpgHV9lChoBmgJaA9DCBTRr62fXgfAlIaUUpRoFUsyaBZHQKezF8qnWJ91fZQoaAZoCWgPQwibkqzD0ZUMwJSGlFKUaBVLMmgWR0CntNbZ39rHdX2UKGgGaAloD0MI3c1THXJzA8CUhpRSlGgVSzJoFkdAp7SalpGnXXV9lChoBmgJaA9DCJs90AoMmfa/lIaUUpRoFUsyaBZHQKe0XqoIfKZ1fZQoaAZoCWgPQwgqqn6l8wEAwJSGlFKUaBVLMmgWR0CntCIrOJLvdX2UKGgGaAloD0MIhV/q503lB8CUhpRSlGgVSzJoFkdAp7Xr2exwAHV9lChoBmgJaA9DCCbl7nN8NADAlIaUUpRoFUsyaBZHQKe1r6WPcSJ1fZQoaAZoCWgPQwhUjzS4re39v5SGlFKUaBVLMmgWR0CntXPTgEU1dX2UKGgGaAloD0MIE7h1N0818L+UhpRSlGgVSzJoFkdAp7U3eSB9TnV9lChoBmgJaA9DCD6WPnRBffS/lIaUUpRoFUsyaBZHQKe3ACK77Kt1fZQoaAZoCWgPQwjuCn2wjE0AwJSGlFKUaBVLMmgWR0CntsQSrYGudX2UKGgGaAloD0MIhIB8CRVcAsCUhpRSlGgVSzJoFkdAp7aIMDwH7nV9lChoBmgJaA9DCF2Kq8q+a/G/lIaUUpRoFUsyaBZHQKe2S89wFTx1fZQoaAZoCWgPQwgxzt+EQqQMwJSGlFKUaBVLMmgWR0CnuBjBVMmGdX2UKGgGaAloD0MIZof4hy29/7+UhpRSlGgVSzJoFkdAp7fcfs/puHV9lChoBmgJaA9DCN2271F/PQbAlIaUUpRoFUsyaBZHQKe3oJJGvwF1fZQoaAZoCWgPQwitFthjImX3v5SGlFKUaBVLMmgWR0Cnt2QtSQ5ndX2UKGgGaAloD0MI93ZLcsAu+r+UhpRSlGgVSzJoFkdAp7kuv8qFy3V9lChoBmgJaA9DCPH1tS41Qv2/lIaUUpRoFUsyaBZHQKe48pH7P6d1fZQoaAZoCWgPQwiZR/5g4FkAwJSGlFKUaBVLMmgWR0CnuLbJGOMmdX2UKGgGaAloD0MIyOwseqeiDMCUhpRSlGgVSzJoFkdAp7h6d8RcvHV9lChoBmgJaA9DCINuL2mMFgHAlIaUUpRoFUsyaBZHQKe6R+jM3ZR1fZQoaAZoCWgPQwhENLqD2Nn5v5SGlFKUaBVLMmgWR0Cnugu0b961dX2UKGgGaAloD0MIwMsMG2VdAcCUhpRSlGgVSzJoFkdAp7nPvWpZOnV9lChoBmgJaA9DCLHc0mpI/ArAlIaUUpRoFUsyaBZHQKe5k3z+WGB1fZQoaAZoCWgPQwgTQ3Iycev7v5SGlFKUaBVLMmgWR0Cnu11fNRm9dX2UKGgGaAloD0MIUrmJWprbBsCUhpRSlGgVSzJoFkdAp7shJf6XSnV9lChoBmgJaA9DCDgUPlsHhwLAlIaUUpRoFUsyaBZHQKe65VPva111fZQoaAZoCWgPQwh6GcVyS6sFwJSGlFKUaBVLMmgWR0CnuqjneSB9dX2UKGgGaAloD0MIGJXUCWii7r+UhpRSlGgVSzJoFkdAp7zMfigkC3V9lChoBmgJaA9DCK+ytike1/+/lIaUUpRoFUsyaBZHQKe8kQiiZfF1fZQoaAZoCWgPQwgVU+knnH0AwJSGlFKUaBVLMmgWR0CnvFYUeuFIdX2UKGgGaAloD0MIQKa1aWzPAMCUhpRSlGgVSzJoFkdAp7wacPOIInV9lChoBmgJaA9DCLSULCehFAfAlIaUUpRoFUsyaBZHQKe+kxptaZB1fZQoaAZoCWgPQwjaGhGMgysAwJSGlFKUaBVLMmgWR0CnvlesHSncdX2UKGgGaAloD0MIoE/kSdIVBcCUhpRSlGgVSzJoFkdAp74cgfU4JnV9lChoBmgJaA9DCPqzHykiowjAlIaUUpRoFUsyaBZHQKe94P91loV1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:036fdacdf8bd1c58b3f194ed538accf12d4994905dff49ee97ccc1c248db1d7d
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9c4c20e597a587bd32a642eb55b3412b28c5c3a29a0b79069c44c58ceb7082d
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f39ff8769d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f39ff8794c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681467120583282341, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAavPMPsgd5Tzz8fY+avPMPsgd5Tzz8fY+avPMPsgd5Tzz8fY+avPMPsgd5Tzz8fY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhvKXP2xK0T1+qBE+337Xv2jeZz+Sgv087QjZPrfYnT6urzk/zLfmPP6bg78Q6fO+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABq88w+yB3lPPPx9j6Aiow73DerOr/r5btq88w+yB3lPPPx9j6Aiow73DerOr/r5btq88w+yB3lPPPx9j6Aiow73DerOr/r5btq88w+yB3lPPPx9j6Aiow73DerOr/r5buUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4002946 0.0279683 0.48231468]\n [0.4002946 0.0279683 0.48231468]\n [0.4002946 0.0279683 0.48231468]\n [0.4002946 0.0279683 0.48231468]]", "desired_goal": "[[ 1.1870887 0.10219273 0.14224431]\n [-1.6835593 0.9057374 0.03094605]\n [ 0.42389622 0.30829403 0.7253369 ]\n [ 0.02816381 -1.028198 -0.4763875 ]]", "observation": "[[ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]\n [ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]\n [ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]\n [ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3nxDPbvl7r0xTH0904ndvZKwSj3ekmU+vA6nPZ4ba7st2KU9AcaqPWXyN70mCIw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0477265 -0.11664911 0.06184024]\n [-0.10817304 0.0494848 0.22419307]\n [ 0.08157107 -0.00358746 0.08097873]\n [ 0.08338547 -0.0449089 0.06837492]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIs0KR7ufU/7+UhpRSlIwBbJRLMowBdJRHQKegkQYDT0B1fZQoaAZoCWgPQwgoEHaKVUMJwJSGlFKUaBVLMmgWR0CnoFXcQAdXdX2UKGgGaAloD0MINiGtMejkAsCUhpRSlGgVSzJoFkdAp6AaxxDLKXV9lChoBmgJaA9DCGBWKNL9PAbAlIaUUpRoFUsyaBZHQKef3uE25x11fZQoaAZoCWgPQwg4L058teP7v5SGlFKUaBVLMmgWR0CnokSZrpJPdX2UKGgGaAloD0MIG/Z7Yp2q8r+UhpRSlGgVSzJoFkdAp6II/7iyZHV9lChoBmgJaA9DCB+94T5y6/W/lIaUUpRoFUsyaBZHQKehzcCYCyR1fZQoaAZoCWgPQwg8nwH1ZlT0v5SGlFKUaBVLMmgWR0CnoZHGCI1tdX2UKGgGaAloD0MItqD3xhAA97+UhpRSlGgVSzJoFkdAp6QXtIClrXV9lChoBmgJaA9DCNiarbzkP/i/lIaUUpRoFUsyaBZHQKej3C+De0p1fZQoaAZoCWgPQwjHRiBe12/yv5SGlFKUaBVLMmgWR0Cno6ECvHLidX2UKGgGaAloD0MInx9GCI92CcCUhpRSlGgVSzJoFkdAp6NllRP423V9lChoBmgJaA9DCIAomDEFK/W/lIaUUpRoFUsyaBZHQKel9SDRMOB1fZQoaAZoCWgPQwgsmzkktdALwJSGlFKUaBVLMmgWR0CnpbnLaEi/dX2UKGgGaAloD0MIUI9tGXC2BcCUhpRSlGgVSzJoFkdAp6V+56MR6HV9lChoBmgJaA9DCGjO+pRjcvK/lIaUUpRoFUsyaBZHQKelQ11GLDR1fZQoaAZoCWgPQwhvRzgteNH9v5SGlFKUaBVLMmgWR0Cnp9Ef1YhddX2UKGgGaAloD0MIGLX7VYBv9r+UhpRSlGgVSzJoFkdAp6eVqesgdXV9lChoBmgJaA9DCNe+gF64cwTAlIaUUpRoFUsyaBZHQKenWrbQC0Z1fZQoaAZoCWgPQwgS+wRQjOzzv5SGlFKUaBVLMmgWR0Cnpx8Empl0dX2UKGgGaAloD0MI2BGHbCAdBcCUhpRSlGgVSzJoFkdAp6j47aIvanV9lChoBmgJaA9DCGMOgo5W1QnAlIaUUpRoFUsyaBZHQKeovKeTV2B1fZQoaAZoCWgPQwhinwCKkUUIwJSGlFKUaBVLMmgWR0CnqICKJl8PdX2UKGgGaAloD0MIbt3NUx1y8L+UhpRSlGgVSzJoFkdAp6hESRKYiXV9lChoBmgJaA9DCJhNgGH58/O/lIaUUpRoFUsyaBZHQKeqCIv8IiV1fZQoaAZoCWgPQwirP8IwYMkGwJSGlFKUaBVLMmgWR0CnqcxL0z0pdX2UKGgGaAloD0MIU8+CUN7H97+UhpRSlGgVSzJoFkdAp6mQQe3hGnV9lChoBmgJaA9DCLVv7q8e9/m/lIaUUpRoFUsyaBZHQKepU9alk6N1fZQoaAZoCWgPQwihTQ6fdGLzv5SGlFKUaBVLMmgWR0CnqxzbvgFYdX2UKGgGaAloD0MIjj17LlPT/L+UhpRSlGgVSzJoFkdAp6rgrhBJI3V9lChoBmgJaA9DCBIvT+eKsgfAlIaUUpRoFUsyaBZHQKeqpNEgGKR1fZQoaAZoCWgPQwgjgnFw6VgGwJSGlFKUaBVLMmgWR0Cnqmh8x9G7dX2UKGgGaAloD0MIx2MGKuMf+b+UhpRSlGgVSzJoFkdAp6wz/VAiV3V9lChoBmgJaA9DCIHptG6DGvC/lIaUUpRoFUsyaBZHQKer9/hl18t1fZQoaAZoCWgPQwiIhVrTvOP+v5SGlFKUaBVLMmgWR0Cnq7w7T2FndX2UKGgGaAloD0MIgEqVKHuL87+UhpRSlGgVSzJoFkdAp6t/5i3G43V9lChoBmgJaA9DCGcLCK2HjwDAlIaUUpRoFUsyaBZHQKetR1nuiN91fZQoaAZoCWgPQwidY0D2enfjv5SGlFKUaBVLMmgWR0CnrQsabWmQdX2UKGgGaAloD0MI7iO3Jt22AMCUhpRSlGgVSzJoFkdAp6zPS+g133V9lChoBmgJaA9DCBmveVVnNeW/lIaUUpRoFUsyaBZHQKesk8UVSGd1fZQoaAZoCWgPQwiKj0/Izpv0v5SGlFKUaBVLMmgWR0CnrlqkEcKgdX2UKGgGaAloD0MIpWYPtALDA8CUhpRSlGgVSzJoFkdAp64ehufmLnV9lChoBmgJaA9DCFWFBmLZrAnAlIaUUpRoFUsyaBZHQKet4rsjVx11fZQoaAZoCWgPQwgvibMiakIBwJSGlFKUaBVLMmgWR0CnraZ2IO6NdX2UKGgGaAloD0MISWk2j8NADMCUhpRSlGgVSzJoFkdAp69wv6CUYHV9lChoBmgJaA9DCIi4OZUMgP6/lIaUUpRoFUsyaBZHQKevNMINVip1fZQoaAZoCWgPQwhSnKOOjisHwJSGlFKUaBVLMmgWR0CnrvkaESM+dX2UKGgGaAloD0MIdsb3xaUq6r+UhpRSlGgVSzJoFkdAp6686gdwN3V9lChoBmgJaA9DCOf+6nHfKv2/lIaUUpRoFUsyaBZHQKewkMDwH7h1fZQoaAZoCWgPQwinlNdK6G7zv5SGlFKUaBVLMmgWR0CnsFSHEdeZdX2UKGgGaAloD0MIJEVkWMV7BcCUhpRSlGgVSzJoFkdAp7AYsNDtxHV9lChoBmgJaA9DCDs42JsYku6/lIaUUpRoFUsyaBZHQKev3Eehf0F1fZQoaAZoCWgPQwjrAIi7enUAwJSGlFKUaBVLMmgWR0CnsaGCyyD7dX2UKGgGaAloD0MIs5WX/E+++r+UhpRSlGgVSzJoFkdAp7FlV3ljmXV9lChoBmgJaA9DCJq0qbpH9g7AlIaUUpRoFUsyaBZHQKexKXdCVr11fZQoaAZoCWgPQwhcjexKy0j6v5SGlFKUaBVLMmgWR0CnsO0b961LdX2UKGgGaAloD0MIUdobfGFy/7+UhpRSlGgVSzJoFkdAp7K02YOUdXV9lChoBmgJaA9DCP5/nDBhlADAlIaUUpRoFUsyaBZHQKeyeJUHY6J1fZQoaAZoCWgPQwikwthCkEMCwJSGlFKUaBVLMmgWR0CnsjzBInSfdX2UKGgGaAloD0MIQrRWtDlO9L+UhpRSlGgVSzJoFkdAp7IAU+LWJHV9lChoBmgJaA9DCE1LrIxGvu+/lIaUUpRoFUsyaBZHQKezzCOWBz51fZQoaAZoCWgPQwj5ugz/6WYIwJSGlFKUaBVLMmgWR0Cns4/bsWwedX2UKGgGaAloD0MI4WJFDaYh97+UhpRSlGgVSzJoFkdAp7NUBwMpgHV9lChoBmgJaA9DCBTRr62fXgfAlIaUUpRoFUsyaBZHQKezF8qnWJ91fZQoaAZoCWgPQwibkqzD0ZUMwJSGlFKUaBVLMmgWR0CntNbZ39rHdX2UKGgGaAloD0MI3c1THXJzA8CUhpRSlGgVSzJoFkdAp7SalpGnXXV9lChoBmgJaA9DCJs90AoMmfa/lIaUUpRoFUsyaBZHQKe0XqoIfKZ1fZQoaAZoCWgPQwgqqn6l8wEAwJSGlFKUaBVLMmgWR0CntCIrOJLvdX2UKGgGaAloD0MIhV/q503lB8CUhpRSlGgVSzJoFkdAp7Xr2exwAHV9lChoBmgJaA9DCCbl7nN8NADAlIaUUpRoFUsyaBZHQKe1r6WPcSJ1fZQoaAZoCWgPQwhUjzS4re39v5SGlFKUaBVLMmgWR0CntXPTgEU1dX2UKGgGaAloD0MIE7h1N0818L+UhpRSlGgVSzJoFkdAp7U3eSB9TnV9lChoBmgJaA9DCD6WPnRBffS/lIaUUpRoFUsyaBZHQKe3ACK77Kt1fZQoaAZoCWgPQwjuCn2wjE0AwJSGlFKUaBVLMmgWR0CntsQSrYGudX2UKGgGaAloD0MIhIB8CRVcAsCUhpRSlGgVSzJoFkdAp7aIMDwH7nV9lChoBmgJaA9DCF2Kq8q+a/G/lIaUUpRoFUsyaBZHQKe2S89wFTx1fZQoaAZoCWgPQwgxzt+EQqQMwJSGlFKUaBVLMmgWR0CnuBjBVMmGdX2UKGgGaAloD0MIZof4hy29/7+UhpRSlGgVSzJoFkdAp7fcfs/puHV9lChoBmgJaA9DCN2271F/PQbAlIaUUpRoFUsyaBZHQKe3oJJGvwF1fZQoaAZoCWgPQwitFthjImX3v5SGlFKUaBVLMmgWR0Cnt2QtSQ5ndX2UKGgGaAloD0MI93ZLcsAu+r+UhpRSlGgVSzJoFkdAp7kuv8qFy3V9lChoBmgJaA9DCPH1tS41Qv2/lIaUUpRoFUsyaBZHQKe48pH7P6d1fZQoaAZoCWgPQwiZR/5g4FkAwJSGlFKUaBVLMmgWR0CnuLbJGOMmdX2UKGgGaAloD0MIyOwseqeiDMCUhpRSlGgVSzJoFkdAp7h6d8RcvHV9lChoBmgJaA9DCINuL2mMFgHAlIaUUpRoFUsyaBZHQKe6R+jM3ZR1fZQoaAZoCWgPQwhENLqD2Nn5v5SGlFKUaBVLMmgWR0Cnugu0b961dX2UKGgGaAloD0MIwMsMG2VdAcCUhpRSlGgVSzJoFkdAp7nPvWpZOnV9lChoBmgJaA9DCLHc0mpI/ArAlIaUUpRoFUsyaBZHQKe5k3z+WGB1fZQoaAZoCWgPQwgTQ3Iycev7v5SGlFKUaBVLMmgWR0Cnu11fNRm9dX2UKGgGaAloD0MIUrmJWprbBsCUhpRSlGgVSzJoFkdAp7shJf6XSnV9lChoBmgJaA9DCDgUPlsHhwLAlIaUUpRoFUsyaBZHQKe65VPva111fZQoaAZoCWgPQwh6GcVyS6sFwJSGlFKUaBVLMmgWR0CnuqjneSB9dX2UKGgGaAloD0MIGJXUCWii7r+UhpRSlGgVSzJoFkdAp7zMfigkC3V9lChoBmgJaA9DCK+ytike1/+/lIaUUpRoFUsyaBZHQKe8kQiiZfF1fZQoaAZoCWgPQwgVU+knnH0AwJSGlFKUaBVLMmgWR0CnvFYUeuFIdX2UKGgGaAloD0MIQKa1aWzPAMCUhpRSlGgVSzJoFkdAp7wacPOIInV9lChoBmgJaA9DCLSULCehFAfAlIaUUpRoFUsyaBZHQKe+kxptaZB1fZQoaAZoCWgPQwjaGhGMgysAwJSGlFKUaBVLMmgWR0CnvlesHSncdX2UKGgGaAloD0MIoE/kSdIVBcCUhpRSlGgVSzJoFkdAp74cgfU4JnV9lChoBmgJaA9DCPqzHykiowjAlIaUUpRoFUsyaBZHQKe94P91loV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (423 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.3718974235467614, "std_reward": 0.8467548137464413, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-14T11:02:44.376878"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5cef43f44b6f52fdcb7802f24aa703075f40154aa260ebcf2a516fafa36379a
|
3 |
+
size 2381
|