File size: 58,653 Bytes
395cdfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
2023-02-07 09:40:53,280 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'luna': 0}, 'model_dir': './logs\\32k'}
2023-02-07 09:41:39,266 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 12, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'luna': 0}, 'model_dir': './logs\\32k'}
2023-02-07 09:42:23,356 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'luna': 0}, 'model_dir': './logs\\32k'}
2023-02-07 09:42:53,692 32k INFO Train Epoch: 1 [0%]
2023-02-07 09:42:53,693 32k INFO [5.986945629119873, 5.2334113121032715, 1.1685032844543457, 101.684814453125, 285.0567321777344, 0, 0.0001]
2023-02-07 09:42:59,408 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
2023-02-07 09:43:14,302 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
2023-02-07 09:44:20,696 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'luna': 0}, 'model_dir': './logs\\32k'}
2023-02-07 09:44:25,541 32k INFO Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-07 09:44:25,958 32k INFO Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-07 09:44:51,915 32k INFO Train Epoch: 1 [0%]
2023-02-07 09:44:51,915 32k INFO [2.594619035720825, 2.5604355335235596, 15.0297269821167, 45.45681381225586, 11.650612831115723, 0, 0.0001]
2023-02-07 09:44:57,597 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
2023-02-07 09:45:13,749 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
2023-02-07 09:47:02,986 32k INFO ====> Epoch: 1
2023-02-07 09:49:09,645 32k INFO ====> Epoch: 2
2023-02-07 09:50:00,551 32k INFO Train Epoch: 3 [27%]
2023-02-07 09:50:00,551 32k INFO [2.360294818878174, 2.3960258960723877, 13.918700218200684, 23.92392349243164, 1.0044713020324707, 200, 9.99750015625e-05]
2023-02-07 09:51:15,724 32k INFO ====> Epoch: 3
2023-02-07 09:53:21,228 32k INFO ====> Epoch: 4
2023-02-07 09:54:40,244 32k INFO Train Epoch: 5 [55%]
2023-02-07 09:54:40,244 32k INFO [2.5581417083740234, 2.0560226440429688, 12.119918823242188, 23.648845672607422, 1.1536203622817993, 400, 9.995000937421877e-05]
2023-02-07 09:55:26,649 32k INFO ====> Epoch: 5
2023-02-07 09:57:31,903 32k INFO ====> Epoch: 6
2023-02-07 09:59:20,458 32k INFO Train Epoch: 7 [82%]
2023-02-07 09:59:20,459 32k INFO [2.645043134689331, 2.0071868896484375, 8.105449676513672, 17.2309627532959, 0.8960679173469543, 600, 9.99250234335941e-05]
2023-02-07 09:59:39,088 32k INFO ====> Epoch: 7
2023-02-07 10:01:44,439 32k INFO ====> Epoch: 8
2023-02-07 10:03:50,397 32k INFO ====> Epoch: 9
2023-02-07 10:04:22,558 32k INFO Train Epoch: 10 [9%]
2023-02-07 10:04:22,558 32k INFO [2.5706863403320312, 2.335548162460327, 11.097796440124512, 19.198232650756836, 1.0098469257354736, 800, 9.98875562335968e-05]
2023-02-07 10:05:57,649 32k INFO ====> Epoch: 10
2023-02-07 10:08:05,106 32k INFO ====> Epoch: 11
2023-02-07 10:09:05,366 32k INFO Train Epoch: 12 [36%]
2023-02-07 10:09:05,367 32k INFO [2.2724082469940186, 2.844191312789917, 11.882951736450195, 18.201112747192383, 1.388056755065918, 1000, 9.986258590528146e-05]
2023-02-07 10:09:09,750 32k INFO Saving model and optimizer state at iteration 12 to ./logs\32k\G_1000.pth
2023-02-07 10:09:27,650 32k INFO Saving model and optimizer state at iteration 12 to ./logs\32k\D_1000.pth
2023-02-07 10:10:37,986 32k INFO ====> Epoch: 12
2023-02-07 10:12:44,311 32k INFO ====> Epoch: 13
2023-02-07 10:14:12,926 32k INFO Train Epoch: 14 [64%]
2023-02-07 10:14:12,926 32k INFO [2.474606990814209, 2.230579376220703, 11.757043838500977, 16.921762466430664, 1.2078344821929932, 1200, 9.983762181915804e-05]
2023-02-07 10:14:50,340 32k INFO ====> Epoch: 14
2023-02-07 10:16:57,519 32k INFO ====> Epoch: 15
2023-02-07 10:18:54,687 32k INFO Train Epoch: 16 [91%]
2023-02-07 10:18:54,687 32k INFO [2.446239709854126, 2.3385403156280518, 12.67339038848877, 20.93482208251953, 0.8955264687538147, 1400, 9.981266397366609e-05]
2023-02-07 10:19:03,624 32k INFO ====> Epoch: 16
2023-02-07 10:21:09,258 32k INFO ====> Epoch: 17
2023-02-07 10:23:14,506 32k INFO ====> Epoch: 18
2023-02-07 10:23:55,989 32k INFO Train Epoch: 19 [18%]
2023-02-07 10:23:55,990 32k INFO [2.6378839015960693, 2.2939138412475586, 11.7266206741333, 19.231109619140625, 1.1356555223464966, 1600, 9.977523890319963e-05]
2023-02-07 10:25:20,577 32k INFO ====> Epoch: 19
2023-02-07 10:27:26,527 32k INFO ====> Epoch: 20
2023-02-07 10:28:36,306 32k INFO Train Epoch: 21 [45%]
2023-02-07 10:28:36,307 32k INFO [2.761199474334717, 2.040116786956787, 11.117597579956055, 15.121772766113281, 0.9549421668052673, 1800, 9.975029665246193e-05]
2023-02-07 10:29:32,416 32k INFO ====> Epoch: 21
2023-02-07 10:31:48,932 32k INFO ====> Epoch: 22
2023-02-07 10:33:38,266 32k INFO Train Epoch: 23 [73%]
2023-02-07 10:33:38,266 32k INFO [2.4851253032684326, 2.39241361618042, 10.837175369262695, 16.3918514251709, 1.0230045318603516, 2000, 9.972536063689719e-05]
2023-02-07 10:33:42,963 32k INFO Saving model and optimizer state at iteration 23 to ./logs\32k\G_2000.pth
2023-02-07 10:33:58,853 32k INFO Saving model and optimizer state at iteration 23 to ./logs\32k\D_2000.pth
2023-02-07 10:34:47,989 32k INFO ====> Epoch: 23
2023-02-07 10:38:48,011 32k INFO ====> Epoch: 24
2023-02-07 10:42:49,265 32k INFO ====> Epoch: 25
2023-02-07 10:43:13,039 32k INFO Train Epoch: 26 [0%]
2023-02-07 10:43:13,039 32k INFO [2.6076807975769043, 2.061424732208252, 13.766759872436523, 18.384117126464844, 0.7564023733139038, 2200, 9.968796830108985e-05]
2023-02-07 10:46:56,559 32k INFO ====> Epoch: 26
2023-02-07 10:51:03,691 32k INFO ====> Epoch: 27
2023-02-07 10:52:29,260 32k INFO Train Epoch: 28 [27%]
2023-02-07 10:52:29,261 32k INFO [2.44578218460083, 2.06921124458313, 9.142973899841309, 12.838541984558105, 0.592533528804779, 2400, 9.966304786663908e-05]
2023-02-07 10:55:15,394 32k INFO ====> Epoch: 28
2023-02-07 10:59:20,071 32k INFO ====> Epoch: 29
2023-02-07 11:01:53,637 32k INFO Train Epoch: 30 [55%]
2023-02-07 11:01:53,637 32k INFO [2.4569437503814697, 2.0591907501220703, 9.697546005249023, 18.9813232421875, 0.6515152454376221, 2600, 9.963813366190753e-05]
2023-02-07 11:03:29,785 32k INFO ====> Epoch: 30
2023-02-07 11:07:53,678 32k INFO ====> Epoch: 31
2023-02-07 11:11:27,366 32k INFO Train Epoch: 32 [82%]
2023-02-07 11:11:27,367 32k INFO [2.5969486236572266, 1.939130425453186, 11.549643516540527, 17.018590927124023, 0.9572107791900635, 2800, 9.961322568533789e-05]
2023-02-07 11:12:09,727 32k INFO ====> Epoch: 32
2023-02-07 11:16:18,217 32k INFO ====> Epoch: 33
2023-02-07 11:20:33,915 32k INFO ====> Epoch: 34
2023-02-07 11:21:21,087 32k INFO Train Epoch: 35 [9%]
2023-02-07 11:21:21,088 32k INFO [2.5165798664093018, 2.2998545169830322, 12.771017074584961, 19.952123641967773, 0.6407254338264465, 3000, 9.957587539488128e-05]
2023-02-07 11:21:25,805 32k INFO Saving model and optimizer state at iteration 35 to ./logs\32k\G_3000.pth
2023-02-07 11:21:45,295 32k INFO Saving model and optimizer state at iteration 35 to ./logs\32k\D_3000.pth
2023-02-07 11:25:09,760 32k INFO ====> Epoch: 35
2023-02-07 11:29:27,873 32k INFO ====> Epoch: 36
2023-02-07 11:31:18,011 32k INFO Train Epoch: 37 [36%]
2023-02-07 11:31:18,011 32k INFO [2.619579315185547, 2.3391668796539307, 9.163888931274414, 16.027456283569336, 0.9692599773406982, 3200, 9.95509829819056e-05]
2023-02-07 11:33:47,642 32k INFO ====> Epoch: 37
2023-02-07 11:37:56,855 32k INFO ====> Epoch: 38
2023-02-07 11:40:45,204 32k INFO Train Epoch: 39 [64%]
2023-02-07 11:40:45,205 32k INFO [2.350425958633423, 2.2603647708892822, 13.19098949432373, 20.018461227416992, 1.0738447904586792, 3400, 9.952609679164422e-05]
2023-02-07 11:42:03,774 32k INFO ====> Epoch: 39
2023-02-07 11:45:59,746 32k INFO ====> Epoch: 40
2023-02-07 11:49:51,207 32k INFO Train Epoch: 41 [91%]
2023-02-07 11:49:51,208 32k INFO [2.582878351211548, 2.3701279163360596, 12.43442153930664, 17.008121490478516, 1.1644971370697021, 3600, 9.950121682254156e-05]
2023-02-07 11:50:09,809 32k INFO ====> Epoch: 41
2023-02-07 11:53:55,535 32k INFO ====> Epoch: 42
2023-02-07 11:57:39,870 32k INFO ====> Epoch: 43
2023-02-07 11:58:43,347 32k INFO Train Epoch: 44 [18%]
2023-02-07 11:58:43,347 32k INFO [2.5977330207824707, 2.3910253047943115, 11.031622886657715, 19.40188217163086, 0.8780531287193298, 3800, 9.94639085301583e-05]
2023-02-07 12:01:31,992 32k INFO ====> Epoch: 44
2023-02-07 12:05:23,822 32k INFO ====> Epoch: 45
2023-02-07 12:07:21,305 32k INFO Train Epoch: 46 [45%]
2023-02-07 12:07:21,306 32k INFO [2.4390363693237305, 2.45821213722229, 10.24112606048584, 15.837735176086426, 0.7886309027671814, 4000, 9.943904410714931e-05]
2023-02-07 12:07:25,841 32k INFO Saving model and optimizer state at iteration 46 to ./logs\32k\G_4000.pth
2023-02-07 12:07:42,252 32k INFO Saving model and optimizer state at iteration 46 to ./logs\32k\D_4000.pth
2023-02-07 12:09:31,329 32k INFO ====> Epoch: 46
2023-02-07 12:13:21,187 32k INFO ====> Epoch: 47
2023-02-07 12:15:05,159 32k INFO Train Epoch: 48 [73%]
2023-02-07 12:15:05,159 32k INFO [2.4634478092193604, 2.3640332221984863, 11.501005172729492, 16.302955627441406, 0.7573157548904419, 4200, 9.941418589985758e-05]
2023-02-07 12:15:35,781 32k INFO ====> Epoch: 48
2023-02-07 12:18:23,940 32k INFO ====> Epoch: 49
2023-02-07 12:20:51,588 32k INFO ====> Epoch: 50
2023-02-07 12:21:14,338 32k INFO Train Epoch: 51 [0%]
2023-02-07 12:21:14,338 32k INFO [2.6959879398345947, 1.971150279045105, 8.562164306640625, 14.40481948852539, 0.9920418858528137, 4400, 9.937691023999092e-05]
2023-02-07 12:23:05,457 32k INFO ====> Epoch: 51
2023-02-07 12:25:18,467 32k INFO ====> Epoch: 52
2023-02-07 12:26:11,363 32k INFO Train Epoch: 53 [27%]
2023-02-07 12:26:11,364 32k INFO [2.3754444122314453, 2.2341160774230957, 11.600547790527344, 15.735363960266113, 0.42374899983406067, 4600, 9.935206756519513e-05]
2023-02-07 12:27:32,699 32k INFO ====> Epoch: 53
2023-02-07 12:29:47,264 32k INFO ====> Epoch: 54
2023-02-07 12:31:10,391 32k INFO Train Epoch: 55 [55%]
2023-02-07 12:31:10,391 32k INFO [2.421271324157715, 2.085864543914795, 11.170856475830078, 19.666301727294922, 0.7788003087043762, 4800, 9.932723110067987e-05]
2023-02-07 12:32:00,890 32k INFO ====> Epoch: 55
2023-02-07 12:34:14,788 32k INFO ====> Epoch: 56
2023-02-07 12:36:08,772 32k INFO Train Epoch: 57 [82%]
2023-02-07 12:36:08,772 32k INFO [2.432823657989502, 2.2199151515960693, 11.207275390625, 15.497830390930176, 0.9771067500114441, 5000, 9.930240084489267e-05]
2023-02-07 12:36:13,538 32k INFO Saving model and optimizer state at iteration 57 to ./logs\32k\G_5000.pth
2023-02-07 12:36:31,240 32k INFO Saving model and optimizer state at iteration 57 to ./logs\32k\D_5000.pth
2023-02-07 12:36:54,614 32k INFO ====> Epoch: 57
2023-02-07 12:39:07,517 32k INFO ====> Epoch: 58
2023-02-07 12:41:22,030 32k INFO ====> Epoch: 59
2023-02-07 12:41:55,027 32k INFO Train Epoch: 60 [9%]
2023-02-07 12:41:55,027 32k INFO [2.7963428497314453, 1.8747531175613403, 10.772848129272461, 14.761898040771484, 0.5415222644805908, 5200, 9.926516709918191e-05]
2023-02-07 12:43:35,208 32k INFO ====> Epoch: 60
2023-02-07 12:45:47,923 32k INFO ====> Epoch: 61
2023-02-07 12:46:50,887 32k INFO Train Epoch: 62 [36%]
2023-02-07 12:46:50,887 32k INFO [2.6340723037719727, 2.1284472942352295, 8.606325149536133, 17.0094051361084, 0.818625807762146, 5400, 9.924035235842533e-05]
2023-02-07 12:48:00,866 32k INFO ====> Epoch: 62
2023-02-07 12:50:15,943 32k INFO ====> Epoch: 63
2023-02-07 12:51:49,996 32k INFO Train Epoch: 64 [64%]
2023-02-07 12:51:49,996 32k INFO [2.306647539138794, 2.406829357147217, 9.929342269897461, 12.849090576171875, 0.8835707902908325, 5600, 9.921554382096622e-05]
2023-02-07 12:52:32,999 32k INFO ====> Epoch: 64
2023-02-07 12:55:11,641 32k INFO ====> Epoch: 65
2023-02-07 12:57:17,736 32k INFO Train Epoch: 66 [91%]
2023-02-07 12:57:17,737 32k INFO [2.5442795753479004, 2.281177282333374, 9.918232917785645, 17.03926658630371, 0.7411346435546875, 5800, 9.919074148525384e-05]
2023-02-07 12:57:27,339 32k INFO ====> Epoch: 66
2023-02-07 12:59:41,684 32k INFO ====> Epoch: 67
2023-02-07 13:01:55,764 32k INFO ====> Epoch: 68
2023-02-07 13:02:38,827 32k INFO Train Epoch: 69 [18%]
2023-02-07 13:02:38,828 32k INFO [2.463815689086914, 2.242199182510376, 11.57142448425293, 19.842445373535156, 0.521164059638977, 6000, 9.915354960656915e-05]
2023-02-07 13:02:43,491 32k INFO Saving model and optimizer state at iteration 69 to ./logs\32k\G_6000.pth
2023-02-07 13:03:00,115 32k INFO Saving model and optimizer state at iteration 69 to ./logs\32k\D_6000.pth
2023-02-07 13:04:34,671 32k INFO ====> Epoch: 69
2023-02-07 13:06:49,771 32k INFO ====> Epoch: 70
2023-02-07 13:08:02,981 32k INFO Train Epoch: 71 [45%]
2023-02-07 13:08:02,981 32k INFO [2.4700756072998047, 2.2984137535095215, 14.3892822265625, 18.679941177368164, 0.8965722322463989, 6200, 9.912876276844171e-05]
2023-02-07 13:09:03,486 32k INFO ====> Epoch: 71
2023-02-07 13:11:17,617 32k INFO ====> Epoch: 72
2023-02-07 13:13:02,651 32k INFO Train Epoch: 73 [73%]
2023-02-07 13:13:02,651 32k INFO [2.556546688079834, 2.2346560955047607, 9.572005271911621, 16.495567321777344, 0.8224639296531677, 6400, 9.910398212663652e-05]
2023-02-07 13:13:33,359 32k INFO ====> Epoch: 73
2023-02-07 13:15:47,755 32k INFO ====> Epoch: 74
2023-02-07 13:18:01,568 32k INFO ====> Epoch: 75
2023-02-07 13:18:24,282 32k INFO Train Epoch: 76 [0%]
2023-02-07 13:18:24,282 32k INFO [2.4348723888397217, 2.264528274536133, 12.597403526306152, 17.98801040649414, 0.9530618190765381, 6600, 9.906682277864462e-05]
2023-02-07 13:20:16,324 32k INFO ====> Epoch: 76
2023-02-07 13:22:39,984 32k INFO ====> Epoch: 77
2023-02-07 13:23:33,800 32k INFO Train Epoch: 78 [27%]
2023-02-07 13:23:33,801 32k INFO [2.5431196689605713, 2.1168220043182373, 11.997557640075684, 15.961959838867188, 1.086801528930664, 6800, 9.904205762086905e-05]
2023-02-07 13:24:54,267 32k INFO ====> Epoch: 78
2023-02-07 13:27:09,425 32k INFO ====> Epoch: 79
2023-02-07 13:28:32,803 32k INFO Train Epoch: 80 [55%]
2023-02-07 13:28:32,803 32k INFO [2.5890021324157715, 1.954834222793579, 11.328150749206543, 18.769920349121094, 1.155487060546875, 7000, 9.901729865399597e-05]
2023-02-07 13:28:37,490 32k INFO Saving model and optimizer state at iteration 80 to ./logs\32k\G_7000.pth
2023-02-07 13:28:53,607 32k INFO Saving model and optimizer state at iteration 80 to ./logs\32k\D_7000.pth
2023-02-07 13:29:47,400 32k INFO ====> Epoch: 80
2023-02-07 13:32:00,461 32k INFO ====> Epoch: 81
2023-02-07 13:33:55,048 32k INFO Train Epoch: 82 [82%]
2023-02-07 13:33:55,049 32k INFO [2.2798125743865967, 2.5595874786376953, 8.555220603942871, 16.308244705200195, 0.8951782584190369, 7200, 9.899254587647776e-05]
2023-02-07 13:34:14,940 32k INFO ====> Epoch: 82
2023-02-07 13:36:27,447 32k INFO ====> Epoch: 83
2023-02-07 13:38:39,624 32k INFO ====> Epoch: 84
2023-02-07 13:39:13,048 32k INFO Train Epoch: 85 [9%]
2023-02-07 13:39:13,048 32k INFO [2.489978790283203, 2.357851505279541, 11.63048267364502, 19.388751983642578, 0.6406951546669006, 7400, 9.895542831185631e-05]
2023-02-07 13:40:54,422 32k INFO ====> Epoch: 85
2023-02-07 13:43:08,509 32k INFO ====> Epoch: 86
2023-02-07 13:44:55,190 32k INFO Train Epoch: 87 [36%]
2023-02-07 13:44:55,191 32k INFO [2.4624717235565186, 2.577338933944702, 12.478321075439453, 18.478761672973633, 0.7297022938728333, 7600, 9.89306910009569e-05]
2023-02-07 13:47:39,853 32k INFO ====> Epoch: 87
2023-02-07 13:52:32,007 32k INFO ====> Epoch: 88
2023-02-07 13:55:27,410 32k INFO Train Epoch: 89 [64%]
2023-02-07 13:55:27,411 32k INFO [2.430572986602783, 2.4413130283355713, 12.744434356689453, 18.379131317138672, 0.8439734578132629, 7800, 9.89059598739987e-05]
2023-02-07 13:56:41,864 32k INFO ====> Epoch: 89
2023-02-07 14:00:08,771 32k INFO ====> Epoch: 90
2023-02-07 14:02:55,544 32k INFO Train Epoch: 91 [91%]
2023-02-07 14:02:55,544 32k INFO [2.561445474624634, 2.1027495861053467, 12.336583137512207, 17.24584197998047, 0.9410633444786072, 8000, 9.888123492943583e-05]
2023-02-07 14:03:02,073 32k INFO Saving model and optimizer state at iteration 91 to ./logs\32k\G_8000.pth
2023-02-07 14:03:19,461 32k INFO Saving model and optimizer state at iteration 91 to ./logs\32k\D_8000.pth
2023-02-07 14:03:44,251 32k INFO ====> Epoch: 91
2023-02-07 14:07:20,629 32k INFO ====> Epoch: 92
2023-02-07 14:09:55,893 32k INFO ====> Epoch: 93
2023-02-07 14:10:51,286 32k INFO Train Epoch: 94 [18%]
2023-02-07 14:10:51,286 32k INFO [2.446747303009033, 2.4493002891540527, 12.713964462280273, 18.375844955444336, 0.9940114617347717, 8200, 9.884415910120204e-05]
2023-02-07 14:12:34,389 32k INFO ====> Epoch: 94
2023-02-07 14:14:49,239 32k INFO ====> Epoch: 95
2023-02-07 14:16:04,764 32k INFO Train Epoch: 96 [45%]
2023-02-07 14:16:04,764 32k INFO [2.501119613647461, 2.320194959640503, 12.225476264953613, 16.58141326904297, 0.6507038474082947, 8400, 9.881944960586671e-05]
2023-02-07 14:17:05,214 32k INFO ====> Epoch: 96
2023-02-07 14:19:18,111 32k INFO ====> Epoch: 97
2023-02-07 14:21:32,746 32k INFO Train Epoch: 98 [73%]
2023-02-07 14:21:32,747 32k INFO [2.3718044757843018, 2.317812204360962, 12.397613525390625, 18.040645599365234, 0.6666255593299866, 8600, 9.879474628751914e-05]
2023-02-07 14:22:02,311 32k INFO ====> Epoch: 98
2023-02-07 14:24:14,061 32k INFO ====> Epoch: 99
2023-02-07 14:26:28,249 32k INFO ====> Epoch: 100
2023-02-07 14:26:51,168 32k INFO Train Epoch: 101 [0%]
2023-02-07 14:26:51,168 32k INFO [2.661276340484619, 1.9135569334030151, 7.072793006896973, 14.621119499206543, 1.1172854900360107, 8800, 9.875770288847208e-05]
2023-02-07 14:28:41,419 32k INFO ====> Epoch: 101
2023-02-07 14:30:54,121 32k INFO ====> Epoch: 102
2023-02-07 14:31:47,886 32k INFO Train Epoch: 103 [27%]
2023-02-07 14:31:47,886 32k INFO [2.3931992053985596, 2.2867274284362793, 11.25641918182373, 17.3231143951416, 0.8995411992073059, 9000, 9.873301500583906e-05]
2023-02-07 14:31:52,318 32k INFO Saving model and optimizer state at iteration 103 to ./logs\32k\G_9000.pth
2023-02-07 14:32:10,592 32k INFO Saving model and optimizer state at iteration 103 to ./logs\32k\D_9000.pth
2023-02-07 14:33:33,837 32k INFO ====> Epoch: 103
2023-02-07 14:35:47,392 32k INFO ====> Epoch: 104
2023-02-07 14:37:10,995 32k INFO Train Epoch: 105 [55%]
2023-02-07 14:37:10,995 32k INFO [2.6397929191589355, 1.9650437831878662, 9.858829498291016, 16.57013511657715, 0.5786668062210083, 9200, 9.870833329479095e-05]
2023-02-07 14:38:01,496 32k INFO ====> Epoch: 105
2023-02-07 14:40:15,064 32k INFO ====> Epoch: 106
2023-02-07 14:42:10,744 32k INFO Train Epoch: 107 [82%]
2023-02-07 14:42:10,745 32k INFO [2.5161538124084473, 2.1780292987823486, 12.834193229675293, 17.641633987426758, 0.9528986811637878, 9400, 9.868365775378495e-05]
2023-02-07 14:42:30,034 32k INFO ====> Epoch: 107
2023-02-07 14:45:07,976 32k INFO ====> Epoch: 108
2023-02-07 14:47:20,329 32k INFO ====> Epoch: 109
2023-02-07 14:47:53,047 32k INFO Train Epoch: 110 [9%]
2023-02-07 14:47:53,048 32k INFO [2.442427635192871, 2.339263439178467, 11.993571281433105, 15.568887710571289, 0.6255054473876953, 9600, 9.864665600773098e-05]
2023-02-07 14:49:33,420 32k INFO ====> Epoch: 110
2023-02-07 14:51:46,975 32k INFO ====> Epoch: 111
2023-02-07 14:52:49,425 32k INFO Train Epoch: 112 [36%]
2023-02-07 14:52:49,425 32k INFO [2.4783666133880615, 2.35465145111084, 11.851914405822754, 16.24662208557129, 0.18825632333755493, 9800, 9.862199588508305e-05]
2023-02-07 14:53:58,353 32k INFO ====> Epoch: 112
2023-02-07 14:56:13,225 32k INFO ====> Epoch: 113
2023-02-07 14:57:45,173 32k INFO Train Epoch: 114 [64%]
2023-02-07 14:57:45,173 32k INFO [2.1118600368499756, 2.582984209060669, 7.736230850219727, 16.275470733642578, 0.714296817779541, 10000, 9.859734192708044e-05]
2023-02-07 14:57:49,644 32k INFO Saving model and optimizer state at iteration 114 to ./logs\32k\G_10000.pth
2023-02-07 14:58:06,448 32k INFO Saving model and optimizer state at iteration 114 to ./logs\32k\D_10000.pth
2023-02-07 14:58:49,496 32k INFO ====> Epoch: 114
2023-02-07 15:01:03,128 32k INFO ====> Epoch: 115
2023-02-07 15:03:06,945 32k INFO Train Epoch: 116 [91%]
2023-02-07 15:03:06,945 32k INFO [2.4191789627075195, 2.259423017501831, 10.048250198364258, 17.279565811157227, 0.4913417398929596, 10200, 9.857269413218213e-05]
2023-02-07 15:03:16,527 32k INFO ====> Epoch: 116
2023-02-07 15:05:28,914 32k INFO ====> Epoch: 117
2023-02-07 15:07:40,479 32k INFO ====> Epoch: 118
2023-02-07 15:08:23,214 32k INFO Train Epoch: 119 [18%]
2023-02-07 15:08:23,214 32k INFO [1.971365213394165, 2.894338607788086, 10.93272876739502, 15.680130004882812, 0.8430463671684265, 10400, 9.853573399228505e-05]
2023-02-07 15:09:53,437 32k INFO ====> Epoch: 119
2023-02-07 15:12:05,648 32k INFO ====> Epoch: 120
2023-02-07 15:13:18,841 32k INFO Train Epoch: 121 [45%]
2023-02-07 15:13:18,841 32k INFO [2.4416098594665527, 2.3172998428344727, 11.274493217468262, 18.475496292114258, 0.600033164024353, 10600, 9.851110159840781e-05]
2023-02-07 15:14:19,433 32k INFO ====> Epoch: 121
2023-02-07 15:16:31,421 32k INFO ====> Epoch: 122
2023-02-07 15:18:15,901 32k INFO Train Epoch: 123 [73%]
2023-02-07 15:18:15,901 32k INFO [2.402225971221924, 2.4027457237243652, 14.501314163208008, 18.68280029296875, 1.2635655403137207, 10800, 9.848647536224416e-05]
2023-02-07 15:18:45,304 32k INFO ====> Epoch: 123
2023-02-07 15:20:56,412 32k INFO ====> Epoch: 124
2023-02-07 15:23:09,824 32k INFO ====> Epoch: 125
2023-02-07 15:23:32,774 32k INFO Train Epoch: 126 [0%]
2023-02-07 15:23:32,775 32k INFO [2.6220815181732178, 2.037874221801758, 10.186017036437988, 16.901756286621094, 0.6591813564300537, 11000, 9.84495475503445e-05]
2023-02-07 15:23:37,377 32k INFO Saving model and optimizer state at iteration 126 to ./logs\32k\G_11000.pth
2023-02-07 15:23:53,672 32k INFO Saving model and optimizer state at iteration 126 to ./logs\32k\D_11000.pth
2023-02-07 15:25:45,526 32k INFO ====> Epoch: 126
2023-02-07 15:27:59,414 32k INFO ====> Epoch: 127
2023-02-07 15:28:52,412 32k INFO Train Epoch: 128 [27%]
2023-02-07 15:28:52,412 32k INFO [2.4518520832061768, 2.2550909519195557, 11.731948852539062, 15.13012409210205, 1.0153660774230957, 11200, 9.842493670173108e-05]
2023-02-07 15:30:12,852 32k INFO ====> Epoch: 128
2023-02-07 15:32:25,533 32k INFO ====> Epoch: 129
2023-02-07 15:33:48,107 32k INFO Train Epoch: 130 [55%]
2023-02-07 15:33:48,107 32k INFO [2.4804108142852783, 2.040149688720703, 10.706924438476562, 15.55229377746582, 0.7179027795791626, 11400, 9.840033200544528e-05]
2023-02-07 15:34:38,147 32k INFO ====> Epoch: 130
2023-02-07 15:36:52,502 32k INFO ====> Epoch: 131
2023-02-07 15:38:44,776 32k INFO Train Epoch: 132 [82%]
2023-02-07 15:38:44,776 32k INFO [2.5530967712402344, 2.3860535621643066, 12.224138259887695, 17.293977737426758, 0.9359664916992188, 11600, 9.837573345994909e-05]
2023-02-07 15:39:04,700 32k INFO ====> Epoch: 132
2023-02-07 15:41:17,332 32k INFO ====> Epoch: 133
2023-02-07 15:43:29,565 32k INFO ====> Epoch: 134
2023-02-07 15:44:02,326 32k INFO Train Epoch: 135 [9%]
2023-02-07 15:44:02,326 32k INFO [2.4722814559936523, 2.3017029762268066, 12.974905967712402, 15.865802764892578, 0.6799976229667664, 11800, 9.833884717107196e-05]
2023-02-07 15:45:42,945 32k INFO ====> Epoch: 135
2023-02-07 15:47:57,595 32k INFO ====> Epoch: 136
2023-02-07 15:49:01,296 32k INFO Train Epoch: 137 [36%]
2023-02-07 15:49:01,297 32k INFO [2.5428762435913086, 2.3497259616851807, 13.335613250732422, 17.625024795532227, 0.8169641494750977, 12000, 9.831426399582366e-05]
2023-02-07 15:49:05,721 32k INFO Saving model and optimizer state at iteration 137 to ./logs\32k\G_12000.pth
2023-02-07 15:49:24,121 32k INFO Saving model and optimizer state at iteration 137 to ./logs\32k\D_12000.pth
2023-02-07 15:50:37,819 32k INFO ====> Epoch: 137
2023-02-07 15:52:51,111 32k INFO ====> Epoch: 138
2023-02-07 15:54:25,928 32k INFO Train Epoch: 139 [64%]
2023-02-07 15:54:25,928 32k INFO [2.431962490081787, 2.0768401622772217, 11.875350952148438, 16.097793579101562, 0.7626942992210388, 12200, 9.828968696598508e-05]
2023-02-07 15:55:05,314 32k INFO ====> Epoch: 139
2023-02-07 15:57:18,392 32k INFO ====> Epoch: 140
2023-02-07 15:59:21,946 32k INFO Train Epoch: 141 [91%]
2023-02-07 15:59:21,947 32k INFO [2.2864203453063965, 2.4313251972198486, 9.686891555786133, 14.229582786560059, 0.9563338756561279, 12400, 9.826511608001993e-05]
2023-02-07 15:59:31,745 32k INFO ====> Epoch: 141
2023-02-07 16:01:42,737 32k INFO ====> Epoch: 142
2023-02-07 16:03:54,591 32k INFO ====> Epoch: 143
2023-02-07 16:04:37,359 32k INFO Train Epoch: 144 [18%]
2023-02-07 16:04:37,359 32k INFO [2.4183509349823, 2.2550737857818604, 11.305303573608398, 17.390254974365234, 0.8337610363960266, 12600, 9.822827126747529e-05]
2023-02-07 16:06:07,140 32k INFO ====> Epoch: 144
2023-02-07 16:08:19,593 32k INFO ====> Epoch: 145
2023-02-07 16:09:34,863 32k INFO Train Epoch: 146 [45%]
2023-02-07 16:09:34,863 32k INFO [2.463930130004883, 2.106257200241089, 10.743441581726074, 14.500619888305664, 0.16743861138820648, 12800, 9.820371573447515e-05]
2023-02-07 16:10:34,381 32k INFO ====> Epoch: 146
2023-02-07 16:12:47,597 32k INFO ====> Epoch: 147
2023-02-07 16:14:31,055 32k INFO Train Epoch: 148 [73%]
2023-02-07 16:14:31,055 32k INFO [2.6500000953674316, 2.072178602218628, 9.274537086486816, 13.794744491577148, 0.861379861831665, 13000, 9.817916633997459e-05]
2023-02-07 16:14:35,597 32k INFO Saving model and optimizer state at iteration 148 to ./logs\32k\G_13000.pth
2023-02-07 16:14:53,711 32k INFO Saving model and optimizer state at iteration 148 to ./logs\32k\D_13000.pth
2023-02-07 16:15:26,054 32k INFO ====> Epoch: 148
2023-02-07 16:17:40,362 32k INFO ====> Epoch: 149
2023-02-07 16:19:54,446 32k INFO ====> Epoch: 150
2023-02-07 16:20:17,171 32k INFO Train Epoch: 151 [0%]
2023-02-07 16:20:17,171 32k INFO [2.458037853240967, 2.1006457805633545, 10.140434265136719, 15.663694381713867, 0.6432273387908936, 13200, 9.814235375455375e-05]
2023-02-07 16:22:07,723 32k INFO ====> Epoch: 151
2023-02-07 16:24:36,251 32k INFO ====> Epoch: 152
2023-02-07 16:26:17,326 32k INFO Train Epoch: 153 [27%]
2023-02-07 16:26:17,327 32k INFO [2.397064447402954, 2.1317219734191895, 14.287264823913574, 16.660289764404297, 0.4551805853843689, 13400, 9.811781969958938e-05]
2023-02-07 16:28:47,391 32k INFO ====> Epoch: 153
2023-02-07 16:31:01,375 32k INFO ====> Epoch: 154
2023-02-07 16:32:32,011 32k INFO Train Epoch: 155 [55%]
2023-02-07 16:32:32,012 32k INFO [2.364081382751465, 2.2779157161712646, 10.857946395874023, 17.385780334472656, 0.44523704051971436, 13600, 9.809329177775541e-05]
2023-02-07 16:33:24,592 32k INFO ====> Epoch: 155
2023-02-07 16:35:51,324 32k INFO ====> Epoch: 156
2023-02-07 16:37:44,299 32k INFO Train Epoch: 157 [82%]
2023-02-07 16:37:44,299 32k INFO [2.509974718093872, 2.240321159362793, 10.872742652893066, 16.8741512298584, 0.6555373668670654, 13800, 9.806876998751865e-05]
2023-02-07 16:38:03,447 32k INFO ====> Epoch: 157
2023-02-07 16:40:17,033 32k INFO ====> Epoch: 158
2023-02-07 16:42:44,793 32k INFO ====> Epoch: 159
2023-02-07 16:43:20,826 32k INFO Train Epoch: 160 [9%]
2023-02-07 16:43:20,826 32k INFO [2.423384428024292, 2.4248738288879395, 11.930776596069336, 16.296314239501953, 0.42344143986701965, 14000, 9.803199879555537e-05]
2023-02-07 16:43:25,921 32k INFO Saving model and optimizer state at iteration 160 to ./logs\32k\G_14000.pth
2023-02-07 16:43:43,660 32k INFO Saving model and optimizer state at iteration 160 to ./logs\32k\D_14000.pth
2023-02-07 16:46:17,844 32k INFO ====> Epoch: 160
2023-02-07 16:49:43,811 32k INFO ====> Epoch: 161
2023-02-07 16:51:59,890 32k INFO Train Epoch: 162 [36%]
2023-02-07 16:51:59,890 32k INFO [2.374708652496338, 2.5799448490142822, 8.881999969482422, 15.167359352111816, 0.5163499116897583, 14200, 9.800749232760646e-05]
2023-02-07 16:53:37,318 32k INFO ====> Epoch: 162
2023-02-07 16:55:49,815 32k INFO ====> Epoch: 163
2023-02-07 16:57:23,388 32k INFO Train Epoch: 164 [64%]
2023-02-07 16:57:23,389 32k INFO [2.470241069793701, 2.37218976020813, 9.033040046691895, 14.695220947265625, 0.9334152936935425, 14400, 9.798299198589162e-05]
2023-02-07 16:58:03,354 32k INFO ====> Epoch: 164
2023-02-07 17:00:16,412 32k INFO ====> Epoch: 165
2023-02-07 17:02:20,963 32k INFO Train Epoch: 166 [91%]
2023-02-07 17:02:20,964 32k INFO [2.600351333618164, 2.1910109519958496, 8.723526954650879, 14.268444061279297, 1.0583291053771973, 14600, 9.795849776887939e-05]
2023-02-07 17:02:34,097 32k INFO ====> Epoch: 166
2023-02-07 17:05:33,762 32k INFO ====> Epoch: 167
2023-02-07 17:08:26,547 32k INFO ====> Epoch: 168
2023-02-07 17:09:12,656 32k INFO Train Epoch: 169 [18%]
2023-02-07 17:09:12,656 32k INFO [2.4051764011383057, 2.416426658630371, 11.779657363891602, 18.174877166748047, 0.8009364008903503, 14800, 9.792176792382932e-05]
2023-02-07 17:10:42,842 32k INFO ====> Epoch: 169
2023-02-07 17:12:55,974 32k INFO ====> Epoch: 170
2023-02-07 17:14:08,952 32k INFO Train Epoch: 171 [45%]
2023-02-07 17:14:08,953 32k INFO [2.5530202388763428, 2.314896583557129, 12.335034370422363, 18.924882888793945, 0.3423107862472534, 15000, 9.789728901187598e-05]
2023-02-07 17:14:13,613 32k INFO Saving model and optimizer state at iteration 171 to ./logs\32k\G_15000.pth
2023-02-07 17:14:31,179 32k INFO Saving model and optimizer state at iteration 171 to ./logs\32k\D_15000.pth
2023-02-07 17:15:34,281 32k INFO ====> Epoch: 171
2023-02-07 17:17:47,533 32k INFO ====> Epoch: 172
2023-02-07 17:19:31,440 32k INFO Train Epoch: 173 [73%]
2023-02-07 17:19:31,441 32k INFO [2.415375232696533, 2.302281379699707, 13.263263702392578, 17.304351806640625, 1.09013831615448, 15200, 9.787281621926815e-05]
2023-02-07 17:20:00,640 32k INFO ====> Epoch: 173
2023-02-07 17:22:13,373 32k INFO ====> Epoch: 174
2023-02-07 17:24:27,188 32k INFO ====> Epoch: 175
2023-02-07 17:24:49,986 32k INFO Train Epoch: 176 [0%]
2023-02-07 17:24:49,987 32k INFO [2.4495227336883545, 2.2643768787384033, 13.395185470581055, 18.15376853942871, 0.45867687463760376, 15400, 9.783611850078301e-05]
2023-02-07 17:26:41,785 32k INFO ====> Epoch: 176
2023-02-07 17:28:53,950 32k INFO ====> Epoch: 177
2023-02-07 17:29:46,647 32k INFO Train Epoch: 178 [27%]
2023-02-07 17:29:46,647 32k INFO [2.297741651535034, 2.258887529373169, 12.602045059204102, 16.67408561706543, 0.6464719772338867, 15600, 9.781166099984716e-05]
2023-02-07 17:31:07,602 32k INFO ====> Epoch: 178
2023-02-07 17:33:21,685 32k INFO ====> Epoch: 179
2023-02-07 17:34:45,434 32k INFO Train Epoch: 180 [55%]
2023-02-07 17:34:45,434 32k INFO [2.4268381595611572, 2.02866792678833, 7.66528844833374, 12.839248657226562, 0.8188288807868958, 15800, 9.778720961290439e-05]
2023-02-07 17:35:35,680 32k INFO ====> Epoch: 180
2023-02-07 17:37:48,992 32k INFO ====> Epoch: 181
2023-02-07 17:39:42,266 32k INFO Train Epoch: 182 [82%]
2023-02-07 17:39:42,267 32k INFO [2.4471888542175293, 2.309143543243408, 14.801136016845703, 16.42742919921875, 0.8475450277328491, 16000, 9.776276433842631e-05]
2023-02-07 17:39:46,929 32k INFO Saving model and optimizer state at iteration 182 to ./logs\32k\G_16000.pth
2023-02-07 17:40:06,027 32k INFO Saving model and optimizer state at iteration 182 to ./logs\32k\D_16000.pth
2023-02-07 17:40:28,918 32k INFO ====> Epoch: 182
2023-02-07 17:42:42,741 32k INFO ====> Epoch: 183
2023-02-07 17:44:55,233 32k INFO ====> Epoch: 184
2023-02-07 17:45:28,630 32k INFO Train Epoch: 185 [9%]
2023-02-07 17:45:28,630 32k INFO [2.4997944831848145, 2.3628575801849365, 9.75255012512207, 15.626605987548828, 0.8665064573287964, 16200, 9.772610788423802e-05]
2023-02-07 17:47:09,398 32k INFO ====> Epoch: 185
2023-02-07 17:49:21,874 32k INFO ====> Epoch: 186
2023-02-07 17:50:26,652 32k INFO Train Epoch: 187 [36%]
2023-02-07 17:50:26,653 32k INFO [2.6311392784118652, 2.372824192047119, 11.809494018554688, 17.118436813354492, 0.47372499108314514, 16400, 9.77016778842374e-05]
2023-02-07 17:51:35,978 32k INFO ====> Epoch: 187
2023-02-07 17:53:49,374 32k INFO ====> Epoch: 188
2023-02-07 17:55:23,233 32k INFO Train Epoch: 189 [64%]
2023-02-07 17:55:23,233 32k INFO [2.4115920066833496, 2.6004247665405273, 10.292720794677734, 13.990850448608398, 0.6128233671188354, 16600, 9.767725399135504e-05]
2023-02-07 17:56:02,183 32k INFO ====> Epoch: 189
2023-02-07 17:58:15,629 32k INFO ====> Epoch: 190
2023-02-07 18:00:18,697 32k INFO Train Epoch: 191 [91%]
2023-02-07 18:00:18,698 32k INFO [2.476590633392334, 2.3959107398986816, 9.825133323669434, 17.272159576416016, 0.5982983112335205, 16800, 9.765283620406429e-05]
2023-02-07 18:00:28,315 32k INFO ====> Epoch: 191
2023-02-07 18:02:42,561 32k INFO ====> Epoch: 192
2023-02-07 18:04:54,987 32k INFO ====> Epoch: 193
2023-02-07 18:05:37,595 32k INFO Train Epoch: 194 [18%]
2023-02-07 18:05:37,595 32k INFO [2.5469231605529785, 2.261059045791626, 12.21806526184082, 18.74179458618164, 0.7255897521972656, 17000, 9.761622096777372e-05]
2023-02-07 18:05:42,091 32k INFO Saving model and optimizer state at iteration 194 to ./logs\32k\G_17000.pth
2023-02-07 18:06:01,137 32k INFO Saving model and optimizer state at iteration 194 to ./logs\32k\D_17000.pth
2023-02-07 18:07:34,248 32k INFO ====> Epoch: 194
2023-02-07 18:09:47,906 32k INFO ====> Epoch: 195
2023-02-07 18:11:02,084 32k INFO Train Epoch: 196 [45%]
2023-02-07 18:11:02,084 32k INFO [2.4885900020599365, 2.383333683013916, 9.689787864685059, 13.685766220092773, 0.9633486866950989, 17200, 9.759181843778522e-05]
2023-02-07 18:12:02,361 32k INFO ====> Epoch: 196
2023-02-07 18:16:49,498 32k INFO ====> Epoch: 197
2023-02-07 18:20:33,618 32k INFO Train Epoch: 198 [73%]
2023-02-07 18:20:33,618 32k INFO [2.499962568283081, 2.4040303230285645, 12.432945251464844, 17.229080200195312, 0.8561845421791077, 17400, 9.756742200804793e-05]
2023-02-07 18:21:47,702 32k INFO ====> Epoch: 198
2023-02-07 18:26:57,720 32k INFO ====> Epoch: 199
2023-02-07 18:31:17,795 32k INFO ====> Epoch: 200
2023-02-07 18:31:43,198 32k INFO Train Epoch: 201 [0%]
2023-02-07 18:31:43,198 32k INFO [2.4892737865448, 2.2194271087646484, 12.615705490112305, 16.821392059326172, 1.0796860456466675, 17600, 9.753083879807726e-05]
2023-02-07 18:36:01,686 32k INFO ====> Epoch: 201
2023-02-07 18:40:55,903 32k INFO ====> Epoch: 202
2023-02-07 18:42:29,324 32k INFO Train Epoch: 203 [27%]
2023-02-07 18:42:29,325 32k INFO [2.3428452014923096, 2.189953088760376, 12.907392501831055, 15.840951919555664, 0.48792731761932373, 17800, 9.750645761229709e-05]
2023-02-07 18:45:49,509 32k INFO ====> Epoch: 203
2023-02-07 18:50:48,031 32k INFO ====> Epoch: 204
2023-02-07 18:53:31,402 32k INFO Train Epoch: 205 [55%]
2023-02-07 18:53:31,402 32k INFO [2.4485435485839844, 2.108217716217041, 11.225994110107422, 14.583245277404785, 0.8323250412940979, 18000, 9.748208252143241e-05]
2023-02-07 18:53:35,876 32k INFO Saving model and optimizer state at iteration 205 to ./logs\32k\G_18000.pth
2023-02-07 18:53:52,648 32k INFO Saving model and optimizer state at iteration 205 to ./logs\32k\D_18000.pth
2023-02-07 18:55:56,093 32k INFO ====> Epoch: 205
2023-02-07 19:00:33,984 32k INFO ====> Epoch: 206
2023-02-07 19:04:49,445 32k INFO Train Epoch: 207 [82%]
2023-02-07 19:04:49,446 32k INFO [2.674133062362671, 2.064514636993408, 5.687127113342285, 13.519594192504883, 0.5315198302268982, 18200, 9.745771352395957e-05]
2023-02-07 19:05:35,719 32k INFO ====> Epoch: 207
2023-02-07 19:10:13,777 32k INFO ====> Epoch: 208
2023-02-07 19:14:47,548 32k INFO ====> Epoch: 209
2023-02-07 19:15:35,383 32k INFO Train Epoch: 210 [9%]
2023-02-07 19:15:35,383 32k INFO [2.5437965393066406, 2.2913265228271484, 13.787505149841309, 18.729778289794922, 1.0571695566177368, 18400, 9.742117144952805e-05]
2023-02-07 19:19:16,628 32k INFO ====> Epoch: 210
2023-02-07 19:23:59,758 32k INFO ====> Epoch: 211
2023-02-07 19:26:01,081 32k INFO Train Epoch: 212 [36%]
2023-02-07 19:26:01,081 32k INFO [2.5189802646636963, 2.5148799419403076, 15.009998321533203, 17.97093391418457, 0.9030418395996094, 18600, 9.739681767887146e-05]
2023-02-07 19:28:45,806 32k INFO ====> Epoch: 212
2023-02-07 19:33:39,228 32k INFO ====> Epoch: 213
2023-02-07 19:36:49,889 32k INFO Train Epoch: 214 [64%]
2023-02-07 19:36:49,889 32k INFO [2.323404312133789, 2.521040916442871, 12.572664260864258, 14.952072143554688, 0.69417405128479, 18800, 9.7372469996277e-05]
2023-02-07 19:38:15,620 32k INFO ====> Epoch: 214
2023-02-07 19:43:04,992 32k INFO ====> Epoch: 215
2023-02-07 19:47:35,219 32k INFO Train Epoch: 216 [91%]
2023-02-07 19:47:35,219 32k INFO [2.5679819583892822, 2.0207834243774414, 8.832568168640137, 14.715601921081543, 0.6317256093025208, 19000, 9.734812840022278e-05]
2023-02-07 19:47:39,759 32k INFO Saving model and optimizer state at iteration 216 to ./logs\32k\G_19000.pth
2023-02-07 19:47:57,845 32k INFO Saving model and optimizer state at iteration 216 to ./logs\32k\D_19000.pth
2023-02-07 19:48:27,521 32k INFO ====> Epoch: 216
2023-02-07 19:53:09,847 32k INFO ====> Epoch: 217
2023-02-07 19:57:51,694 32k INFO ====> Epoch: 218
2023-02-07 19:59:01,703 32k INFO Train Epoch: 219 [18%]
2023-02-07 19:59:01,704 32k INFO [2.5336737632751465, 2.1829769611358643, 12.086270332336426, 18.775772094726562, 0.6264281868934631, 19200, 9.731162741507607e-05]
2023-02-07 20:02:29,398 32k INFO ====> Epoch: 219
2023-02-07 20:07:18,152 32k INFO ====> Epoch: 220
2023-02-07 20:09:32,665 32k INFO Train Epoch: 221 [45%]
2023-02-07 20:09:32,666 32k INFO [2.55208683013916, 2.1489357948303223, 9.024528503417969, 12.344110488891602, 0.21028947830200195, 19400, 9.728730102871649e-05]
2023-02-07 20:12:01,864 32k INFO ====> Epoch: 221
2023-02-07 20:17:21,537 32k INFO ====> Epoch: 222
2023-02-07 20:21:03,459 32k INFO Train Epoch: 223 [73%]
2023-02-07 20:21:03,460 32k INFO [2.3493776321411133, 2.453810214996338, 10.56823444366455, 16.656709671020508, 0.6454640626907349, 19600, 9.726298072357337e-05]
2023-02-07 20:22:13,720 32k INFO ====> Epoch: 223
2023-02-07 20:27:00,082 32k INFO ====> Epoch: 224
2023-02-07 20:31:49,803 32k INFO ====> Epoch: 225
2023-02-07 20:32:13,328 32k INFO Train Epoch: 226 [0%]
2023-02-07 20:32:13,329 32k INFO [2.4435298442840576, 2.232247829437256, 13.443621635437012, 17.813751220703125, 0.37300077080726624, 19800, 9.722651166481428e-05]
2023-02-07 20:36:33,574 32k INFO ====> Epoch: 226
2023-02-07 20:41:13,736 32k INFO ====> Epoch: 227
2023-02-07 20:42:51,449 32k INFO Train Epoch: 228 [27%]
2023-02-07 20:42:51,449 32k INFO [2.326092004776001, 2.2804453372955322, 11.041282653808594, 14.598264694213867, 0.5883763432502747, 20000, 9.720220655606233e-05]
2023-02-07 20:42:55,938 32k INFO Saving model and optimizer state at iteration 228 to ./logs\32k\G_20000.pth
2023-02-07 20:43:12,387 32k INFO Saving model and optimizer state at iteration 228 to ./logs\32k\D_20000.pth
2023-02-07 20:46:16,362 32k INFO ====> Epoch: 228
2023-02-07 20:48:28,613 32k INFO ====> Epoch: 229
2023-02-07 20:49:53,099 32k INFO Train Epoch: 230 [55%]
2023-02-07 20:49:53,100 32k INFO [2.47762393951416, 2.052753448486328, 9.87153434753418, 14.791862487792969, 0.4688096046447754, 20200, 9.717790752320778e-05]
2023-02-07 20:50:42,766 32k INFO ====> Epoch: 230
2023-02-07 20:53:21,743 32k INFO ====> Epoch: 231
2023-02-07 20:55:22,768 32k INFO Train Epoch: 232 [82%]
2023-02-07 20:55:22,768 32k INFO [2.5036845207214355, 2.3738698959350586, 12.126296997070312, 15.546420097351074, 0.8534035682678223, 20400, 9.715361456473177e-05]
2023-02-07 20:55:38,686 32k INFO ====> Epoch: 232
2023-02-07 20:57:30,092 32k INFO ====> Epoch: 233
2023-02-07 20:59:21,099 32k INFO ====> Epoch: 234
2023-02-07 20:59:52,118 32k INFO Train Epoch: 235 [9%]
2023-02-07 20:59:52,118 32k INFO [2.664794445037842, 2.4800596237182617, 11.827136039733887, 18.01250457763672, 0.596635639667511, 20600, 9.711718651315591e-05]
2023-02-07 21:01:16,479 32k INFO ====> Epoch: 235
2023-02-07 21:03:07,297 32k INFO ====> Epoch: 236
2023-02-07 21:04:02,363 32k INFO Train Epoch: 237 [36%]
2023-02-07 21:04:02,364 32k INFO [2.4213716983795166, 2.2646498680114746, 11.426438331604004, 16.494094848632812, 1.1573891639709473, 20800, 9.709290873398365e-05]
2023-02-07 21:04:58,950 32k INFO ====> Epoch: 237
2023-02-07 21:06:50,639 32k INFO ====> Epoch: 238
2023-02-07 21:08:10,151 32k INFO Train Epoch: 239 [64%]
2023-02-07 21:08:10,151 32k INFO [2.4733920097351074, 2.557682991027832, 10.309959411621094, 17.214019775390625, 0.5586072206497192, 21000, 9.706863702387684e-05]
2023-02-07 21:08:14,876 32k INFO Saving model and optimizer state at iteration 239 to ./logs\32k\G_21000.pth
2023-02-07 21:08:30,907 32k INFO Saving model and optimizer state at iteration 239 to ./logs\32k\D_21000.pth
2023-02-07 21:09:11,437 32k INFO ====> Epoch: 239
2023-02-07 21:11:46,818 32k INFO ====> Epoch: 240
2023-02-07 21:13:32,984 32k INFO Train Epoch: 241 [91%]
2023-02-07 21:13:32,985 32k INFO [2.664260149002075, 2.0642004013061523, 10.666601181030273, 18.099609375, 0.731969952583313, 21200, 9.704437138131832e-05]
2023-02-07 21:13:41,166 32k INFO ====> Epoch: 241
2023-02-07 21:16:14,556 32k INFO ====> Epoch: 242
2023-02-07 21:18:13,625 32k INFO ====> Epoch: 243
2023-02-07 21:18:58,682 32k INFO Train Epoch: 244 [18%]
2023-02-07 21:18:58,683 32k INFO [2.62353777885437, 2.2757506370544434, 9.752870559692383, 16.047285079956055, 0.5307028889656067, 21400, 9.700798429081568e-05]
2023-02-07 21:20:17,243 32k INFO ====> Epoch: 244
2023-02-07 21:22:09,430 32k INFO ====> Epoch: 245
2023-02-07 21:23:12,158 32k INFO Train Epoch: 246 [45%]
2023-02-07 21:23:12,158 32k INFO [2.376497745513916, 2.208364725112915, 10.225717544555664, 14.688340187072754, 0.6754216551780701, 21600, 9.698373381049272e-05]
2023-02-07 21:24:00,240 32k INFO ====> Epoch: 246
2023-02-07 21:25:50,642 32k INFO ====> Epoch: 247
2023-02-07 21:27:17,392 32k INFO Train Epoch: 248 [73%]
2023-02-07 21:27:17,393 32k INFO [2.221879243850708, 2.594529867172241, 9.369111061096191, 16.81258773803711, 1.0489362478256226, 21800, 9.695948939241093e-05]
2023-02-07 21:27:41,245 32k INFO ====> Epoch: 248
2023-02-07 21:29:31,673 32k INFO ====> Epoch: 249
2023-02-07 21:31:21,916 32k INFO ====> Epoch: 250
2023-02-07 21:31:44,284 32k INFO Train Epoch: 251 [0%]
2023-02-07 21:31:44,285 32k INFO [2.5241942405700684, 2.3509469032287598, 12.539299011230469, 17.526670455932617, 0.7536979913711548, 22000, 9.692313412867544e-05]
2023-02-07 21:31:48,766 32k INFO Saving model and optimizer state at iteration 251 to ./logs\32k\G_22000.pth
2023-02-07 21:32:06,782 32k INFO Saving model and optimizer state at iteration 251 to ./logs\32k\D_22000.pth
2023-02-07 21:33:38,411 32k INFO ====> Epoch: 251
2023-02-07 21:35:28,990 32k INFO ====> Epoch: 252
2023-02-07 21:36:15,628 32k INFO Train Epoch: 253 [27%]
2023-02-07 21:36:15,629 32k INFO [2.3804070949554443, 2.359945058822632, 10.921401023864746, 13.723844528198242, 0.29848602414131165, 22200, 9.689890485956725e-05]
2023-02-07 21:37:19,990 32k INFO ====> Epoch: 253
2023-02-07 21:39:24,342 32k INFO ====> Epoch: 254
2023-02-07 21:41:02,731 32k INFO Train Epoch: 255 [55%]
2023-02-07 21:41:02,731 32k INFO [2.3381145000457764, 2.2890772819519043, 9.941591262817383, 14.795817375183105, 0.8626958131790161, 22400, 9.687468164739773e-05]
2023-02-07 21:41:58,308 32k INFO ====> Epoch: 255
2023-02-07 21:44:30,929 32k INFO ====> Epoch: 256
2023-02-07 21:46:25,585 32k INFO Train Epoch: 257 [82%]
2023-02-07 21:46:25,586 32k INFO [2.6762328147888184, 2.2302746772766113, 10.52723503112793, 12.506368637084961, 1.073678970336914, 22600, 9.685046449065278e-05]
2023-02-07 21:46:42,883 32k INFO ====> Epoch: 257
2023-02-07 21:48:33,265 32k INFO ====> Epoch: 258
2023-02-07 21:50:23,706 32k INFO ====> Epoch: 259
2023-02-07 21:50:54,245 32k INFO Train Epoch: 260 [9%]
2023-02-07 21:50:54,245 32k INFO [2.3950483798980713, 2.347141742706299, 13.781299591064453, 18.84493637084961, 0.526691198348999, 22800, 9.681415010614512e-05]
2023-02-07 21:52:14,694 32k INFO ====> Epoch: 260
2023-02-07 21:54:05,225 32k INFO ====> Epoch: 261
2023-02-07 21:54:59,831 32k INFO Train Epoch: 262 [36%]
2023-02-07 21:54:59,831 32k INFO [2.555619716644287, 2.2212436199188232, 9.575003623962402, 16.177812576293945, 0.7556395530700684, 23000, 9.678994808133967e-05]
2023-02-07 21:55:04,312 32k INFO Saving model and optimizer state at iteration 262 to ./logs\32k\G_23000.pth
2023-02-07 21:55:22,224 32k INFO Saving model and optimizer state at iteration 262 to ./logs\32k\D_23000.pth
2023-02-07 21:56:21,579 32k INFO ====> Epoch: 262
2023-02-07 21:58:12,231 32k INFO ====> Epoch: 263
2023-02-07 21:59:31,353 32k INFO Train Epoch: 264 [64%]
2023-02-07 21:59:31,354 32k INFO [2.291395664215088, 2.593254566192627, 9.18558406829834, 14.170002937316895, 0.9322950839996338, 23200, 9.676575210666227e-05]
2023-02-07 22:00:03,624 32k INFO ====> Epoch: 264
2023-02-07 22:01:54,230 32k INFO ====> Epoch: 265
2023-02-07 22:04:00,545 32k INFO Train Epoch: 266 [91%]
2023-02-07 22:04:00,547 32k INFO [2.5157217979431152, 2.2893288135528564, 7.338489532470703, 14.968390464782715, 0.9041028618812561, 23400, 9.674156218060047e-05]
2023-02-07 22:04:12,431 32k INFO ====> Epoch: 266
2023-02-07 22:06:42,140 32k INFO ====> Epoch: 267
2023-02-07 22:08:39,638 32k INFO ====> Epoch: 268
2023-02-07 22:09:18,181 32k INFO Train Epoch: 269 [18%]
2023-02-07 22:09:18,182 32k INFO [2.585972785949707, 2.461054563522339, 12.841654777526855, 18.517820358276367, 0.6318978071212769, 23600, 9.670528862935451e-05]
2023-02-07 22:10:30,561 32k INFO ====> Epoch: 269
2023-02-07 22:12:21,413 32k INFO ====> Epoch: 270
2023-02-07 22:13:24,801 32k INFO Train Epoch: 271 [45%]
2023-02-07 22:13:24,802 32k INFO [2.421670913696289, 2.4571542739868164, 13.116412162780762, 15.18135929107666, 0.4794858396053314, 23800, 9.668111381821731e-05]
2023-02-07 22:14:19,598 32k INFO ====> Epoch: 271
2023-02-07 22:16:14,524 32k INFO ====> Epoch: 272
2023-02-07 22:17:44,409 32k INFO Train Epoch: 273 [73%]
2023-02-07 22:17:44,410 32k INFO [2.4379258155822754, 2.2511990070343018, 12.288382530212402, 17.285614013671875, 0.5320841073989868, 24000, 9.665694505040515e-05]
2023-02-07 22:17:48,915 32k INFO Saving model and optimizer state at iteration 273 to ./logs\32k\G_24000.pth
2023-02-07 22:18:05,358 32k INFO Saving model and optimizer state at iteration 273 to ./logs\32k\D_24000.pth
2023-02-07 22:18:32,487 32k INFO ====> Epoch: 273
2023-02-07 22:20:23,184 32k INFO ====> Epoch: 274
2023-02-07 22:22:13,578 32k INFO ====> Epoch: 275
2023-02-07 22:22:35,919 32k INFO Train Epoch: 276 [0%]
2023-02-07 22:22:35,919 32k INFO [2.4696168899536133, 2.276357889175415, 15.216888427734375, 18.051366806030273, 0.7219808101654053, 24200, 9.662070322661676e-05]
2023-02-07 22:24:04,182 32k INFO ====> Epoch: 276
2023-02-07 22:25:54,360 32k INFO ====> Epoch: 277
2023-02-07 22:26:40,891 32k INFO Train Epoch: 278 [27%]
2023-02-07 22:26:40,891 32k INFO [2.361176013946533, 2.4721574783325195, 12.992560386657715, 16.2576847076416, 0.4791528880596161, 24400, 9.659654956050859e-05]
2023-02-07 22:27:45,265 32k INFO ====> Epoch: 278
2023-02-07 22:29:35,652 32k INFO ====> Epoch: 279
2023-02-07 22:30:46,343 32k INFO Train Epoch: 280 [55%]
2023-02-07 22:30:46,344 32k INFO [2.398617744445801, 2.2190635204315186, 9.964317321777344, 16.1744384765625, 0.6419702172279358, 24600, 9.657240193243954e-05]
2023-02-07 22:31:26,369 32k INFO ====> Epoch: 280
2023-02-07 22:33:16,339 32k INFO ====> Epoch: 281
2023-02-07 22:34:51,532 32k INFO Train Epoch: 282 [82%]
2023-02-07 22:34:51,532 32k INFO [2.4355669021606445, 2.365387201309204, 14.452692985534668, 18.16908073425293, 0.7730005979537964, 24800, 9.65482603409002e-05]
2023-02-07 22:35:07,353 32k INFO ====> Epoch: 282
2023-02-07 22:37:00,123 32k INFO ====> Epoch: 283
2023-02-07 22:38:59,381 32k INFO ====> Epoch: 284
2023-02-07 22:39:31,093 32k INFO Train Epoch: 285 [9%]
2023-02-07 22:39:31,093 32k INFO [2.555506944656372, 2.110740900039673, 8.73676872253418, 14.878194808959961, 0.5724442601203918, 25000, 9.651205926878348e-05]
2023-02-07 22:39:35,607 32k INFO Saving model and optimizer state at iteration 285 to ./logs\32k\G_25000.pth
2023-02-07 22:39:50,520 32k INFO Saving model and optimizer state at iteration 285 to ./logs\32k\D_25000.pth
2023-02-07 22:41:21,915 32k INFO ====> Epoch: 285
2023-02-07 22:43:21,782 32k INFO ====> Epoch: 286
2023-02-07 22:44:19,787 32k INFO Train Epoch: 287 [36%]
2023-02-07 22:44:19,788 32k INFO [2.4445996284484863, 2.372640371322632, 12.413557052612305, 17.518985748291016, 0.5160245895385742, 25200, 9.64879327619672e-05]
2023-02-07 22:45:21,196 32k INFO ====> Epoch: 287
2023-02-07 22:47:19,661 32k INFO ====> Epoch: 288
2023-02-07 22:48:43,726 32k INFO Train Epoch: 289 [64%]
2023-02-07 22:48:43,726 32k INFO [2.4691805839538574, 2.2594118118286133, 12.230856895446777, 14.857041358947754, 0.8859390616416931, 25400, 9.646381228640066e-05]
2023-02-07 22:49:18,868 32k INFO ====> Epoch: 289
2023-02-07 22:51:17,911 32k INFO ====> Epoch: 290
2023-02-07 22:53:08,763 32k INFO Train Epoch: 291 [91%]
2023-02-07 22:53:08,763 32k INFO [2.9651851654052734, 1.7647536993026733, 4.42325496673584, 10.037627220153809, 0.7796562910079956, 25600, 9.643969784057613e-05]
2023-02-07 22:53:17,282 32k INFO ====> Epoch: 291
2023-02-07 22:55:35,666 32k INFO ====> Epoch: 292
2023-02-07 22:57:30,190 32k INFO ====> Epoch: 293
2023-02-07 22:58:09,441 32k INFO Train Epoch: 294 [18%]
2023-02-07 22:58:09,442 32k INFO [2.373373508453369, 2.252485990524292, 12.78847885131836, 16.72306251525879, 0.606884241104126, 25800, 9.640353747430838e-05]
2023-02-07 22:59:31,654 32k INFO ====> Epoch: 294
2023-02-07 23:02:17,308 32k INFO ====> Epoch: 295
2023-02-07 23:03:31,257 32k INFO Train Epoch: 296 [45%]
2023-02-07 23:03:31,274 32k INFO [2.303215503692627, 2.5511465072631836, 13.934648513793945, 18.49505043029785, 0.8854227066040039, 26000, 9.637943809624507e-05]
2023-02-07 23:03:36,038 32k INFO Saving model and optimizer state at iteration 296 to ./logs\32k\G_26000.pth
2023-02-07 23:03:54,027 32k INFO Saving model and optimizer state at iteration 296 to ./logs\32k\D_26000.pth
2023-02-07 23:04:45,385 32k INFO ====> Epoch: 296
2023-02-07 23:06:40,912 32k INFO ====> Epoch: 297
2023-02-07 23:08:12,513 32k INFO Train Epoch: 298 [73%]
2023-02-07 23:08:12,513 32k INFO [2.4901669025421143, 2.450923442840576, 12.483206748962402, 15.857170104980469, 0.4418282210826874, 26200, 9.635534474264972e-05]
2023-02-07 23:08:37,120 32k INFO ====> Epoch: 298
2023-02-07 23:10:31,324 32k INFO ====> Epoch: 299
2023-02-07 23:12:24,564 32k INFO ====> Epoch: 300
2023-02-07 23:12:47,305 32k INFO Train Epoch: 301 [0%]
2023-02-07 23:12:47,305 32k INFO [2.5084266662597656, 2.153733730316162, 12.863175392150879, 16.530397415161133, 0.8135973811149597, 26400, 9.631921600483981e-05]
2023-02-07 23:14:17,760 32k INFO ====> Epoch: 301
2023-02-07 23:16:11,232 32k INFO ====> Epoch: 302
2023-02-07 23:16:58,909 32k INFO Train Epoch: 303 [27%]
2023-02-07 23:16:58,910 32k INFO [2.3788869380950928, 2.2787249088287354, 11.330511093139648, 14.017260551452637, 0.4352797567844391, 26600, 9.629513770582634e-05]
2023-02-07 23:18:07,967 32k INFO ====> Epoch: 303
2023-02-07 23:20:14,895 32k INFO ====> Epoch: 304
2023-02-07 23:21:37,923 32k INFO Train Epoch: 305 [55%]
2023-02-07 23:21:37,923 32k INFO [2.2762134075164795, 2.4930131435394287, 11.308450698852539, 16.77684783935547, 0.5349023342132568, 26800, 9.627106542601141e-05]
2023-02-07 23:22:23,260 32k INFO ====> Epoch: 305
2023-02-07 23:24:24,074 32k INFO ====> Epoch: 306
2023-02-07 23:26:03,684 32k INFO Train Epoch: 307 [82%]
2023-02-07 23:26:03,685 32k INFO [2.4888241291046143, 2.198373794555664, 12.962141990661621, 16.00810432434082, 1.0677847862243652, 27000, 9.62469991638903e-05]
2023-02-07 23:26:08,344 32k INFO Saving model and optimizer state at iteration 307 to ./logs\32k\G_27000.pth
2023-02-07 23:26:26,856 32k INFO Saving model and optimizer state at iteration 307 to ./logs\32k\D_27000.pth
2023-02-07 23:26:46,493 32k INFO ====> Epoch: 307
2023-02-07 23:28:59,272 32k INFO ====> Epoch: 308
2023-02-07 23:33:03,919 32k INFO ====> Epoch: 309
2023-02-07 23:33:46,219 32k INFO Train Epoch: 310 [9%]
2023-02-07 23:33:46,220 32k INFO [2.477017879486084, 2.274493455886841, 9.995453834533691, 15.900580406188965, 0.2754864990711212, 27200, 9.621091105059392e-05]
2023-02-07 23:35:42,296 32k INFO ====> Epoch: 310
2023-02-07 23:38:21,168 32k INFO ====> Epoch: 311
2023-02-07 23:39:25,317 32k INFO Train Epoch: 312 [36%]
2023-02-07 23:39:25,317 32k INFO [2.5796499252319336, 2.222482204437256, 10.898737907409668, 16.291173934936523, 1.0068455934524536, 27400, 9.618685982612675e-05]
2023-02-07 23:40:36,498 32k INFO ====> Epoch: 312
2023-02-07 23:42:49,333 32k INFO ====> Epoch: 313
2023-02-07 23:44:13,367 32k INFO Train Epoch: 314 [64%]
2023-02-07 23:44:13,368 32k INFO [2.4441633224487305, 2.428528308868408, 11.276105880737305, 15.440587997436523, 1.0377545356750488, 27600, 9.61628146140899e-05]
2023-02-07 23:44:47,378 32k INFO ====> Epoch: 314
2023-02-07 23:46:45,485 32k INFO ====> Epoch: 315
2023-02-07 23:48:34,997 32k INFO Train Epoch: 316 [91%]
2023-02-07 23:48:34,997 32k INFO [2.5431222915649414, 2.133033275604248, 7.831211566925049, 12.808097839355469, 0.9566836953163147, 27800, 9.613877541298036e-05]
2023-02-07 23:48:43,380 32k INFO ====> Epoch: 316
2023-02-07 23:50:52,321 32k INFO ====> Epoch: 317
2023-02-07 23:52:50,708 32k INFO ====> Epoch: 318
2023-02-07 23:53:47,432 32k INFO Train Epoch: 319 [18%]
2023-02-07 23:53:47,433 32k INFO [2.5341179370880127, 2.2451441287994385, 11.315544128417969, 16.780118942260742, 0.7941577434539795, 28000, 9.61027278785178e-05]
2023-02-07 23:53:54,434 32k INFO Saving model and optimizer state at iteration 319 to ./logs\32k\G_28000.pth
2023-02-07 23:54:12,087 32k INFO Saving model and optimizer state at iteration 319 to ./logs\32k\D_28000.pth
2023-02-07 23:55:33,831 32k INFO ====> Epoch: 319
2023-02-07 23:57:50,809 32k INFO ====> Epoch: 320
2023-02-07 23:58:57,507 32k INFO Train Epoch: 321 [45%]
2023-02-07 23:58:57,508 32k INFO [2.6975388526916504, 2.2120161056518555, 11.405308723449707, 12.978477478027344, 0.8090832233428955, 28200, 9.60787036981533e-05]
2023-02-07 23:59:49,075 32k INFO ====> Epoch: 321
2023-02-08 00:02:17,117 32k INFO ====> Epoch: 322
2023-02-08 00:03:48,979 32k INFO Train Epoch: 323 [73%]
2023-02-08 00:03:48,980 32k INFO [2.5260772705078125, 2.178119421005249, 8.271916389465332, 15.082479476928711, 0.5642960071563721, 28400, 9.60546855234585e-05]
2023-02-08 00:04:14,283 32k INFO ====> Epoch: 323
2023-02-08 00:06:10,300 32k INFO ====> Epoch: 324
2023-02-08 00:08:28,132 32k INFO ====> Epoch: 325
|