File size: 58,653 Bytes
395cdfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
2023-02-07 09:40:53,280	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'luna': 0}, 'model_dir': './logs\\32k'}
2023-02-07 09:41:39,266	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 12, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'luna': 0}, 'model_dir': './logs\\32k'}
2023-02-07 09:42:23,356	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'luna': 0}, 'model_dir': './logs\\32k'}
2023-02-07 09:42:53,692	32k	INFO	Train Epoch: 1 [0%]
2023-02-07 09:42:53,693	32k	INFO	[5.986945629119873, 5.2334113121032715, 1.1685032844543457, 101.684814453125, 285.0567321777344, 0, 0.0001]
2023-02-07 09:42:59,408	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
2023-02-07 09:43:14,302	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
2023-02-07 09:44:20,696	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'luna': 0}, 'model_dir': './logs\\32k'}
2023-02-07 09:44:25,541	32k	INFO	Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-07 09:44:25,958	32k	INFO	Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-07 09:44:51,915	32k	INFO	Train Epoch: 1 [0%]
2023-02-07 09:44:51,915	32k	INFO	[2.594619035720825, 2.5604355335235596, 15.0297269821167, 45.45681381225586, 11.650612831115723, 0, 0.0001]
2023-02-07 09:44:57,597	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
2023-02-07 09:45:13,749	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
2023-02-07 09:47:02,986	32k	INFO	====> Epoch: 1
2023-02-07 09:49:09,645	32k	INFO	====> Epoch: 2
2023-02-07 09:50:00,551	32k	INFO	Train Epoch: 3 [27%]
2023-02-07 09:50:00,551	32k	INFO	[2.360294818878174, 2.3960258960723877, 13.918700218200684, 23.92392349243164, 1.0044713020324707, 200, 9.99750015625e-05]
2023-02-07 09:51:15,724	32k	INFO	====> Epoch: 3
2023-02-07 09:53:21,228	32k	INFO	====> Epoch: 4
2023-02-07 09:54:40,244	32k	INFO	Train Epoch: 5 [55%]
2023-02-07 09:54:40,244	32k	INFO	[2.5581417083740234, 2.0560226440429688, 12.119918823242188, 23.648845672607422, 1.1536203622817993, 400, 9.995000937421877e-05]
2023-02-07 09:55:26,649	32k	INFO	====> Epoch: 5
2023-02-07 09:57:31,903	32k	INFO	====> Epoch: 6
2023-02-07 09:59:20,458	32k	INFO	Train Epoch: 7 [82%]
2023-02-07 09:59:20,459	32k	INFO	[2.645043134689331, 2.0071868896484375, 8.105449676513672, 17.2309627532959, 0.8960679173469543, 600, 9.99250234335941e-05]
2023-02-07 09:59:39,088	32k	INFO	====> Epoch: 7
2023-02-07 10:01:44,439	32k	INFO	====> Epoch: 8
2023-02-07 10:03:50,397	32k	INFO	====> Epoch: 9
2023-02-07 10:04:22,558	32k	INFO	Train Epoch: 10 [9%]
2023-02-07 10:04:22,558	32k	INFO	[2.5706863403320312, 2.335548162460327, 11.097796440124512, 19.198232650756836, 1.0098469257354736, 800, 9.98875562335968e-05]
2023-02-07 10:05:57,649	32k	INFO	====> Epoch: 10
2023-02-07 10:08:05,106	32k	INFO	====> Epoch: 11
2023-02-07 10:09:05,366	32k	INFO	Train Epoch: 12 [36%]
2023-02-07 10:09:05,367	32k	INFO	[2.2724082469940186, 2.844191312789917, 11.882951736450195, 18.201112747192383, 1.388056755065918, 1000, 9.986258590528146e-05]
2023-02-07 10:09:09,750	32k	INFO	Saving model and optimizer state at iteration 12 to ./logs\32k\G_1000.pth
2023-02-07 10:09:27,650	32k	INFO	Saving model and optimizer state at iteration 12 to ./logs\32k\D_1000.pth
2023-02-07 10:10:37,986	32k	INFO	====> Epoch: 12
2023-02-07 10:12:44,311	32k	INFO	====> Epoch: 13
2023-02-07 10:14:12,926	32k	INFO	Train Epoch: 14 [64%]
2023-02-07 10:14:12,926	32k	INFO	[2.474606990814209, 2.230579376220703, 11.757043838500977, 16.921762466430664, 1.2078344821929932, 1200, 9.983762181915804e-05]
2023-02-07 10:14:50,340	32k	INFO	====> Epoch: 14
2023-02-07 10:16:57,519	32k	INFO	====> Epoch: 15
2023-02-07 10:18:54,687	32k	INFO	Train Epoch: 16 [91%]
2023-02-07 10:18:54,687	32k	INFO	[2.446239709854126, 2.3385403156280518, 12.67339038848877, 20.93482208251953, 0.8955264687538147, 1400, 9.981266397366609e-05]
2023-02-07 10:19:03,624	32k	INFO	====> Epoch: 16
2023-02-07 10:21:09,258	32k	INFO	====> Epoch: 17
2023-02-07 10:23:14,506	32k	INFO	====> Epoch: 18
2023-02-07 10:23:55,989	32k	INFO	Train Epoch: 19 [18%]
2023-02-07 10:23:55,990	32k	INFO	[2.6378839015960693, 2.2939138412475586, 11.7266206741333, 19.231109619140625, 1.1356555223464966, 1600, 9.977523890319963e-05]
2023-02-07 10:25:20,577	32k	INFO	====> Epoch: 19
2023-02-07 10:27:26,527	32k	INFO	====> Epoch: 20
2023-02-07 10:28:36,306	32k	INFO	Train Epoch: 21 [45%]
2023-02-07 10:28:36,307	32k	INFO	[2.761199474334717, 2.040116786956787, 11.117597579956055, 15.121772766113281, 0.9549421668052673, 1800, 9.975029665246193e-05]
2023-02-07 10:29:32,416	32k	INFO	====> Epoch: 21
2023-02-07 10:31:48,932	32k	INFO	====> Epoch: 22
2023-02-07 10:33:38,266	32k	INFO	Train Epoch: 23 [73%]
2023-02-07 10:33:38,266	32k	INFO	[2.4851253032684326, 2.39241361618042, 10.837175369262695, 16.3918514251709, 1.0230045318603516, 2000, 9.972536063689719e-05]
2023-02-07 10:33:42,963	32k	INFO	Saving model and optimizer state at iteration 23 to ./logs\32k\G_2000.pth
2023-02-07 10:33:58,853	32k	INFO	Saving model and optimizer state at iteration 23 to ./logs\32k\D_2000.pth
2023-02-07 10:34:47,989	32k	INFO	====> Epoch: 23
2023-02-07 10:38:48,011	32k	INFO	====> Epoch: 24
2023-02-07 10:42:49,265	32k	INFO	====> Epoch: 25
2023-02-07 10:43:13,039	32k	INFO	Train Epoch: 26 [0%]
2023-02-07 10:43:13,039	32k	INFO	[2.6076807975769043, 2.061424732208252, 13.766759872436523, 18.384117126464844, 0.7564023733139038, 2200, 9.968796830108985e-05]
2023-02-07 10:46:56,559	32k	INFO	====> Epoch: 26
2023-02-07 10:51:03,691	32k	INFO	====> Epoch: 27
2023-02-07 10:52:29,260	32k	INFO	Train Epoch: 28 [27%]
2023-02-07 10:52:29,261	32k	INFO	[2.44578218460083, 2.06921124458313, 9.142973899841309, 12.838541984558105, 0.592533528804779, 2400, 9.966304786663908e-05]
2023-02-07 10:55:15,394	32k	INFO	====> Epoch: 28
2023-02-07 10:59:20,071	32k	INFO	====> Epoch: 29
2023-02-07 11:01:53,637	32k	INFO	Train Epoch: 30 [55%]
2023-02-07 11:01:53,637	32k	INFO	[2.4569437503814697, 2.0591907501220703, 9.697546005249023, 18.9813232421875, 0.6515152454376221, 2600, 9.963813366190753e-05]
2023-02-07 11:03:29,785	32k	INFO	====> Epoch: 30
2023-02-07 11:07:53,678	32k	INFO	====> Epoch: 31
2023-02-07 11:11:27,366	32k	INFO	Train Epoch: 32 [82%]
2023-02-07 11:11:27,367	32k	INFO	[2.5969486236572266, 1.939130425453186, 11.549643516540527, 17.018590927124023, 0.9572107791900635, 2800, 9.961322568533789e-05]
2023-02-07 11:12:09,727	32k	INFO	====> Epoch: 32
2023-02-07 11:16:18,217	32k	INFO	====> Epoch: 33
2023-02-07 11:20:33,915	32k	INFO	====> Epoch: 34
2023-02-07 11:21:21,087	32k	INFO	Train Epoch: 35 [9%]
2023-02-07 11:21:21,088	32k	INFO	[2.5165798664093018, 2.2998545169830322, 12.771017074584961, 19.952123641967773, 0.6407254338264465, 3000, 9.957587539488128e-05]
2023-02-07 11:21:25,805	32k	INFO	Saving model and optimizer state at iteration 35 to ./logs\32k\G_3000.pth
2023-02-07 11:21:45,295	32k	INFO	Saving model and optimizer state at iteration 35 to ./logs\32k\D_3000.pth
2023-02-07 11:25:09,760	32k	INFO	====> Epoch: 35
2023-02-07 11:29:27,873	32k	INFO	====> Epoch: 36
2023-02-07 11:31:18,011	32k	INFO	Train Epoch: 37 [36%]
2023-02-07 11:31:18,011	32k	INFO	[2.619579315185547, 2.3391668796539307, 9.163888931274414, 16.027456283569336, 0.9692599773406982, 3200, 9.95509829819056e-05]
2023-02-07 11:33:47,642	32k	INFO	====> Epoch: 37
2023-02-07 11:37:56,855	32k	INFO	====> Epoch: 38
2023-02-07 11:40:45,204	32k	INFO	Train Epoch: 39 [64%]
2023-02-07 11:40:45,205	32k	INFO	[2.350425958633423, 2.2603647708892822, 13.19098949432373, 20.018461227416992, 1.0738447904586792, 3400, 9.952609679164422e-05]
2023-02-07 11:42:03,774	32k	INFO	====> Epoch: 39
2023-02-07 11:45:59,746	32k	INFO	====> Epoch: 40
2023-02-07 11:49:51,207	32k	INFO	Train Epoch: 41 [91%]
2023-02-07 11:49:51,208	32k	INFO	[2.582878351211548, 2.3701279163360596, 12.43442153930664, 17.008121490478516, 1.1644971370697021, 3600, 9.950121682254156e-05]
2023-02-07 11:50:09,809	32k	INFO	====> Epoch: 41
2023-02-07 11:53:55,535	32k	INFO	====> Epoch: 42
2023-02-07 11:57:39,870	32k	INFO	====> Epoch: 43
2023-02-07 11:58:43,347	32k	INFO	Train Epoch: 44 [18%]
2023-02-07 11:58:43,347	32k	INFO	[2.5977330207824707, 2.3910253047943115, 11.031622886657715, 19.40188217163086, 0.8780531287193298, 3800, 9.94639085301583e-05]
2023-02-07 12:01:31,992	32k	INFO	====> Epoch: 44
2023-02-07 12:05:23,822	32k	INFO	====> Epoch: 45
2023-02-07 12:07:21,305	32k	INFO	Train Epoch: 46 [45%]
2023-02-07 12:07:21,306	32k	INFO	[2.4390363693237305, 2.45821213722229, 10.24112606048584, 15.837735176086426, 0.7886309027671814, 4000, 9.943904410714931e-05]
2023-02-07 12:07:25,841	32k	INFO	Saving model and optimizer state at iteration 46 to ./logs\32k\G_4000.pth
2023-02-07 12:07:42,252	32k	INFO	Saving model and optimizer state at iteration 46 to ./logs\32k\D_4000.pth
2023-02-07 12:09:31,329	32k	INFO	====> Epoch: 46
2023-02-07 12:13:21,187	32k	INFO	====> Epoch: 47
2023-02-07 12:15:05,159	32k	INFO	Train Epoch: 48 [73%]
2023-02-07 12:15:05,159	32k	INFO	[2.4634478092193604, 2.3640332221984863, 11.501005172729492, 16.302955627441406, 0.7573157548904419, 4200, 9.941418589985758e-05]
2023-02-07 12:15:35,781	32k	INFO	====> Epoch: 48
2023-02-07 12:18:23,940	32k	INFO	====> Epoch: 49
2023-02-07 12:20:51,588	32k	INFO	====> Epoch: 50
2023-02-07 12:21:14,338	32k	INFO	Train Epoch: 51 [0%]
2023-02-07 12:21:14,338	32k	INFO	[2.6959879398345947, 1.971150279045105, 8.562164306640625, 14.40481948852539, 0.9920418858528137, 4400, 9.937691023999092e-05]
2023-02-07 12:23:05,457	32k	INFO	====> Epoch: 51
2023-02-07 12:25:18,467	32k	INFO	====> Epoch: 52
2023-02-07 12:26:11,363	32k	INFO	Train Epoch: 53 [27%]
2023-02-07 12:26:11,364	32k	INFO	[2.3754444122314453, 2.2341160774230957, 11.600547790527344, 15.735363960266113, 0.42374899983406067, 4600, 9.935206756519513e-05]
2023-02-07 12:27:32,699	32k	INFO	====> Epoch: 53
2023-02-07 12:29:47,264	32k	INFO	====> Epoch: 54
2023-02-07 12:31:10,391	32k	INFO	Train Epoch: 55 [55%]
2023-02-07 12:31:10,391	32k	INFO	[2.421271324157715, 2.085864543914795, 11.170856475830078, 19.666301727294922, 0.7788003087043762, 4800, 9.932723110067987e-05]
2023-02-07 12:32:00,890	32k	INFO	====> Epoch: 55
2023-02-07 12:34:14,788	32k	INFO	====> Epoch: 56
2023-02-07 12:36:08,772	32k	INFO	Train Epoch: 57 [82%]
2023-02-07 12:36:08,772	32k	INFO	[2.432823657989502, 2.2199151515960693, 11.207275390625, 15.497830390930176, 0.9771067500114441, 5000, 9.930240084489267e-05]
2023-02-07 12:36:13,538	32k	INFO	Saving model and optimizer state at iteration 57 to ./logs\32k\G_5000.pth
2023-02-07 12:36:31,240	32k	INFO	Saving model and optimizer state at iteration 57 to ./logs\32k\D_5000.pth
2023-02-07 12:36:54,614	32k	INFO	====> Epoch: 57
2023-02-07 12:39:07,517	32k	INFO	====> Epoch: 58
2023-02-07 12:41:22,030	32k	INFO	====> Epoch: 59
2023-02-07 12:41:55,027	32k	INFO	Train Epoch: 60 [9%]
2023-02-07 12:41:55,027	32k	INFO	[2.7963428497314453, 1.8747531175613403, 10.772848129272461, 14.761898040771484, 0.5415222644805908, 5200, 9.926516709918191e-05]
2023-02-07 12:43:35,208	32k	INFO	====> Epoch: 60
2023-02-07 12:45:47,923	32k	INFO	====> Epoch: 61
2023-02-07 12:46:50,887	32k	INFO	Train Epoch: 62 [36%]
2023-02-07 12:46:50,887	32k	INFO	[2.6340723037719727, 2.1284472942352295, 8.606325149536133, 17.0094051361084, 0.818625807762146, 5400, 9.924035235842533e-05]
2023-02-07 12:48:00,866	32k	INFO	====> Epoch: 62
2023-02-07 12:50:15,943	32k	INFO	====> Epoch: 63
2023-02-07 12:51:49,996	32k	INFO	Train Epoch: 64 [64%]
2023-02-07 12:51:49,996	32k	INFO	[2.306647539138794, 2.406829357147217, 9.929342269897461, 12.849090576171875, 0.8835707902908325, 5600, 9.921554382096622e-05]
2023-02-07 12:52:32,999	32k	INFO	====> Epoch: 64
2023-02-07 12:55:11,641	32k	INFO	====> Epoch: 65
2023-02-07 12:57:17,736	32k	INFO	Train Epoch: 66 [91%]
2023-02-07 12:57:17,737	32k	INFO	[2.5442795753479004, 2.281177282333374, 9.918232917785645, 17.03926658630371, 0.7411346435546875, 5800, 9.919074148525384e-05]
2023-02-07 12:57:27,339	32k	INFO	====> Epoch: 66
2023-02-07 12:59:41,684	32k	INFO	====> Epoch: 67
2023-02-07 13:01:55,764	32k	INFO	====> Epoch: 68
2023-02-07 13:02:38,827	32k	INFO	Train Epoch: 69 [18%]
2023-02-07 13:02:38,828	32k	INFO	[2.463815689086914, 2.242199182510376, 11.57142448425293, 19.842445373535156, 0.521164059638977, 6000, 9.915354960656915e-05]
2023-02-07 13:02:43,491	32k	INFO	Saving model and optimizer state at iteration 69 to ./logs\32k\G_6000.pth
2023-02-07 13:03:00,115	32k	INFO	Saving model and optimizer state at iteration 69 to ./logs\32k\D_6000.pth
2023-02-07 13:04:34,671	32k	INFO	====> Epoch: 69
2023-02-07 13:06:49,771	32k	INFO	====> Epoch: 70
2023-02-07 13:08:02,981	32k	INFO	Train Epoch: 71 [45%]
2023-02-07 13:08:02,981	32k	INFO	[2.4700756072998047, 2.2984137535095215, 14.3892822265625, 18.679941177368164, 0.8965722322463989, 6200, 9.912876276844171e-05]
2023-02-07 13:09:03,486	32k	INFO	====> Epoch: 71
2023-02-07 13:11:17,617	32k	INFO	====> Epoch: 72
2023-02-07 13:13:02,651	32k	INFO	Train Epoch: 73 [73%]
2023-02-07 13:13:02,651	32k	INFO	[2.556546688079834, 2.2346560955047607, 9.572005271911621, 16.495567321777344, 0.8224639296531677, 6400, 9.910398212663652e-05]
2023-02-07 13:13:33,359	32k	INFO	====> Epoch: 73
2023-02-07 13:15:47,755	32k	INFO	====> Epoch: 74
2023-02-07 13:18:01,568	32k	INFO	====> Epoch: 75
2023-02-07 13:18:24,282	32k	INFO	Train Epoch: 76 [0%]
2023-02-07 13:18:24,282	32k	INFO	[2.4348723888397217, 2.264528274536133, 12.597403526306152, 17.98801040649414, 0.9530618190765381, 6600, 9.906682277864462e-05]
2023-02-07 13:20:16,324	32k	INFO	====> Epoch: 76
2023-02-07 13:22:39,984	32k	INFO	====> Epoch: 77
2023-02-07 13:23:33,800	32k	INFO	Train Epoch: 78 [27%]
2023-02-07 13:23:33,801	32k	INFO	[2.5431196689605713, 2.1168220043182373, 11.997557640075684, 15.961959838867188, 1.086801528930664, 6800, 9.904205762086905e-05]
2023-02-07 13:24:54,267	32k	INFO	====> Epoch: 78
2023-02-07 13:27:09,425	32k	INFO	====> Epoch: 79
2023-02-07 13:28:32,803	32k	INFO	Train Epoch: 80 [55%]
2023-02-07 13:28:32,803	32k	INFO	[2.5890021324157715, 1.954834222793579, 11.328150749206543, 18.769920349121094, 1.155487060546875, 7000, 9.901729865399597e-05]
2023-02-07 13:28:37,490	32k	INFO	Saving model and optimizer state at iteration 80 to ./logs\32k\G_7000.pth
2023-02-07 13:28:53,607	32k	INFO	Saving model and optimizer state at iteration 80 to ./logs\32k\D_7000.pth
2023-02-07 13:29:47,400	32k	INFO	====> Epoch: 80
2023-02-07 13:32:00,461	32k	INFO	====> Epoch: 81
2023-02-07 13:33:55,048	32k	INFO	Train Epoch: 82 [82%]
2023-02-07 13:33:55,049	32k	INFO	[2.2798125743865967, 2.5595874786376953, 8.555220603942871, 16.308244705200195, 0.8951782584190369, 7200, 9.899254587647776e-05]
2023-02-07 13:34:14,940	32k	INFO	====> Epoch: 82
2023-02-07 13:36:27,447	32k	INFO	====> Epoch: 83
2023-02-07 13:38:39,624	32k	INFO	====> Epoch: 84
2023-02-07 13:39:13,048	32k	INFO	Train Epoch: 85 [9%]
2023-02-07 13:39:13,048	32k	INFO	[2.489978790283203, 2.357851505279541, 11.63048267364502, 19.388751983642578, 0.6406951546669006, 7400, 9.895542831185631e-05]
2023-02-07 13:40:54,422	32k	INFO	====> Epoch: 85
2023-02-07 13:43:08,509	32k	INFO	====> Epoch: 86
2023-02-07 13:44:55,190	32k	INFO	Train Epoch: 87 [36%]
2023-02-07 13:44:55,191	32k	INFO	[2.4624717235565186, 2.577338933944702, 12.478321075439453, 18.478761672973633, 0.7297022938728333, 7600, 9.89306910009569e-05]
2023-02-07 13:47:39,853	32k	INFO	====> Epoch: 87
2023-02-07 13:52:32,007	32k	INFO	====> Epoch: 88
2023-02-07 13:55:27,410	32k	INFO	Train Epoch: 89 [64%]
2023-02-07 13:55:27,411	32k	INFO	[2.430572986602783, 2.4413130283355713, 12.744434356689453, 18.379131317138672, 0.8439734578132629, 7800, 9.89059598739987e-05]
2023-02-07 13:56:41,864	32k	INFO	====> Epoch: 89
2023-02-07 14:00:08,771	32k	INFO	====> Epoch: 90
2023-02-07 14:02:55,544	32k	INFO	Train Epoch: 91 [91%]
2023-02-07 14:02:55,544	32k	INFO	[2.561445474624634, 2.1027495861053467, 12.336583137512207, 17.24584197998047, 0.9410633444786072, 8000, 9.888123492943583e-05]
2023-02-07 14:03:02,073	32k	INFO	Saving model and optimizer state at iteration 91 to ./logs\32k\G_8000.pth
2023-02-07 14:03:19,461	32k	INFO	Saving model and optimizer state at iteration 91 to ./logs\32k\D_8000.pth
2023-02-07 14:03:44,251	32k	INFO	====> Epoch: 91
2023-02-07 14:07:20,629	32k	INFO	====> Epoch: 92
2023-02-07 14:09:55,893	32k	INFO	====> Epoch: 93
2023-02-07 14:10:51,286	32k	INFO	Train Epoch: 94 [18%]
2023-02-07 14:10:51,286	32k	INFO	[2.446747303009033, 2.4493002891540527, 12.713964462280273, 18.375844955444336, 0.9940114617347717, 8200, 9.884415910120204e-05]
2023-02-07 14:12:34,389	32k	INFO	====> Epoch: 94
2023-02-07 14:14:49,239	32k	INFO	====> Epoch: 95
2023-02-07 14:16:04,764	32k	INFO	Train Epoch: 96 [45%]
2023-02-07 14:16:04,764	32k	INFO	[2.501119613647461, 2.320194959640503, 12.225476264953613, 16.58141326904297, 0.6507038474082947, 8400, 9.881944960586671e-05]
2023-02-07 14:17:05,214	32k	INFO	====> Epoch: 96
2023-02-07 14:19:18,111	32k	INFO	====> Epoch: 97
2023-02-07 14:21:32,746	32k	INFO	Train Epoch: 98 [73%]
2023-02-07 14:21:32,747	32k	INFO	[2.3718044757843018, 2.317812204360962, 12.397613525390625, 18.040645599365234, 0.6666255593299866, 8600, 9.879474628751914e-05]
2023-02-07 14:22:02,311	32k	INFO	====> Epoch: 98
2023-02-07 14:24:14,061	32k	INFO	====> Epoch: 99
2023-02-07 14:26:28,249	32k	INFO	====> Epoch: 100
2023-02-07 14:26:51,168	32k	INFO	Train Epoch: 101 [0%]
2023-02-07 14:26:51,168	32k	INFO	[2.661276340484619, 1.9135569334030151, 7.072793006896973, 14.621119499206543, 1.1172854900360107, 8800, 9.875770288847208e-05]
2023-02-07 14:28:41,419	32k	INFO	====> Epoch: 101
2023-02-07 14:30:54,121	32k	INFO	====> Epoch: 102
2023-02-07 14:31:47,886	32k	INFO	Train Epoch: 103 [27%]
2023-02-07 14:31:47,886	32k	INFO	[2.3931992053985596, 2.2867274284362793, 11.25641918182373, 17.3231143951416, 0.8995411992073059, 9000, 9.873301500583906e-05]
2023-02-07 14:31:52,318	32k	INFO	Saving model and optimizer state at iteration 103 to ./logs\32k\G_9000.pth
2023-02-07 14:32:10,592	32k	INFO	Saving model and optimizer state at iteration 103 to ./logs\32k\D_9000.pth
2023-02-07 14:33:33,837	32k	INFO	====> Epoch: 103
2023-02-07 14:35:47,392	32k	INFO	====> Epoch: 104
2023-02-07 14:37:10,995	32k	INFO	Train Epoch: 105 [55%]
2023-02-07 14:37:10,995	32k	INFO	[2.6397929191589355, 1.9650437831878662, 9.858829498291016, 16.57013511657715, 0.5786668062210083, 9200, 9.870833329479095e-05]
2023-02-07 14:38:01,496	32k	INFO	====> Epoch: 105
2023-02-07 14:40:15,064	32k	INFO	====> Epoch: 106
2023-02-07 14:42:10,744	32k	INFO	Train Epoch: 107 [82%]
2023-02-07 14:42:10,745	32k	INFO	[2.5161538124084473, 2.1780292987823486, 12.834193229675293, 17.641633987426758, 0.9528986811637878, 9400, 9.868365775378495e-05]
2023-02-07 14:42:30,034	32k	INFO	====> Epoch: 107
2023-02-07 14:45:07,976	32k	INFO	====> Epoch: 108
2023-02-07 14:47:20,329	32k	INFO	====> Epoch: 109
2023-02-07 14:47:53,047	32k	INFO	Train Epoch: 110 [9%]
2023-02-07 14:47:53,048	32k	INFO	[2.442427635192871, 2.339263439178467, 11.993571281433105, 15.568887710571289, 0.6255054473876953, 9600, 9.864665600773098e-05]
2023-02-07 14:49:33,420	32k	INFO	====> Epoch: 110
2023-02-07 14:51:46,975	32k	INFO	====> Epoch: 111
2023-02-07 14:52:49,425	32k	INFO	Train Epoch: 112 [36%]
2023-02-07 14:52:49,425	32k	INFO	[2.4783666133880615, 2.35465145111084, 11.851914405822754, 16.24662208557129, 0.18825632333755493, 9800, 9.862199588508305e-05]
2023-02-07 14:53:58,353	32k	INFO	====> Epoch: 112
2023-02-07 14:56:13,225	32k	INFO	====> Epoch: 113
2023-02-07 14:57:45,173	32k	INFO	Train Epoch: 114 [64%]
2023-02-07 14:57:45,173	32k	INFO	[2.1118600368499756, 2.582984209060669, 7.736230850219727, 16.275470733642578, 0.714296817779541, 10000, 9.859734192708044e-05]
2023-02-07 14:57:49,644	32k	INFO	Saving model and optimizer state at iteration 114 to ./logs\32k\G_10000.pth
2023-02-07 14:58:06,448	32k	INFO	Saving model and optimizer state at iteration 114 to ./logs\32k\D_10000.pth
2023-02-07 14:58:49,496	32k	INFO	====> Epoch: 114
2023-02-07 15:01:03,128	32k	INFO	====> Epoch: 115
2023-02-07 15:03:06,945	32k	INFO	Train Epoch: 116 [91%]
2023-02-07 15:03:06,945	32k	INFO	[2.4191789627075195, 2.259423017501831, 10.048250198364258, 17.279565811157227, 0.4913417398929596, 10200, 9.857269413218213e-05]
2023-02-07 15:03:16,527	32k	INFO	====> Epoch: 116
2023-02-07 15:05:28,914	32k	INFO	====> Epoch: 117
2023-02-07 15:07:40,479	32k	INFO	====> Epoch: 118
2023-02-07 15:08:23,214	32k	INFO	Train Epoch: 119 [18%]
2023-02-07 15:08:23,214	32k	INFO	[1.971365213394165, 2.894338607788086, 10.93272876739502, 15.680130004882812, 0.8430463671684265, 10400, 9.853573399228505e-05]
2023-02-07 15:09:53,437	32k	INFO	====> Epoch: 119
2023-02-07 15:12:05,648	32k	INFO	====> Epoch: 120
2023-02-07 15:13:18,841	32k	INFO	Train Epoch: 121 [45%]
2023-02-07 15:13:18,841	32k	INFO	[2.4416098594665527, 2.3172998428344727, 11.274493217468262, 18.475496292114258, 0.600033164024353, 10600, 9.851110159840781e-05]
2023-02-07 15:14:19,433	32k	INFO	====> Epoch: 121
2023-02-07 15:16:31,421	32k	INFO	====> Epoch: 122
2023-02-07 15:18:15,901	32k	INFO	Train Epoch: 123 [73%]
2023-02-07 15:18:15,901	32k	INFO	[2.402225971221924, 2.4027457237243652, 14.501314163208008, 18.68280029296875, 1.2635655403137207, 10800, 9.848647536224416e-05]
2023-02-07 15:18:45,304	32k	INFO	====> Epoch: 123
2023-02-07 15:20:56,412	32k	INFO	====> Epoch: 124
2023-02-07 15:23:09,824	32k	INFO	====> Epoch: 125
2023-02-07 15:23:32,774	32k	INFO	Train Epoch: 126 [0%]
2023-02-07 15:23:32,775	32k	INFO	[2.6220815181732178, 2.037874221801758, 10.186017036437988, 16.901756286621094, 0.6591813564300537, 11000, 9.84495475503445e-05]
2023-02-07 15:23:37,377	32k	INFO	Saving model and optimizer state at iteration 126 to ./logs\32k\G_11000.pth
2023-02-07 15:23:53,672	32k	INFO	Saving model and optimizer state at iteration 126 to ./logs\32k\D_11000.pth
2023-02-07 15:25:45,526	32k	INFO	====> Epoch: 126
2023-02-07 15:27:59,414	32k	INFO	====> Epoch: 127
2023-02-07 15:28:52,412	32k	INFO	Train Epoch: 128 [27%]
2023-02-07 15:28:52,412	32k	INFO	[2.4518520832061768, 2.2550909519195557, 11.731948852539062, 15.13012409210205, 1.0153660774230957, 11200, 9.842493670173108e-05]
2023-02-07 15:30:12,852	32k	INFO	====> Epoch: 128
2023-02-07 15:32:25,533	32k	INFO	====> Epoch: 129
2023-02-07 15:33:48,107	32k	INFO	Train Epoch: 130 [55%]
2023-02-07 15:33:48,107	32k	INFO	[2.4804108142852783, 2.040149688720703, 10.706924438476562, 15.55229377746582, 0.7179027795791626, 11400, 9.840033200544528e-05]
2023-02-07 15:34:38,147	32k	INFO	====> Epoch: 130
2023-02-07 15:36:52,502	32k	INFO	====> Epoch: 131
2023-02-07 15:38:44,776	32k	INFO	Train Epoch: 132 [82%]
2023-02-07 15:38:44,776	32k	INFO	[2.5530967712402344, 2.3860535621643066, 12.224138259887695, 17.293977737426758, 0.9359664916992188, 11600, 9.837573345994909e-05]
2023-02-07 15:39:04,700	32k	INFO	====> Epoch: 132
2023-02-07 15:41:17,332	32k	INFO	====> Epoch: 133
2023-02-07 15:43:29,565	32k	INFO	====> Epoch: 134
2023-02-07 15:44:02,326	32k	INFO	Train Epoch: 135 [9%]
2023-02-07 15:44:02,326	32k	INFO	[2.4722814559936523, 2.3017029762268066, 12.974905967712402, 15.865802764892578, 0.6799976229667664, 11800, 9.833884717107196e-05]
2023-02-07 15:45:42,945	32k	INFO	====> Epoch: 135
2023-02-07 15:47:57,595	32k	INFO	====> Epoch: 136
2023-02-07 15:49:01,296	32k	INFO	Train Epoch: 137 [36%]
2023-02-07 15:49:01,297	32k	INFO	[2.5428762435913086, 2.3497259616851807, 13.335613250732422, 17.625024795532227, 0.8169641494750977, 12000, 9.831426399582366e-05]
2023-02-07 15:49:05,721	32k	INFO	Saving model and optimizer state at iteration 137 to ./logs\32k\G_12000.pth
2023-02-07 15:49:24,121	32k	INFO	Saving model and optimizer state at iteration 137 to ./logs\32k\D_12000.pth
2023-02-07 15:50:37,819	32k	INFO	====> Epoch: 137
2023-02-07 15:52:51,111	32k	INFO	====> Epoch: 138
2023-02-07 15:54:25,928	32k	INFO	Train Epoch: 139 [64%]
2023-02-07 15:54:25,928	32k	INFO	[2.431962490081787, 2.0768401622772217, 11.875350952148438, 16.097793579101562, 0.7626942992210388, 12200, 9.828968696598508e-05]
2023-02-07 15:55:05,314	32k	INFO	====> Epoch: 139
2023-02-07 15:57:18,392	32k	INFO	====> Epoch: 140
2023-02-07 15:59:21,946	32k	INFO	Train Epoch: 141 [91%]
2023-02-07 15:59:21,947	32k	INFO	[2.2864203453063965, 2.4313251972198486, 9.686891555786133, 14.229582786560059, 0.9563338756561279, 12400, 9.826511608001993e-05]
2023-02-07 15:59:31,745	32k	INFO	====> Epoch: 141
2023-02-07 16:01:42,737	32k	INFO	====> Epoch: 142
2023-02-07 16:03:54,591	32k	INFO	====> Epoch: 143
2023-02-07 16:04:37,359	32k	INFO	Train Epoch: 144 [18%]
2023-02-07 16:04:37,359	32k	INFO	[2.4183509349823, 2.2550737857818604, 11.305303573608398, 17.390254974365234, 0.8337610363960266, 12600, 9.822827126747529e-05]
2023-02-07 16:06:07,140	32k	INFO	====> Epoch: 144
2023-02-07 16:08:19,593	32k	INFO	====> Epoch: 145
2023-02-07 16:09:34,863	32k	INFO	Train Epoch: 146 [45%]
2023-02-07 16:09:34,863	32k	INFO	[2.463930130004883, 2.106257200241089, 10.743441581726074, 14.500619888305664, 0.16743861138820648, 12800, 9.820371573447515e-05]
2023-02-07 16:10:34,381	32k	INFO	====> Epoch: 146
2023-02-07 16:12:47,597	32k	INFO	====> Epoch: 147
2023-02-07 16:14:31,055	32k	INFO	Train Epoch: 148 [73%]
2023-02-07 16:14:31,055	32k	INFO	[2.6500000953674316, 2.072178602218628, 9.274537086486816, 13.794744491577148, 0.861379861831665, 13000, 9.817916633997459e-05]
2023-02-07 16:14:35,597	32k	INFO	Saving model and optimizer state at iteration 148 to ./logs\32k\G_13000.pth
2023-02-07 16:14:53,711	32k	INFO	Saving model and optimizer state at iteration 148 to ./logs\32k\D_13000.pth
2023-02-07 16:15:26,054	32k	INFO	====> Epoch: 148
2023-02-07 16:17:40,362	32k	INFO	====> Epoch: 149
2023-02-07 16:19:54,446	32k	INFO	====> Epoch: 150
2023-02-07 16:20:17,171	32k	INFO	Train Epoch: 151 [0%]
2023-02-07 16:20:17,171	32k	INFO	[2.458037853240967, 2.1006457805633545, 10.140434265136719, 15.663694381713867, 0.6432273387908936, 13200, 9.814235375455375e-05]
2023-02-07 16:22:07,723	32k	INFO	====> Epoch: 151
2023-02-07 16:24:36,251	32k	INFO	====> Epoch: 152
2023-02-07 16:26:17,326	32k	INFO	Train Epoch: 153 [27%]
2023-02-07 16:26:17,327	32k	INFO	[2.397064447402954, 2.1317219734191895, 14.287264823913574, 16.660289764404297, 0.4551805853843689, 13400, 9.811781969958938e-05]
2023-02-07 16:28:47,391	32k	INFO	====> Epoch: 153
2023-02-07 16:31:01,375	32k	INFO	====> Epoch: 154
2023-02-07 16:32:32,011	32k	INFO	Train Epoch: 155 [55%]
2023-02-07 16:32:32,012	32k	INFO	[2.364081382751465, 2.2779157161712646, 10.857946395874023, 17.385780334472656, 0.44523704051971436, 13600, 9.809329177775541e-05]
2023-02-07 16:33:24,592	32k	INFO	====> Epoch: 155
2023-02-07 16:35:51,324	32k	INFO	====> Epoch: 156
2023-02-07 16:37:44,299	32k	INFO	Train Epoch: 157 [82%]
2023-02-07 16:37:44,299	32k	INFO	[2.509974718093872, 2.240321159362793, 10.872742652893066, 16.8741512298584, 0.6555373668670654, 13800, 9.806876998751865e-05]
2023-02-07 16:38:03,447	32k	INFO	====> Epoch: 157
2023-02-07 16:40:17,033	32k	INFO	====> Epoch: 158
2023-02-07 16:42:44,793	32k	INFO	====> Epoch: 159
2023-02-07 16:43:20,826	32k	INFO	Train Epoch: 160 [9%]
2023-02-07 16:43:20,826	32k	INFO	[2.423384428024292, 2.4248738288879395, 11.930776596069336, 16.296314239501953, 0.42344143986701965, 14000, 9.803199879555537e-05]
2023-02-07 16:43:25,921	32k	INFO	Saving model and optimizer state at iteration 160 to ./logs\32k\G_14000.pth
2023-02-07 16:43:43,660	32k	INFO	Saving model and optimizer state at iteration 160 to ./logs\32k\D_14000.pth
2023-02-07 16:46:17,844	32k	INFO	====> Epoch: 160
2023-02-07 16:49:43,811	32k	INFO	====> Epoch: 161
2023-02-07 16:51:59,890	32k	INFO	Train Epoch: 162 [36%]
2023-02-07 16:51:59,890	32k	INFO	[2.374708652496338, 2.5799448490142822, 8.881999969482422, 15.167359352111816, 0.5163499116897583, 14200, 9.800749232760646e-05]
2023-02-07 16:53:37,318	32k	INFO	====> Epoch: 162
2023-02-07 16:55:49,815	32k	INFO	====> Epoch: 163
2023-02-07 16:57:23,388	32k	INFO	Train Epoch: 164 [64%]
2023-02-07 16:57:23,389	32k	INFO	[2.470241069793701, 2.37218976020813, 9.033040046691895, 14.695220947265625, 0.9334152936935425, 14400, 9.798299198589162e-05]
2023-02-07 16:58:03,354	32k	INFO	====> Epoch: 164
2023-02-07 17:00:16,412	32k	INFO	====> Epoch: 165
2023-02-07 17:02:20,963	32k	INFO	Train Epoch: 166 [91%]
2023-02-07 17:02:20,964	32k	INFO	[2.600351333618164, 2.1910109519958496, 8.723526954650879, 14.268444061279297, 1.0583291053771973, 14600, 9.795849776887939e-05]
2023-02-07 17:02:34,097	32k	INFO	====> Epoch: 166
2023-02-07 17:05:33,762	32k	INFO	====> Epoch: 167
2023-02-07 17:08:26,547	32k	INFO	====> Epoch: 168
2023-02-07 17:09:12,656	32k	INFO	Train Epoch: 169 [18%]
2023-02-07 17:09:12,656	32k	INFO	[2.4051764011383057, 2.416426658630371, 11.779657363891602, 18.174877166748047, 0.8009364008903503, 14800, 9.792176792382932e-05]
2023-02-07 17:10:42,842	32k	INFO	====> Epoch: 169
2023-02-07 17:12:55,974	32k	INFO	====> Epoch: 170
2023-02-07 17:14:08,952	32k	INFO	Train Epoch: 171 [45%]
2023-02-07 17:14:08,953	32k	INFO	[2.5530202388763428, 2.314896583557129, 12.335034370422363, 18.924882888793945, 0.3423107862472534, 15000, 9.789728901187598e-05]
2023-02-07 17:14:13,613	32k	INFO	Saving model and optimizer state at iteration 171 to ./logs\32k\G_15000.pth
2023-02-07 17:14:31,179	32k	INFO	Saving model and optimizer state at iteration 171 to ./logs\32k\D_15000.pth
2023-02-07 17:15:34,281	32k	INFO	====> Epoch: 171
2023-02-07 17:17:47,533	32k	INFO	====> Epoch: 172
2023-02-07 17:19:31,440	32k	INFO	Train Epoch: 173 [73%]
2023-02-07 17:19:31,441	32k	INFO	[2.415375232696533, 2.302281379699707, 13.263263702392578, 17.304351806640625, 1.09013831615448, 15200, 9.787281621926815e-05]
2023-02-07 17:20:00,640	32k	INFO	====> Epoch: 173
2023-02-07 17:22:13,373	32k	INFO	====> Epoch: 174
2023-02-07 17:24:27,188	32k	INFO	====> Epoch: 175
2023-02-07 17:24:49,986	32k	INFO	Train Epoch: 176 [0%]
2023-02-07 17:24:49,987	32k	INFO	[2.4495227336883545, 2.2643768787384033, 13.395185470581055, 18.15376853942871, 0.45867687463760376, 15400, 9.783611850078301e-05]
2023-02-07 17:26:41,785	32k	INFO	====> Epoch: 176
2023-02-07 17:28:53,950	32k	INFO	====> Epoch: 177
2023-02-07 17:29:46,647	32k	INFO	Train Epoch: 178 [27%]
2023-02-07 17:29:46,647	32k	INFO	[2.297741651535034, 2.258887529373169, 12.602045059204102, 16.67408561706543, 0.6464719772338867, 15600, 9.781166099984716e-05]
2023-02-07 17:31:07,602	32k	INFO	====> Epoch: 178
2023-02-07 17:33:21,685	32k	INFO	====> Epoch: 179
2023-02-07 17:34:45,434	32k	INFO	Train Epoch: 180 [55%]
2023-02-07 17:34:45,434	32k	INFO	[2.4268381595611572, 2.02866792678833, 7.66528844833374, 12.839248657226562, 0.8188288807868958, 15800, 9.778720961290439e-05]
2023-02-07 17:35:35,680	32k	INFO	====> Epoch: 180
2023-02-07 17:37:48,992	32k	INFO	====> Epoch: 181
2023-02-07 17:39:42,266	32k	INFO	Train Epoch: 182 [82%]
2023-02-07 17:39:42,267	32k	INFO	[2.4471888542175293, 2.309143543243408, 14.801136016845703, 16.42742919921875, 0.8475450277328491, 16000, 9.776276433842631e-05]
2023-02-07 17:39:46,929	32k	INFO	Saving model and optimizer state at iteration 182 to ./logs\32k\G_16000.pth
2023-02-07 17:40:06,027	32k	INFO	Saving model and optimizer state at iteration 182 to ./logs\32k\D_16000.pth
2023-02-07 17:40:28,918	32k	INFO	====> Epoch: 182
2023-02-07 17:42:42,741	32k	INFO	====> Epoch: 183
2023-02-07 17:44:55,233	32k	INFO	====> Epoch: 184
2023-02-07 17:45:28,630	32k	INFO	Train Epoch: 185 [9%]
2023-02-07 17:45:28,630	32k	INFO	[2.4997944831848145, 2.3628575801849365, 9.75255012512207, 15.626605987548828, 0.8665064573287964, 16200, 9.772610788423802e-05]
2023-02-07 17:47:09,398	32k	INFO	====> Epoch: 185
2023-02-07 17:49:21,874	32k	INFO	====> Epoch: 186
2023-02-07 17:50:26,652	32k	INFO	Train Epoch: 187 [36%]
2023-02-07 17:50:26,653	32k	INFO	[2.6311392784118652, 2.372824192047119, 11.809494018554688, 17.118436813354492, 0.47372499108314514, 16400, 9.77016778842374e-05]
2023-02-07 17:51:35,978	32k	INFO	====> Epoch: 187
2023-02-07 17:53:49,374	32k	INFO	====> Epoch: 188
2023-02-07 17:55:23,233	32k	INFO	Train Epoch: 189 [64%]
2023-02-07 17:55:23,233	32k	INFO	[2.4115920066833496, 2.6004247665405273, 10.292720794677734, 13.990850448608398, 0.6128233671188354, 16600, 9.767725399135504e-05]
2023-02-07 17:56:02,183	32k	INFO	====> Epoch: 189
2023-02-07 17:58:15,629	32k	INFO	====> Epoch: 190
2023-02-07 18:00:18,697	32k	INFO	Train Epoch: 191 [91%]
2023-02-07 18:00:18,698	32k	INFO	[2.476590633392334, 2.3959107398986816, 9.825133323669434, 17.272159576416016, 0.5982983112335205, 16800, 9.765283620406429e-05]
2023-02-07 18:00:28,315	32k	INFO	====> Epoch: 191
2023-02-07 18:02:42,561	32k	INFO	====> Epoch: 192
2023-02-07 18:04:54,987	32k	INFO	====> Epoch: 193
2023-02-07 18:05:37,595	32k	INFO	Train Epoch: 194 [18%]
2023-02-07 18:05:37,595	32k	INFO	[2.5469231605529785, 2.261059045791626, 12.21806526184082, 18.74179458618164, 0.7255897521972656, 17000, 9.761622096777372e-05]
2023-02-07 18:05:42,091	32k	INFO	Saving model and optimizer state at iteration 194 to ./logs\32k\G_17000.pth
2023-02-07 18:06:01,137	32k	INFO	Saving model and optimizer state at iteration 194 to ./logs\32k\D_17000.pth
2023-02-07 18:07:34,248	32k	INFO	====> Epoch: 194
2023-02-07 18:09:47,906	32k	INFO	====> Epoch: 195
2023-02-07 18:11:02,084	32k	INFO	Train Epoch: 196 [45%]
2023-02-07 18:11:02,084	32k	INFO	[2.4885900020599365, 2.383333683013916, 9.689787864685059, 13.685766220092773, 0.9633486866950989, 17200, 9.759181843778522e-05]
2023-02-07 18:12:02,361	32k	INFO	====> Epoch: 196
2023-02-07 18:16:49,498	32k	INFO	====> Epoch: 197
2023-02-07 18:20:33,618	32k	INFO	Train Epoch: 198 [73%]
2023-02-07 18:20:33,618	32k	INFO	[2.499962568283081, 2.4040303230285645, 12.432945251464844, 17.229080200195312, 0.8561845421791077, 17400, 9.756742200804793e-05]
2023-02-07 18:21:47,702	32k	INFO	====> Epoch: 198
2023-02-07 18:26:57,720	32k	INFO	====> Epoch: 199
2023-02-07 18:31:17,795	32k	INFO	====> Epoch: 200
2023-02-07 18:31:43,198	32k	INFO	Train Epoch: 201 [0%]
2023-02-07 18:31:43,198	32k	INFO	[2.4892737865448, 2.2194271087646484, 12.615705490112305, 16.821392059326172, 1.0796860456466675, 17600, 9.753083879807726e-05]
2023-02-07 18:36:01,686	32k	INFO	====> Epoch: 201
2023-02-07 18:40:55,903	32k	INFO	====> Epoch: 202
2023-02-07 18:42:29,324	32k	INFO	Train Epoch: 203 [27%]
2023-02-07 18:42:29,325	32k	INFO	[2.3428452014923096, 2.189953088760376, 12.907392501831055, 15.840951919555664, 0.48792731761932373, 17800, 9.750645761229709e-05]
2023-02-07 18:45:49,509	32k	INFO	====> Epoch: 203
2023-02-07 18:50:48,031	32k	INFO	====> Epoch: 204
2023-02-07 18:53:31,402	32k	INFO	Train Epoch: 205 [55%]
2023-02-07 18:53:31,402	32k	INFO	[2.4485435485839844, 2.108217716217041, 11.225994110107422, 14.583245277404785, 0.8323250412940979, 18000, 9.748208252143241e-05]
2023-02-07 18:53:35,876	32k	INFO	Saving model and optimizer state at iteration 205 to ./logs\32k\G_18000.pth
2023-02-07 18:53:52,648	32k	INFO	Saving model and optimizer state at iteration 205 to ./logs\32k\D_18000.pth
2023-02-07 18:55:56,093	32k	INFO	====> Epoch: 205
2023-02-07 19:00:33,984	32k	INFO	====> Epoch: 206
2023-02-07 19:04:49,445	32k	INFO	Train Epoch: 207 [82%]
2023-02-07 19:04:49,446	32k	INFO	[2.674133062362671, 2.064514636993408, 5.687127113342285, 13.519594192504883, 0.5315198302268982, 18200, 9.745771352395957e-05]
2023-02-07 19:05:35,719	32k	INFO	====> Epoch: 207
2023-02-07 19:10:13,777	32k	INFO	====> Epoch: 208
2023-02-07 19:14:47,548	32k	INFO	====> Epoch: 209
2023-02-07 19:15:35,383	32k	INFO	Train Epoch: 210 [9%]
2023-02-07 19:15:35,383	32k	INFO	[2.5437965393066406, 2.2913265228271484, 13.787505149841309, 18.729778289794922, 1.0571695566177368, 18400, 9.742117144952805e-05]
2023-02-07 19:19:16,628	32k	INFO	====> Epoch: 210
2023-02-07 19:23:59,758	32k	INFO	====> Epoch: 211
2023-02-07 19:26:01,081	32k	INFO	Train Epoch: 212 [36%]
2023-02-07 19:26:01,081	32k	INFO	[2.5189802646636963, 2.5148799419403076, 15.009998321533203, 17.97093391418457, 0.9030418395996094, 18600, 9.739681767887146e-05]
2023-02-07 19:28:45,806	32k	INFO	====> Epoch: 212
2023-02-07 19:33:39,228	32k	INFO	====> Epoch: 213
2023-02-07 19:36:49,889	32k	INFO	Train Epoch: 214 [64%]
2023-02-07 19:36:49,889	32k	INFO	[2.323404312133789, 2.521040916442871, 12.572664260864258, 14.952072143554688, 0.69417405128479, 18800, 9.7372469996277e-05]
2023-02-07 19:38:15,620	32k	INFO	====> Epoch: 214
2023-02-07 19:43:04,992	32k	INFO	====> Epoch: 215
2023-02-07 19:47:35,219	32k	INFO	Train Epoch: 216 [91%]
2023-02-07 19:47:35,219	32k	INFO	[2.5679819583892822, 2.0207834243774414, 8.832568168640137, 14.715601921081543, 0.6317256093025208, 19000, 9.734812840022278e-05]
2023-02-07 19:47:39,759	32k	INFO	Saving model and optimizer state at iteration 216 to ./logs\32k\G_19000.pth
2023-02-07 19:47:57,845	32k	INFO	Saving model and optimizer state at iteration 216 to ./logs\32k\D_19000.pth
2023-02-07 19:48:27,521	32k	INFO	====> Epoch: 216
2023-02-07 19:53:09,847	32k	INFO	====> Epoch: 217
2023-02-07 19:57:51,694	32k	INFO	====> Epoch: 218
2023-02-07 19:59:01,703	32k	INFO	Train Epoch: 219 [18%]
2023-02-07 19:59:01,704	32k	INFO	[2.5336737632751465, 2.1829769611358643, 12.086270332336426, 18.775772094726562, 0.6264281868934631, 19200, 9.731162741507607e-05]
2023-02-07 20:02:29,398	32k	INFO	====> Epoch: 219
2023-02-07 20:07:18,152	32k	INFO	====> Epoch: 220
2023-02-07 20:09:32,665	32k	INFO	Train Epoch: 221 [45%]
2023-02-07 20:09:32,666	32k	INFO	[2.55208683013916, 2.1489357948303223, 9.024528503417969, 12.344110488891602, 0.21028947830200195, 19400, 9.728730102871649e-05]
2023-02-07 20:12:01,864	32k	INFO	====> Epoch: 221
2023-02-07 20:17:21,537	32k	INFO	====> Epoch: 222
2023-02-07 20:21:03,459	32k	INFO	Train Epoch: 223 [73%]
2023-02-07 20:21:03,460	32k	INFO	[2.3493776321411133, 2.453810214996338, 10.56823444366455, 16.656709671020508, 0.6454640626907349, 19600, 9.726298072357337e-05]
2023-02-07 20:22:13,720	32k	INFO	====> Epoch: 223
2023-02-07 20:27:00,082	32k	INFO	====> Epoch: 224
2023-02-07 20:31:49,803	32k	INFO	====> Epoch: 225
2023-02-07 20:32:13,328	32k	INFO	Train Epoch: 226 [0%]
2023-02-07 20:32:13,329	32k	INFO	[2.4435298442840576, 2.232247829437256, 13.443621635437012, 17.813751220703125, 0.37300077080726624, 19800, 9.722651166481428e-05]
2023-02-07 20:36:33,574	32k	INFO	====> Epoch: 226
2023-02-07 20:41:13,736	32k	INFO	====> Epoch: 227
2023-02-07 20:42:51,449	32k	INFO	Train Epoch: 228 [27%]
2023-02-07 20:42:51,449	32k	INFO	[2.326092004776001, 2.2804453372955322, 11.041282653808594, 14.598264694213867, 0.5883763432502747, 20000, 9.720220655606233e-05]
2023-02-07 20:42:55,938	32k	INFO	Saving model and optimizer state at iteration 228 to ./logs\32k\G_20000.pth
2023-02-07 20:43:12,387	32k	INFO	Saving model and optimizer state at iteration 228 to ./logs\32k\D_20000.pth
2023-02-07 20:46:16,362	32k	INFO	====> Epoch: 228
2023-02-07 20:48:28,613	32k	INFO	====> Epoch: 229
2023-02-07 20:49:53,099	32k	INFO	Train Epoch: 230 [55%]
2023-02-07 20:49:53,100	32k	INFO	[2.47762393951416, 2.052753448486328, 9.87153434753418, 14.791862487792969, 0.4688096046447754, 20200, 9.717790752320778e-05]
2023-02-07 20:50:42,766	32k	INFO	====> Epoch: 230
2023-02-07 20:53:21,743	32k	INFO	====> Epoch: 231
2023-02-07 20:55:22,768	32k	INFO	Train Epoch: 232 [82%]
2023-02-07 20:55:22,768	32k	INFO	[2.5036845207214355, 2.3738698959350586, 12.126296997070312, 15.546420097351074, 0.8534035682678223, 20400, 9.715361456473177e-05]
2023-02-07 20:55:38,686	32k	INFO	====> Epoch: 232
2023-02-07 20:57:30,092	32k	INFO	====> Epoch: 233
2023-02-07 20:59:21,099	32k	INFO	====> Epoch: 234
2023-02-07 20:59:52,118	32k	INFO	Train Epoch: 235 [9%]
2023-02-07 20:59:52,118	32k	INFO	[2.664794445037842, 2.4800596237182617, 11.827136039733887, 18.01250457763672, 0.596635639667511, 20600, 9.711718651315591e-05]
2023-02-07 21:01:16,479	32k	INFO	====> Epoch: 235
2023-02-07 21:03:07,297	32k	INFO	====> Epoch: 236
2023-02-07 21:04:02,363	32k	INFO	Train Epoch: 237 [36%]
2023-02-07 21:04:02,364	32k	INFO	[2.4213716983795166, 2.2646498680114746, 11.426438331604004, 16.494094848632812, 1.1573891639709473, 20800, 9.709290873398365e-05]
2023-02-07 21:04:58,950	32k	INFO	====> Epoch: 237
2023-02-07 21:06:50,639	32k	INFO	====> Epoch: 238
2023-02-07 21:08:10,151	32k	INFO	Train Epoch: 239 [64%]
2023-02-07 21:08:10,151	32k	INFO	[2.4733920097351074, 2.557682991027832, 10.309959411621094, 17.214019775390625, 0.5586072206497192, 21000, 9.706863702387684e-05]
2023-02-07 21:08:14,876	32k	INFO	Saving model and optimizer state at iteration 239 to ./logs\32k\G_21000.pth
2023-02-07 21:08:30,907	32k	INFO	Saving model and optimizer state at iteration 239 to ./logs\32k\D_21000.pth
2023-02-07 21:09:11,437	32k	INFO	====> Epoch: 239
2023-02-07 21:11:46,818	32k	INFO	====> Epoch: 240
2023-02-07 21:13:32,984	32k	INFO	Train Epoch: 241 [91%]
2023-02-07 21:13:32,985	32k	INFO	[2.664260149002075, 2.0642004013061523, 10.666601181030273, 18.099609375, 0.731969952583313, 21200, 9.704437138131832e-05]
2023-02-07 21:13:41,166	32k	INFO	====> Epoch: 241
2023-02-07 21:16:14,556	32k	INFO	====> Epoch: 242
2023-02-07 21:18:13,625	32k	INFO	====> Epoch: 243
2023-02-07 21:18:58,682	32k	INFO	Train Epoch: 244 [18%]
2023-02-07 21:18:58,683	32k	INFO	[2.62353777885437, 2.2757506370544434, 9.752870559692383, 16.047285079956055, 0.5307028889656067, 21400, 9.700798429081568e-05]
2023-02-07 21:20:17,243	32k	INFO	====> Epoch: 244
2023-02-07 21:22:09,430	32k	INFO	====> Epoch: 245
2023-02-07 21:23:12,158	32k	INFO	Train Epoch: 246 [45%]
2023-02-07 21:23:12,158	32k	INFO	[2.376497745513916, 2.208364725112915, 10.225717544555664, 14.688340187072754, 0.6754216551780701, 21600, 9.698373381049272e-05]
2023-02-07 21:24:00,240	32k	INFO	====> Epoch: 246
2023-02-07 21:25:50,642	32k	INFO	====> Epoch: 247
2023-02-07 21:27:17,392	32k	INFO	Train Epoch: 248 [73%]
2023-02-07 21:27:17,393	32k	INFO	[2.221879243850708, 2.594529867172241, 9.369111061096191, 16.81258773803711, 1.0489362478256226, 21800, 9.695948939241093e-05]
2023-02-07 21:27:41,245	32k	INFO	====> Epoch: 248
2023-02-07 21:29:31,673	32k	INFO	====> Epoch: 249
2023-02-07 21:31:21,916	32k	INFO	====> Epoch: 250
2023-02-07 21:31:44,284	32k	INFO	Train Epoch: 251 [0%]
2023-02-07 21:31:44,285	32k	INFO	[2.5241942405700684, 2.3509469032287598, 12.539299011230469, 17.526670455932617, 0.7536979913711548, 22000, 9.692313412867544e-05]
2023-02-07 21:31:48,766	32k	INFO	Saving model and optimizer state at iteration 251 to ./logs\32k\G_22000.pth
2023-02-07 21:32:06,782	32k	INFO	Saving model and optimizer state at iteration 251 to ./logs\32k\D_22000.pth
2023-02-07 21:33:38,411	32k	INFO	====> Epoch: 251
2023-02-07 21:35:28,990	32k	INFO	====> Epoch: 252
2023-02-07 21:36:15,628	32k	INFO	Train Epoch: 253 [27%]
2023-02-07 21:36:15,629	32k	INFO	[2.3804070949554443, 2.359945058822632, 10.921401023864746, 13.723844528198242, 0.29848602414131165, 22200, 9.689890485956725e-05]
2023-02-07 21:37:19,990	32k	INFO	====> Epoch: 253
2023-02-07 21:39:24,342	32k	INFO	====> Epoch: 254
2023-02-07 21:41:02,731	32k	INFO	Train Epoch: 255 [55%]
2023-02-07 21:41:02,731	32k	INFO	[2.3381145000457764, 2.2890772819519043, 9.941591262817383, 14.795817375183105, 0.8626958131790161, 22400, 9.687468164739773e-05]
2023-02-07 21:41:58,308	32k	INFO	====> Epoch: 255
2023-02-07 21:44:30,929	32k	INFO	====> Epoch: 256
2023-02-07 21:46:25,585	32k	INFO	Train Epoch: 257 [82%]
2023-02-07 21:46:25,586	32k	INFO	[2.6762328147888184, 2.2302746772766113, 10.52723503112793, 12.506368637084961, 1.073678970336914, 22600, 9.685046449065278e-05]
2023-02-07 21:46:42,883	32k	INFO	====> Epoch: 257
2023-02-07 21:48:33,265	32k	INFO	====> Epoch: 258
2023-02-07 21:50:23,706	32k	INFO	====> Epoch: 259
2023-02-07 21:50:54,245	32k	INFO	Train Epoch: 260 [9%]
2023-02-07 21:50:54,245	32k	INFO	[2.3950483798980713, 2.347141742706299, 13.781299591064453, 18.84493637084961, 0.526691198348999, 22800, 9.681415010614512e-05]
2023-02-07 21:52:14,694	32k	INFO	====> Epoch: 260
2023-02-07 21:54:05,225	32k	INFO	====> Epoch: 261
2023-02-07 21:54:59,831	32k	INFO	Train Epoch: 262 [36%]
2023-02-07 21:54:59,831	32k	INFO	[2.555619716644287, 2.2212436199188232, 9.575003623962402, 16.177812576293945, 0.7556395530700684, 23000, 9.678994808133967e-05]
2023-02-07 21:55:04,312	32k	INFO	Saving model and optimizer state at iteration 262 to ./logs\32k\G_23000.pth
2023-02-07 21:55:22,224	32k	INFO	Saving model and optimizer state at iteration 262 to ./logs\32k\D_23000.pth
2023-02-07 21:56:21,579	32k	INFO	====> Epoch: 262
2023-02-07 21:58:12,231	32k	INFO	====> Epoch: 263
2023-02-07 21:59:31,353	32k	INFO	Train Epoch: 264 [64%]
2023-02-07 21:59:31,354	32k	INFO	[2.291395664215088, 2.593254566192627, 9.18558406829834, 14.170002937316895, 0.9322950839996338, 23200, 9.676575210666227e-05]
2023-02-07 22:00:03,624	32k	INFO	====> Epoch: 264
2023-02-07 22:01:54,230	32k	INFO	====> Epoch: 265
2023-02-07 22:04:00,545	32k	INFO	Train Epoch: 266 [91%]
2023-02-07 22:04:00,547	32k	INFO	[2.5157217979431152, 2.2893288135528564, 7.338489532470703, 14.968390464782715, 0.9041028618812561, 23400, 9.674156218060047e-05]
2023-02-07 22:04:12,431	32k	INFO	====> Epoch: 266
2023-02-07 22:06:42,140	32k	INFO	====> Epoch: 267
2023-02-07 22:08:39,638	32k	INFO	====> Epoch: 268
2023-02-07 22:09:18,181	32k	INFO	Train Epoch: 269 [18%]
2023-02-07 22:09:18,182	32k	INFO	[2.585972785949707, 2.461054563522339, 12.841654777526855, 18.517820358276367, 0.6318978071212769, 23600, 9.670528862935451e-05]
2023-02-07 22:10:30,561	32k	INFO	====> Epoch: 269
2023-02-07 22:12:21,413	32k	INFO	====> Epoch: 270
2023-02-07 22:13:24,801	32k	INFO	Train Epoch: 271 [45%]
2023-02-07 22:13:24,802	32k	INFO	[2.421670913696289, 2.4571542739868164, 13.116412162780762, 15.18135929107666, 0.4794858396053314, 23800, 9.668111381821731e-05]
2023-02-07 22:14:19,598	32k	INFO	====> Epoch: 271
2023-02-07 22:16:14,524	32k	INFO	====> Epoch: 272
2023-02-07 22:17:44,409	32k	INFO	Train Epoch: 273 [73%]
2023-02-07 22:17:44,410	32k	INFO	[2.4379258155822754, 2.2511990070343018, 12.288382530212402, 17.285614013671875, 0.5320841073989868, 24000, 9.665694505040515e-05]
2023-02-07 22:17:48,915	32k	INFO	Saving model and optimizer state at iteration 273 to ./logs\32k\G_24000.pth
2023-02-07 22:18:05,358	32k	INFO	Saving model and optimizer state at iteration 273 to ./logs\32k\D_24000.pth
2023-02-07 22:18:32,487	32k	INFO	====> Epoch: 273
2023-02-07 22:20:23,184	32k	INFO	====> Epoch: 274
2023-02-07 22:22:13,578	32k	INFO	====> Epoch: 275
2023-02-07 22:22:35,919	32k	INFO	Train Epoch: 276 [0%]
2023-02-07 22:22:35,919	32k	INFO	[2.4696168899536133, 2.276357889175415, 15.216888427734375, 18.051366806030273, 0.7219808101654053, 24200, 9.662070322661676e-05]
2023-02-07 22:24:04,182	32k	INFO	====> Epoch: 276
2023-02-07 22:25:54,360	32k	INFO	====> Epoch: 277
2023-02-07 22:26:40,891	32k	INFO	Train Epoch: 278 [27%]
2023-02-07 22:26:40,891	32k	INFO	[2.361176013946533, 2.4721574783325195, 12.992560386657715, 16.2576847076416, 0.4791528880596161, 24400, 9.659654956050859e-05]
2023-02-07 22:27:45,265	32k	INFO	====> Epoch: 278
2023-02-07 22:29:35,652	32k	INFO	====> Epoch: 279
2023-02-07 22:30:46,343	32k	INFO	Train Epoch: 280 [55%]
2023-02-07 22:30:46,344	32k	INFO	[2.398617744445801, 2.2190635204315186, 9.964317321777344, 16.1744384765625, 0.6419702172279358, 24600, 9.657240193243954e-05]
2023-02-07 22:31:26,369	32k	INFO	====> Epoch: 280
2023-02-07 22:33:16,339	32k	INFO	====> Epoch: 281
2023-02-07 22:34:51,532	32k	INFO	Train Epoch: 282 [82%]
2023-02-07 22:34:51,532	32k	INFO	[2.4355669021606445, 2.365387201309204, 14.452692985534668, 18.16908073425293, 0.7730005979537964, 24800, 9.65482603409002e-05]
2023-02-07 22:35:07,353	32k	INFO	====> Epoch: 282
2023-02-07 22:37:00,123	32k	INFO	====> Epoch: 283
2023-02-07 22:38:59,381	32k	INFO	====> Epoch: 284
2023-02-07 22:39:31,093	32k	INFO	Train Epoch: 285 [9%]
2023-02-07 22:39:31,093	32k	INFO	[2.555506944656372, 2.110740900039673, 8.73676872253418, 14.878194808959961, 0.5724442601203918, 25000, 9.651205926878348e-05]
2023-02-07 22:39:35,607	32k	INFO	Saving model and optimizer state at iteration 285 to ./logs\32k\G_25000.pth
2023-02-07 22:39:50,520	32k	INFO	Saving model and optimizer state at iteration 285 to ./logs\32k\D_25000.pth
2023-02-07 22:41:21,915	32k	INFO	====> Epoch: 285
2023-02-07 22:43:21,782	32k	INFO	====> Epoch: 286
2023-02-07 22:44:19,787	32k	INFO	Train Epoch: 287 [36%]
2023-02-07 22:44:19,788	32k	INFO	[2.4445996284484863, 2.372640371322632, 12.413557052612305, 17.518985748291016, 0.5160245895385742, 25200, 9.64879327619672e-05]
2023-02-07 22:45:21,196	32k	INFO	====> Epoch: 287
2023-02-07 22:47:19,661	32k	INFO	====> Epoch: 288
2023-02-07 22:48:43,726	32k	INFO	Train Epoch: 289 [64%]
2023-02-07 22:48:43,726	32k	INFO	[2.4691805839538574, 2.2594118118286133, 12.230856895446777, 14.857041358947754, 0.8859390616416931, 25400, 9.646381228640066e-05]
2023-02-07 22:49:18,868	32k	INFO	====> Epoch: 289
2023-02-07 22:51:17,911	32k	INFO	====> Epoch: 290
2023-02-07 22:53:08,763	32k	INFO	Train Epoch: 291 [91%]
2023-02-07 22:53:08,763	32k	INFO	[2.9651851654052734, 1.7647536993026733, 4.42325496673584, 10.037627220153809, 0.7796562910079956, 25600, 9.643969784057613e-05]
2023-02-07 22:53:17,282	32k	INFO	====> Epoch: 291
2023-02-07 22:55:35,666	32k	INFO	====> Epoch: 292
2023-02-07 22:57:30,190	32k	INFO	====> Epoch: 293
2023-02-07 22:58:09,441	32k	INFO	Train Epoch: 294 [18%]
2023-02-07 22:58:09,442	32k	INFO	[2.373373508453369, 2.252485990524292, 12.78847885131836, 16.72306251525879, 0.606884241104126, 25800, 9.640353747430838e-05]
2023-02-07 22:59:31,654	32k	INFO	====> Epoch: 294
2023-02-07 23:02:17,308	32k	INFO	====> Epoch: 295
2023-02-07 23:03:31,257	32k	INFO	Train Epoch: 296 [45%]
2023-02-07 23:03:31,274	32k	INFO	[2.303215503692627, 2.5511465072631836, 13.934648513793945, 18.49505043029785, 0.8854227066040039, 26000, 9.637943809624507e-05]
2023-02-07 23:03:36,038	32k	INFO	Saving model and optimizer state at iteration 296 to ./logs\32k\G_26000.pth
2023-02-07 23:03:54,027	32k	INFO	Saving model and optimizer state at iteration 296 to ./logs\32k\D_26000.pth
2023-02-07 23:04:45,385	32k	INFO	====> Epoch: 296
2023-02-07 23:06:40,912	32k	INFO	====> Epoch: 297
2023-02-07 23:08:12,513	32k	INFO	Train Epoch: 298 [73%]
2023-02-07 23:08:12,513	32k	INFO	[2.4901669025421143, 2.450923442840576, 12.483206748962402, 15.857170104980469, 0.4418282210826874, 26200, 9.635534474264972e-05]
2023-02-07 23:08:37,120	32k	INFO	====> Epoch: 298
2023-02-07 23:10:31,324	32k	INFO	====> Epoch: 299
2023-02-07 23:12:24,564	32k	INFO	====> Epoch: 300
2023-02-07 23:12:47,305	32k	INFO	Train Epoch: 301 [0%]
2023-02-07 23:12:47,305	32k	INFO	[2.5084266662597656, 2.153733730316162, 12.863175392150879, 16.530397415161133, 0.8135973811149597, 26400, 9.631921600483981e-05]
2023-02-07 23:14:17,760	32k	INFO	====> Epoch: 301
2023-02-07 23:16:11,232	32k	INFO	====> Epoch: 302
2023-02-07 23:16:58,909	32k	INFO	Train Epoch: 303 [27%]
2023-02-07 23:16:58,910	32k	INFO	[2.3788869380950928, 2.2787249088287354, 11.330511093139648, 14.017260551452637, 0.4352797567844391, 26600, 9.629513770582634e-05]
2023-02-07 23:18:07,967	32k	INFO	====> Epoch: 303
2023-02-07 23:20:14,895	32k	INFO	====> Epoch: 304
2023-02-07 23:21:37,923	32k	INFO	Train Epoch: 305 [55%]
2023-02-07 23:21:37,923	32k	INFO	[2.2762134075164795, 2.4930131435394287, 11.308450698852539, 16.77684783935547, 0.5349023342132568, 26800, 9.627106542601141e-05]
2023-02-07 23:22:23,260	32k	INFO	====> Epoch: 305
2023-02-07 23:24:24,074	32k	INFO	====> Epoch: 306
2023-02-07 23:26:03,684	32k	INFO	Train Epoch: 307 [82%]
2023-02-07 23:26:03,685	32k	INFO	[2.4888241291046143, 2.198373794555664, 12.962141990661621, 16.00810432434082, 1.0677847862243652, 27000, 9.62469991638903e-05]
2023-02-07 23:26:08,344	32k	INFO	Saving model and optimizer state at iteration 307 to ./logs\32k\G_27000.pth
2023-02-07 23:26:26,856	32k	INFO	Saving model and optimizer state at iteration 307 to ./logs\32k\D_27000.pth
2023-02-07 23:26:46,493	32k	INFO	====> Epoch: 307
2023-02-07 23:28:59,272	32k	INFO	====> Epoch: 308
2023-02-07 23:33:03,919	32k	INFO	====> Epoch: 309
2023-02-07 23:33:46,219	32k	INFO	Train Epoch: 310 [9%]
2023-02-07 23:33:46,220	32k	INFO	[2.477017879486084, 2.274493455886841, 9.995453834533691, 15.900580406188965, 0.2754864990711212, 27200, 9.621091105059392e-05]
2023-02-07 23:35:42,296	32k	INFO	====> Epoch: 310
2023-02-07 23:38:21,168	32k	INFO	====> Epoch: 311
2023-02-07 23:39:25,317	32k	INFO	Train Epoch: 312 [36%]
2023-02-07 23:39:25,317	32k	INFO	[2.5796499252319336, 2.222482204437256, 10.898737907409668, 16.291173934936523, 1.0068455934524536, 27400, 9.618685982612675e-05]
2023-02-07 23:40:36,498	32k	INFO	====> Epoch: 312
2023-02-07 23:42:49,333	32k	INFO	====> Epoch: 313
2023-02-07 23:44:13,367	32k	INFO	Train Epoch: 314 [64%]
2023-02-07 23:44:13,368	32k	INFO	[2.4441633224487305, 2.428528308868408, 11.276105880737305, 15.440587997436523, 1.0377545356750488, 27600, 9.61628146140899e-05]
2023-02-07 23:44:47,378	32k	INFO	====> Epoch: 314
2023-02-07 23:46:45,485	32k	INFO	====> Epoch: 315
2023-02-07 23:48:34,997	32k	INFO	Train Epoch: 316 [91%]
2023-02-07 23:48:34,997	32k	INFO	[2.5431222915649414, 2.133033275604248, 7.831211566925049, 12.808097839355469, 0.9566836953163147, 27800, 9.613877541298036e-05]
2023-02-07 23:48:43,380	32k	INFO	====> Epoch: 316
2023-02-07 23:50:52,321	32k	INFO	====> Epoch: 317
2023-02-07 23:52:50,708	32k	INFO	====> Epoch: 318
2023-02-07 23:53:47,432	32k	INFO	Train Epoch: 319 [18%]
2023-02-07 23:53:47,433	32k	INFO	[2.5341179370880127, 2.2451441287994385, 11.315544128417969, 16.780118942260742, 0.7941577434539795, 28000, 9.61027278785178e-05]
2023-02-07 23:53:54,434	32k	INFO	Saving model and optimizer state at iteration 319 to ./logs\32k\G_28000.pth
2023-02-07 23:54:12,087	32k	INFO	Saving model and optimizer state at iteration 319 to ./logs\32k\D_28000.pth
2023-02-07 23:55:33,831	32k	INFO	====> Epoch: 319
2023-02-07 23:57:50,809	32k	INFO	====> Epoch: 320
2023-02-07 23:58:57,507	32k	INFO	Train Epoch: 321 [45%]
2023-02-07 23:58:57,508	32k	INFO	[2.6975388526916504, 2.2120161056518555, 11.405308723449707, 12.978477478027344, 0.8090832233428955, 28200, 9.60787036981533e-05]
2023-02-07 23:59:49,075	32k	INFO	====> Epoch: 321
2023-02-08 00:02:17,117	32k	INFO	====> Epoch: 322
2023-02-08 00:03:48,979	32k	INFO	Train Epoch: 323 [73%]
2023-02-08 00:03:48,980	32k	INFO	[2.5260772705078125, 2.178119421005249, 8.271916389465332, 15.082479476928711, 0.5642960071563721, 28400, 9.60546855234585e-05]
2023-02-08 00:04:14,283	32k	INFO	====> Epoch: 323
2023-02-08 00:06:10,300	32k	INFO	====> Epoch: 324
2023-02-08 00:08:28,132	32k	INFO	====> Epoch: 325