File size: 51,660 Bytes
049a091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
2023-02-08 23:42:36,711	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'resona': 0}, 'model_dir': './logs\\32k'}
2023-02-08 23:43:22,288	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'resona': 0}, 'model_dir': './logs\\32k'}
2023-02-08 23:48:45,714	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 12, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'resona': 0}, 'model_dir': './logs\\32k'}
2023-02-08 23:48:54,959	32k	INFO	Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-08 23:48:58,405	32k	INFO	Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-08 23:58:19,270	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 12, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'resona': 0}, 'model_dir': './logs\\32k'}
2023-02-08 23:58:24,560	32k	INFO	Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-08 23:58:24,968	32k	INFO	Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-08 23:59:37,724	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'resona': 0}, 'model_dir': './logs\\32k'}
2023-02-08 23:59:42,440	32k	INFO	Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-08 23:59:42,831	32k	INFO	Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-09 00:00:09,549	32k	INFO	Train Epoch: 1 [0%]
2023-02-09 00:00:09,550	32k	INFO	[2.2538223266601562, 2.6597347259521484, 11.763463020324707, 45.49671173095703, 11.207155227661133, 0, 0.0001]
2023-02-09 00:00:15,641	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
2023-02-09 00:00:34,164	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
2023-02-09 00:01:33,109	32k	INFO	====> Epoch: 1
2023-02-09 00:02:50,380	32k	INFO	====> Epoch: 2
2023-02-09 00:04:06,903	32k	INFO	Train Epoch: 3 [99%]
2023-02-09 00:04:06,904	32k	INFO	[2.4401040077209473, 2.5799942016601562, 9.811338424682617, 22.839824676513672, 1.509987711906433, 200, 9.99750015625e-05]
2023-02-09 00:04:07,676	32k	INFO	====> Epoch: 3
2023-02-09 00:05:24,690	32k	INFO	====> Epoch: 4
2023-02-09 00:06:41,699	32k	INFO	====> Epoch: 5
2023-02-09 00:07:57,478	32k	INFO	Train Epoch: 6 [97%]
2023-02-09 00:07:57,479	32k	INFO	[2.500568389892578, 2.042257785797119, 10.643875122070312, 17.175233840942383, 1.2767752408981323, 400, 9.993751562304699e-05]
2023-02-09 00:07:59,058	32k	INFO	====> Epoch: 6
2023-02-09 00:09:16,169	32k	INFO	====> Epoch: 7
2023-02-09 00:10:33,248	32k	INFO	====> Epoch: 8
2023-02-09 00:11:48,262	32k	INFO	Train Epoch: 9 [96%]
2023-02-09 00:11:48,262	32k	INFO	[2.4632694721221924, 2.3801445960998535, 6.719289779663086, 15.820771217346191, 1.1217436790466309, 600, 9.990004373906418e-05]
2023-02-09 00:11:50,769	32k	INFO	====> Epoch: 9
2023-02-09 00:13:08,802	32k	INFO	====> Epoch: 10
2023-02-09 00:14:26,016	32k	INFO	====> Epoch: 11
2023-02-09 00:15:40,270	32k	INFO	Train Epoch: 12 [94%]
2023-02-09 00:15:40,271	32k	INFO	[2.455298662185669, 2.3402817249298096, 9.666932106018066, 20.384544372558594, 0.6758424043655396, 800, 9.986258590528146e-05]
2023-02-09 00:15:43,517	32k	INFO	====> Epoch: 12
2023-02-09 00:17:00,741	32k	INFO	====> Epoch: 13
2023-02-09 00:18:18,179	32k	INFO	====> Epoch: 14
2023-02-09 00:19:31,643	32k	INFO	Train Epoch: 15 [93%]
2023-02-09 00:19:31,643	32k	INFO	[2.623318672180176, 2.104186534881592, 8.998331069946289, 18.40737533569336, 1.2988810539245605, 1000, 9.982514211643064e-05]
2023-02-09 00:19:36,017	32k	INFO	Saving model and optimizer state at iteration 15 to ./logs\32k\G_1000.pth
2023-02-09 00:19:56,035	32k	INFO	Saving model and optimizer state at iteration 15 to ./logs\32k\D_1000.pth
2023-02-09 00:20:03,963	32k	INFO	====> Epoch: 15
2023-02-09 00:21:21,250	32k	INFO	====> Epoch: 16
2023-02-09 00:22:38,564	32k	INFO	====> Epoch: 17
2023-02-09 00:23:51,362	32k	INFO	Train Epoch: 18 [91%]
2023-02-09 00:23:51,362	32k	INFO	[2.5918359756469727, 2.205848217010498, 7.585756301879883, 19.934139251708984, 0.9796969294548035, 1200, 9.978771236724554e-05]
2023-02-09 00:23:56,283	32k	INFO	====> Epoch: 18
2023-02-09 00:25:13,666	32k	INFO	====> Epoch: 19
2023-02-09 00:26:30,886	32k	INFO	====> Epoch: 20
2023-02-09 00:27:42,775	32k	INFO	Train Epoch: 21 [90%]
2023-02-09 00:27:42,775	32k	INFO	[2.3665695190429688, 2.329713821411133, 8.740349769592285, 18.66284942626953, 0.883953332901001, 1400, 9.975029665246193e-05]
2023-02-09 00:27:48,506	32k	INFO	====> Epoch: 21
2023-02-09 00:29:05,836	32k	INFO	====> Epoch: 22
2023-02-09 00:30:23,087	32k	INFO	====> Epoch: 23
2023-02-09 00:31:34,123	32k	INFO	Train Epoch: 24 [88%]
2023-02-09 00:31:34,123	32k	INFO	[2.644050121307373, 2.4024436473846436, 3.807854652404785, 10.505730628967285, 0.7721247673034668, 1600, 9.971289496681757e-05]
2023-02-09 00:31:40,666	32k	INFO	====> Epoch: 24
2023-02-09 00:32:57,901	32k	INFO	====> Epoch: 25
2023-02-09 00:34:15,203	32k	INFO	====> Epoch: 26
2023-02-09 00:35:25,363	32k	INFO	Train Epoch: 27 [87%]
2023-02-09 00:35:25,363	32k	INFO	[2.5081863403320312, 2.362135648727417, 10.08530044555664, 21.179523468017578, 1.0669621229171753, 1800, 9.967550730505221e-05]
2023-02-09 00:35:32,734	32k	INFO	====> Epoch: 27
2023-02-09 00:36:49,992	32k	INFO	====> Epoch: 28
2023-02-09 00:38:07,250	32k	INFO	====> Epoch: 29
2023-02-09 00:39:16,660	32k	INFO	Train Epoch: 30 [85%]
2023-02-09 00:39:16,661	32k	INFO	[2.220442771911621, 2.801152229309082, 7.649630546569824, 14.329034805297852, 0.8535028696060181, 2000, 9.963813366190753e-05]
2023-02-09 00:39:21,154	32k	INFO	Saving model and optimizer state at iteration 30 to ./logs\32k\G_2000.pth
2023-02-09 00:39:37,843	32k	INFO	Saving model and optimizer state at iteration 30 to ./logs\32k\D_2000.pth
2023-02-09 00:39:49,595	32k	INFO	====> Epoch: 30
2023-02-09 00:41:06,937	32k	INFO	====> Epoch: 31
2023-02-09 00:42:24,214	32k	INFO	====> Epoch: 32
2023-02-09 00:43:32,732	32k	INFO	Train Epoch: 33 [84%]
2023-02-09 00:43:32,732	32k	INFO	[2.5671257972717285, 2.225325107574463, 6.000064849853516, 14.645927429199219, 0.91252601146698, 2200, 9.960077403212722e-05]
2023-02-09 00:43:41,803	32k	INFO	====> Epoch: 33
2023-02-09 00:44:59,115	32k	INFO	====> Epoch: 34
2023-02-09 00:46:16,581	32k	INFO	====> Epoch: 35
2023-02-09 00:47:24,262	32k	INFO	Train Epoch: 36 [82%]
2023-02-09 00:47:24,262	32k	INFO	[2.566441059112549, 2.1268556118011475, 7.592073440551758, 18.499162673950195, 0.9556418657302856, 2400, 9.956342841045691e-05]
2023-02-09 00:47:34,260	32k	INFO	====> Epoch: 36
2023-02-09 00:48:51,449	32k	INFO	====> Epoch: 37
2023-02-09 00:50:08,699	32k	INFO	====> Epoch: 38
2023-02-09 00:51:15,505	32k	INFO	Train Epoch: 39 [81%]
2023-02-09 00:51:15,505	32k	INFO	[2.479832410812378, 2.2814459800720215, 7.773660182952881, 18.745792388916016, 1.0438538789749146, 2600, 9.952609679164422e-05]
2023-02-09 00:51:26,185	32k	INFO	====> Epoch: 39
2023-02-09 00:52:43,425	32k	INFO	====> Epoch: 40
2023-02-09 00:54:00,760	32k	INFO	====> Epoch: 41
2023-02-09 00:55:06,807	32k	INFO	Train Epoch: 42 [79%]
2023-02-09 00:55:06,808	32k	INFO	[2.484856367111206, 2.320491313934326, 10.475366592407227, 19.472793579101562, 1.3102898597717285, 2800, 9.948877917043875e-05]
2023-02-09 00:55:18,363	32k	INFO	====> Epoch: 42
2023-02-09 00:56:35,577	32k	INFO	====> Epoch: 43
2023-02-09 00:57:52,857	32k	INFO	====> Epoch: 44
2023-02-09 00:58:58,009	32k	INFO	Train Epoch: 45 [78%]
2023-02-09 00:58:58,010	32k	INFO	[2.4101104736328125, 2.2083635330200195, 11.62160587310791, 18.154218673706055, 0.8082653880119324, 3000, 9.945147554159202e-05]
2023-02-09 00:59:02,398	32k	INFO	Saving model and optimizer state at iteration 45 to ./logs\32k\G_3000.pth
2023-02-09 00:59:20,855	32k	INFO	Saving model and optimizer state at iteration 45 to ./logs\32k\D_3000.pth
2023-02-09 00:59:36,859	32k	INFO	====> Epoch: 45
2023-02-09 01:00:54,227	32k	INFO	====> Epoch: 46
2023-02-09 01:02:11,360	32k	INFO	====> Epoch: 47
2023-02-09 01:03:15,636	32k	INFO	Train Epoch: 48 [76%]
2023-02-09 01:03:15,636	32k	INFO	[2.5076825618743896, 2.1728971004486084, 8.223286628723145, 14.673565864562988, 0.8116975426673889, 3200, 9.941418589985758e-05]
2023-02-09 01:03:28,785	32k	INFO	====> Epoch: 48
2023-02-09 01:04:46,096	32k	INFO	====> Epoch: 49
2023-02-09 01:06:03,441	32k	INFO	====> Epoch: 50
2023-02-09 01:07:07,086	32k	INFO	Train Epoch: 51 [75%]
2023-02-09 01:07:07,086	32k	INFO	[2.6912717819213867, 2.093996047973633, 7.675986289978027, 15.62138557434082, 1.2493226528167725, 3400, 9.937691023999092e-05]
2023-02-09 01:07:21,073	32k	INFO	====> Epoch: 51
2023-02-09 01:08:38,316	32k	INFO	====> Epoch: 52
2023-02-09 01:09:55,540	32k	INFO	====> Epoch: 53
2023-02-09 01:10:58,191	32k	INFO	Train Epoch: 54 [73%]
2023-02-09 01:10:58,192	32k	INFO	[2.269256114959717, 2.731293201446533, 8.000404357910156, 14.131468772888184, 1.039566159248352, 3600, 9.933964855674948e-05]
2023-02-09 01:11:13,014	32k	INFO	====> Epoch: 54
2023-02-09 01:12:30,251	32k	INFO	====> Epoch: 55
2023-02-09 01:13:47,584	32k	INFO	====> Epoch: 56
2023-02-09 01:14:49,462	32k	INFO	Train Epoch: 57 [72%]
2023-02-09 01:14:49,462	32k	INFO	[2.462212324142456, 2.380282402038574, 9.700272560119629, 19.343175888061523, 1.1376886367797852, 3800, 9.930240084489267e-05]
2023-02-09 01:15:05,201	32k	INFO	====> Epoch: 57
2023-02-09 01:16:22,533	32k	INFO	====> Epoch: 58
2023-02-09 01:17:39,809	32k	INFO	====> Epoch: 59
2023-02-09 01:18:40,881	32k	INFO	Train Epoch: 60 [70%]
2023-02-09 01:18:40,882	32k	INFO	[2.4092752933502197, 2.3126306533813477, 11.08122730255127, 19.267513275146484, 0.5496549010276794, 4000, 9.926516709918191e-05]
2023-02-09 01:18:45,348	32k	INFO	Saving model and optimizer state at iteration 60 to ./logs\32k\G_4000.pth
2023-02-09 01:19:01,949	32k	INFO	Saving model and optimizer state at iteration 60 to ./logs\32k\D_4000.pth
2023-02-09 01:19:22,256	32k	INFO	====> Epoch: 60
2023-02-09 01:20:39,651	32k	INFO	====> Epoch: 61
2023-02-09 01:21:57,031	32k	INFO	====> Epoch: 62
2023-02-09 01:22:57,338	32k	INFO	Train Epoch: 63 [69%]
2023-02-09 01:22:57,338	32k	INFO	[2.407628059387207, 2.4265987873077393, 9.841700553894043, 20.425884246826172, 1.1777186393737793, 4200, 9.922794731438052e-05]
2023-02-09 01:23:14,639	32k	INFO	====> Epoch: 63
2023-02-09 01:24:32,051	32k	INFO	====> Epoch: 64
2023-02-09 01:25:49,407	32k	INFO	====> Epoch: 65
2023-02-09 01:26:48,771	32k	INFO	Train Epoch: 66 [67%]
2023-02-09 01:26:48,772	32k	INFO	[2.4743025302886963, 2.436379909515381, 9.201873779296875, 18.20071029663086, 0.933559000492096, 4400, 9.919074148525384e-05]
2023-02-09 01:27:06,967	32k	INFO	====> Epoch: 66
2023-02-09 01:28:24,205	32k	INFO	====> Epoch: 67
2023-02-09 01:29:41,611	32k	INFO	====> Epoch: 68
2023-02-09 01:30:55,639	32k	INFO	Train Epoch: 69 [66%]
2023-02-09 01:30:55,640	32k	INFO	[2.476935863494873, 2.297214984893799, 11.784645080566406, 20.394569396972656, 0.9714463353157043, 4600, 9.915354960656915e-05]
2023-02-09 01:31:14,621	32k	INFO	====> Epoch: 69
2023-02-09 01:32:31,900	32k	INFO	====> Epoch: 70
2023-02-09 01:33:49,165	32k	INFO	====> Epoch: 71
2023-02-09 01:34:46,907	32k	INFO	Train Epoch: 72 [64%]
2023-02-09 01:34:46,908	32k	INFO	[2.5771408081054688, 2.3849239349365234, 10.185483932495117, 17.841482162475586, 0.7261289358139038, 4800, 9.911637167309565e-05]
2023-02-09 01:35:06,816	32k	INFO	====> Epoch: 72
2023-02-09 01:36:24,001	32k	INFO	====> Epoch: 73
2023-02-09 01:37:41,262	32k	INFO	====> Epoch: 74
2023-02-09 01:38:38,250	32k	INFO	Train Epoch: 75 [63%]
2023-02-09 01:38:38,250	32k	INFO	[2.465418815612793, 2.232435941696167, 10.514191627502441, 20.439416885375977, 1.0744853019714355, 5000, 9.907920767960457e-05]
2023-02-09 01:38:42,755	32k	INFO	Saving model and optimizer state at iteration 75 to ./logs\32k\G_5000.pth
2023-02-09 01:38:58,887	32k	INFO	Saving model and optimizer state at iteration 75 to ./logs\32k\D_5000.pth
2023-02-09 01:39:23,174	32k	INFO	====> Epoch: 75
2023-02-09 01:40:40,570	32k	INFO	====> Epoch: 76
2023-02-09 01:41:58,063	32k	INFO	====> Epoch: 77
2023-02-09 01:42:54,165	32k	INFO	Train Epoch: 78 [61%]
2023-02-09 01:42:54,165	32k	INFO	[2.6826303005218506, 2.095520496368408, 3.6221730709075928, 12.267330169677734, 0.8276277184486389, 5200, 9.904205762086905e-05]
2023-02-09 01:43:15,721	32k	INFO	====> Epoch: 78
2023-02-09 01:44:33,155	32k	INFO	====> Epoch: 79
2023-02-09 01:45:50,627	32k	INFO	====> Epoch: 80
2023-02-09 01:46:45,893	32k	INFO	Train Epoch: 81 [60%]
2023-02-09 01:46:45,893	32k	INFO	[2.520723342895508, 2.3147475719451904, 9.123695373535156, 19.63064956665039, 0.5058915019035339, 5400, 9.900492149166423e-05]
2023-02-09 01:47:08,201	32k	INFO	====> Epoch: 81
2023-02-09 01:48:25,508	32k	INFO	====> Epoch: 82
2023-02-09 01:49:42,705	32k	INFO	====> Epoch: 83
2023-02-09 01:50:37,129	32k	INFO	Train Epoch: 84 [58%]
2023-02-09 01:50:37,129	32k	INFO	[2.2849955558776855, 2.513012409210205, 12.865352630615234, 19.767900466918945, 0.9678688049316406, 5600, 9.896779928676716e-05]
2023-02-09 01:51:00,273	32k	INFO	====> Epoch: 84
2023-02-09 01:52:17,483	32k	INFO	====> Epoch: 85
2023-02-09 01:53:34,853	32k	INFO	====> Epoch: 86
2023-02-09 01:54:28,632	32k	INFO	Train Epoch: 87 [57%]
2023-02-09 01:54:28,633	32k	INFO	[2.230534553527832, 2.553818464279175, 10.746828079223633, 17.61080551147461, 0.6103332042694092, 5800, 9.89306910009569e-05]
2023-02-09 01:54:52,593	32k	INFO	====> Epoch: 87
2023-02-09 01:56:09,924	32k	INFO	====> Epoch: 88
2023-02-09 01:57:27,133	32k	INFO	====> Epoch: 89
2023-02-09 01:58:19,773	32k	INFO	Train Epoch: 90 [55%]
2023-02-09 01:58:19,773	32k	INFO	[2.9170384407043457, 1.8074010610580444, 6.252444267272949, 11.759191513061523, 0.5820555090904236, 6000, 9.889359662901445e-05]
2023-02-09 01:58:24,216	32k	INFO	Saving model and optimizer state at iteration 90 to ./logs\32k\G_6000.pth
2023-02-09 01:58:41,937	32k	INFO	Saving model and optimizer state at iteration 90 to ./logs\32k\D_6000.pth
2023-02-09 01:59:10,016	32k	INFO	====> Epoch: 90
2023-02-09 02:00:27,480	32k	INFO	====> Epoch: 91
2023-02-09 02:01:44,927	32k	INFO	====> Epoch: 92
2023-02-09 02:02:36,973	32k	INFO	Train Epoch: 93 [54%]
2023-02-09 02:02:36,974	32k	INFO	[2.248124837875366, 2.691680908203125, 9.031513214111328, 17.063570022583008, 0.8340508937835693, 6200, 9.885651616572276e-05]
2023-02-09 02:03:02,579	32k	INFO	====> Epoch: 93
2023-02-09 02:04:19,880	32k	INFO	====> Epoch: 94
2023-02-09 02:05:37,183	32k	INFO	====> Epoch: 95
2023-02-09 02:06:28,292	32k	INFO	Train Epoch: 96 [52%]
2023-02-09 02:06:28,292	32k	INFO	[2.7041618824005127, 2.0895659923553467, 6.933722019195557, 14.279449462890625, 0.9478716254234314, 6400, 9.881944960586671e-05]
2023-02-09 02:06:54,691	32k	INFO	====> Epoch: 96
2023-02-09 02:08:11,826	32k	INFO	====> Epoch: 97
2023-02-09 02:09:29,228	32k	INFO	====> Epoch: 98
2023-02-09 02:10:19,605	32k	INFO	Train Epoch: 99 [51%]
2023-02-09 02:10:19,605	32k	INFO	[2.465763568878174, 2.286102294921875, 8.612666130065918, 17.839487075805664, 0.8176154494285583, 6600, 9.87823969442332e-05]
2023-02-09 02:10:46,982	32k	INFO	====> Epoch: 99
2023-02-09 02:12:04,533	32k	INFO	====> Epoch: 100
2023-02-09 02:13:21,854	32k	INFO	====> Epoch: 101
2023-02-09 02:14:11,250	32k	INFO	Train Epoch: 102 [49%]
2023-02-09 02:14:11,250	32k	INFO	[2.325270652770996, 2.503894567489624, 13.427793502807617, 18.58626937866211, 1.1115485429763794, 6800, 9.874535817561101e-05]
2023-02-09 02:14:39,395	32k	INFO	====> Epoch: 102
2023-02-09 02:15:56,665	32k	INFO	====> Epoch: 103
2023-02-09 02:17:13,783	32k	INFO	====> Epoch: 104
2023-02-09 02:18:02,422	32k	INFO	Train Epoch: 105 [48%]
2023-02-09 02:18:02,422	32k	INFO	[2.5144426822662354, 2.262126922607422, 9.593130111694336, 19.810073852539062, 0.9265149235725403, 7000, 9.870833329479095e-05]
2023-02-09 02:18:06,802	32k	INFO	Saving model and optimizer state at iteration 105 to ./logs\32k\G_7000.pth
2023-02-09 02:18:26,842	32k	INFO	Saving model and optimizer state at iteration 105 to ./logs\32k\D_7000.pth
2023-02-09 02:18:59,625	32k	INFO	====> Epoch: 105
2023-02-09 02:20:16,918	32k	INFO	====> Epoch: 106
2023-02-09 02:21:34,168	32k	INFO	====> Epoch: 107
2023-02-09 02:22:22,051	32k	INFO	Train Epoch: 108 [46%]
2023-02-09 02:22:22,051	32k	INFO	[2.5437726974487305, 1.968860387802124, 8.248473167419434, 15.724898338317871, 0.8549317717552185, 7200, 9.867132229656573e-05]
2023-02-09 02:22:51,735	32k	INFO	====> Epoch: 108
2023-02-09 02:24:08,913	32k	INFO	====> Epoch: 109
2023-02-09 02:25:26,159	32k	INFO	====> Epoch: 110
2023-02-09 02:26:13,089	32k	INFO	Train Epoch: 111 [45%]
2023-02-09 02:26:13,090	32k	INFO	[2.4943034648895264, 2.1690049171447754, 8.534195899963379, 18.047616958618164, 0.6213272213935852, 7400, 9.863432517573002e-05]
2023-02-09 02:26:43,675	32k	INFO	====> Epoch: 111
2023-02-09 02:28:00,862	32k	INFO	====> Epoch: 112
2023-02-09 02:29:18,116	32k	INFO	====> Epoch: 113
2023-02-09 02:30:04,341	32k	INFO	Train Epoch: 114 [43%]
2023-02-09 02:30:04,342	32k	INFO	[2.590273141860962, 2.244678497314453, 8.331713676452637, 17.773584365844727, 0.4851672947406769, 7600, 9.859734192708044e-05]
2023-02-09 02:30:35,745	32k	INFO	====> Epoch: 114
2023-02-09 02:31:52,967	32k	INFO	====> Epoch: 115
2023-02-09 02:33:10,215	32k	INFO	====> Epoch: 116
2023-02-09 02:33:55,596	32k	INFO	Train Epoch: 117 [42%]
2023-02-09 02:33:55,597	32k	INFO	[2.43920636177063, 2.299633026123047, 10.326704978942871, 19.797151565551758, 0.7202500104904175, 7800, 9.85603725454156e-05]
2023-02-09 02:34:27,882	32k	INFO	====> Epoch: 117
2023-02-09 02:35:45,221	32k	INFO	====> Epoch: 118
2023-02-09 02:37:02,373	32k	INFO	====> Epoch: 119
2023-02-09 02:37:46,886	32k	INFO	Train Epoch: 120 [40%]
2023-02-09 02:37:46,887	32k	INFO	[2.7452502250671387, 1.881577968597412, 6.52833890914917, 14.799930572509766, 0.5330202579498291, 8000, 9.8523417025536e-05]
2023-02-09 02:37:51,352	32k	INFO	Saving model and optimizer state at iteration 120 to ./logs\32k\G_8000.pth
2023-02-09 02:38:05,481	32k	INFO	Saving model and optimizer state at iteration 120 to ./logs\32k\D_8000.pth
2023-02-09 02:38:41,822	32k	INFO	====> Epoch: 120
2023-02-09 02:39:59,271	32k	INFO	====> Epoch: 121
2023-02-09 02:41:16,709	32k	INFO	====> Epoch: 122
2023-02-09 02:42:00,437	32k	INFO	Train Epoch: 123 [39%]
2023-02-09 02:42:00,437	32k	INFO	[2.5362741947174072, 2.0902092456817627, 8.579750061035156, 16.44462776184082, 0.640954852104187, 8200, 9.848647536224416e-05]
2023-02-09 02:42:34,336	32k	INFO	====> Epoch: 123
2023-02-09 02:43:51,542	32k	INFO	====> Epoch: 124
2023-02-09 02:45:08,701	32k	INFO	====> Epoch: 125
2023-02-09 02:45:51,519	32k	INFO	Train Epoch: 126 [37%]
2023-02-09 02:45:51,519	32k	INFO	[2.5620243549346924, 2.1529924869537354, 6.262371063232422, 14.607771873474121, 0.6447804570198059, 8400, 9.84495475503445e-05]
2023-02-09 02:46:26,225	32k	INFO	====> Epoch: 126
2023-02-09 02:47:43,549	32k	INFO	====> Epoch: 127
2023-02-09 02:49:00,851	32k	INFO	====> Epoch: 128
2023-02-09 02:49:43,071	32k	INFO	Train Epoch: 129 [36%]
2023-02-09 02:49:43,072	32k	INFO	[2.6855649948120117, 2.093135356903076, 8.865744590759277, 14.999298095703125, 0.4640387296676636, 8600, 9.841263358464336e-05]
2023-02-09 02:50:18,555	32k	INFO	====> Epoch: 129
2023-02-09 02:51:35,826	32k	INFO	====> Epoch: 130
2023-02-09 02:52:53,221	32k	INFO	====> Epoch: 131
2023-02-09 02:53:34,341	32k	INFO	Train Epoch: 132 [34%]
2023-02-09 02:53:34,342	32k	INFO	[2.45322322845459, 2.1377835273742676, 7.04033899307251, 14.747097969055176, 0.6762568950653076, 8800, 9.837573345994909e-05]
2023-02-09 02:54:10,739	32k	INFO	====> Epoch: 132
2023-02-09 02:55:27,964	32k	INFO	====> Epoch: 133
2023-02-09 02:56:45,156	32k	INFO	====> Epoch: 134
2023-02-09 02:57:25,569	32k	INFO	Train Epoch: 135 [33%]
2023-02-09 02:57:25,569	32k	INFO	[2.516730308532715, 2.3212270736694336, 9.098499298095703, 18.753353118896484, 0.8016514182090759, 9000, 9.833884717107196e-05]
2023-02-09 02:57:30,052	32k	INFO	Saving model and optimizer state at iteration 135 to ./logs\32k\G_9000.pth
2023-02-09 02:57:49,313	32k	INFO	Saving model and optimizer state at iteration 135 to ./logs\32k\D_9000.pth
2023-02-09 02:58:30,142	32k	INFO	====> Epoch: 135
2023-02-09 02:59:47,578	32k	INFO	====> Epoch: 136
2023-02-09 03:01:04,989	32k	INFO	====> Epoch: 137
2023-02-09 03:01:44,604	32k	INFO	Train Epoch: 138 [31%]
2023-02-09 03:01:44,604	32k	INFO	[2.5661885738372803, 2.1553306579589844, 12.048609733581543, 19.532424926757812, 1.2839446067810059, 9200, 9.830197471282419e-05]
2023-02-09 03:02:22,615	32k	INFO	====> Epoch: 138
2023-02-09 03:03:39,975	32k	INFO	====> Epoch: 139
2023-02-09 03:04:57,273	32k	INFO	====> Epoch: 140
2023-02-09 03:05:35,900	32k	INFO	Train Epoch: 141 [30%]
2023-02-09 03:05:35,901	32k	INFO	[2.4171464443206787, 2.1831154823303223, 7.9948649406433105, 16.37220001220703, 0.44416582584381104, 9400, 9.826511608001993e-05]
2023-02-09 03:06:14,772	32k	INFO	====> Epoch: 141
2023-02-09 03:07:32,122	32k	INFO	====> Epoch: 142
2023-02-09 03:08:49,280	32k	INFO	====> Epoch: 143
2023-02-09 03:09:27,103	32k	INFO	Train Epoch: 144 [28%]
2023-02-09 03:09:27,104	32k	INFO	[2.356396436691284, 2.559436798095703, 10.186924934387207, 18.508615493774414, 0.9834058284759521, 9600, 9.822827126747529e-05]
2023-02-09 03:10:06,785	32k	INFO	====> Epoch: 144
2023-02-09 03:11:24,022	32k	INFO	====> Epoch: 145
2023-02-09 03:12:41,266	32k	INFO	====> Epoch: 146
2023-02-09 03:13:18,484	32k	INFO	Train Epoch: 147 [27%]
2023-02-09 03:13:18,485	32k	INFO	[2.5275373458862305, 2.34236478805542, 11.132747650146484, 20.919368743896484, 0.8620054721832275, 9800, 9.819144027000834e-05]
2023-02-09 03:13:58,998	32k	INFO	====> Epoch: 147
2023-02-09 03:15:16,211	32k	INFO	====> Epoch: 148
2023-02-09 03:16:33,518	32k	INFO	====> Epoch: 149
2023-02-09 03:17:09,655	32k	INFO	Train Epoch: 150 [25%]
2023-02-09 03:17:09,655	32k	INFO	[2.490751028060913, 2.18687105178833, 8.969452857971191, 16.82117462158203, 0.8959197998046875, 10000, 9.815462308243906e-05]
2023-02-09 03:17:14,164	32k	INFO	Saving model and optimizer state at iteration 150 to ./logs\32k\G_10000.pth
2023-02-09 03:17:34,194	32k	INFO	Saving model and optimizer state at iteration 150 to ./logs\32k\D_10000.pth
2023-02-09 03:18:19,227	32k	INFO	====> Epoch: 150
2023-02-09 03:19:36,776	32k	INFO	====> Epoch: 151
2023-02-09 03:20:54,200	32k	INFO	====> Epoch: 152
2023-02-09 03:21:29,735	32k	INFO	Train Epoch: 153 [24%]
2023-02-09 03:21:29,735	32k	INFO	[2.548633575439453, 2.158717393875122, 10.489928245544434, 18.32561683654785, 1.113476276397705, 10200, 9.811781969958938e-05]
2023-02-09 03:22:11,964	32k	INFO	====> Epoch: 153
2023-02-09 03:23:29,243	32k	INFO	====> Epoch: 154
2023-02-09 03:24:46,521	32k	INFO	====> Epoch: 155
2023-02-09 03:25:21,203	32k	INFO	Train Epoch: 156 [22%]
2023-02-09 03:25:21,204	32k	INFO	[2.6085586547851562, 2.2196943759918213, 6.367833137512207, 16.077957153320312, 1.0498080253601074, 10400, 9.808103011628319e-05]
2023-02-09 03:26:04,324	32k	INFO	====> Epoch: 156
2023-02-09 03:27:21,640	32k	INFO	====> Epoch: 157
2023-02-09 03:28:38,959	32k	INFO	====> Epoch: 158
2023-02-09 03:29:12,697	32k	INFO	Train Epoch: 159 [21%]
2023-02-09 03:29:12,697	32k	INFO	[2.4405250549316406, 2.2709829807281494, 9.20801830291748, 17.569778442382812, 0.8504314422607422, 10600, 9.804425432734629e-05]
2023-02-09 03:29:56,480	32k	INFO	====> Epoch: 159
2023-02-09 03:31:13,840	32k	INFO	====> Epoch: 160
2023-02-09 03:32:31,264	32k	INFO	====> Epoch: 161
2023-02-09 03:33:04,232	32k	INFO	Train Epoch: 162 [19%]
2023-02-09 03:33:04,232	32k	INFO	[2.257436752319336, 2.3079981803894043, 7.7498016357421875, 11.477513313293457, 0.9249159693717957, 10800, 9.800749232760646e-05]
2023-02-09 03:33:48,914	32k	INFO	====> Epoch: 162
2023-02-09 03:35:06,402	32k	INFO	====> Epoch: 163
2023-02-09 03:36:23,790	32k	INFO	====> Epoch: 164
2023-02-09 03:36:56,013	32k	INFO	Train Epoch: 165 [18%]
2023-02-09 03:36:56,014	32k	INFO	[2.8059158325195312, 2.351126194000244, 6.358356952667236, 17.166919708251953, 0.9102870225906372, 11000, 9.797074411189339e-05]
2023-02-09 03:37:00,483	32k	INFO	Saving model and optimizer state at iteration 165 to ./logs\32k\G_11000.pth
2023-02-09 03:37:19,672	32k	INFO	Saving model and optimizer state at iteration 165 to ./logs\32k\D_11000.pth
2023-02-09 03:38:09,015	32k	INFO	====> Epoch: 165
2023-02-09 03:39:26,362	32k	INFO	====> Epoch: 166
2023-02-09 03:40:43,704	32k	INFO	====> Epoch: 167
2023-02-09 03:41:15,021	32k	INFO	Train Epoch: 168 [16%]
2023-02-09 03:41:15,021	32k	INFO	[2.475376844406128, 2.1227407455444336, 12.1411771774292, 18.27838897705078, 0.7968288064002991, 11200, 9.79340096750387e-05]
2023-02-09 03:42:01,310	32k	INFO	====> Epoch: 168
2023-02-09 03:43:18,712	32k	INFO	====> Epoch: 169
2023-02-09 03:44:36,075	32k	INFO	====> Epoch: 170
2023-02-09 03:45:06,554	32k	INFO	Train Epoch: 171 [15%]
2023-02-09 03:45:06,554	32k	INFO	[2.3927536010742188, 2.2263312339782715, 12.99544620513916, 19.178787231445312, 0.8865859508514404, 11400, 9.789728901187598e-05]
2023-02-09 03:45:53,638	32k	INFO	====> Epoch: 171
2023-02-09 03:47:10,832	32k	INFO	====> Epoch: 172
2023-02-09 03:48:28,090	32k	INFO	====> Epoch: 173
2023-02-09 03:48:57,840	32k	INFO	Train Epoch: 174 [13%]
2023-02-09 03:48:57,841	32k	INFO	[2.629887580871582, 1.9182734489440918, 8.588482856750488, 16.633516311645508, 0.8498013019561768, 11600, 9.786058211724074e-05]
2023-02-09 03:49:45,780	32k	INFO	====> Epoch: 174
2023-02-09 03:51:03,165	32k	INFO	====> Epoch: 175
2023-02-09 03:52:20,366	32k	INFO	====> Epoch: 176
2023-02-09 03:52:48,998	32k	INFO	Train Epoch: 177 [12%]
2023-02-09 03:52:48,999	32k	INFO	[2.5986101627349854, 2.2137248516082764, 8.166472434997559, 14.432415962219238, 0.9092381596565247, 11800, 9.782388898597041e-05]
2023-02-09 03:53:37,879	32k	INFO	====> Epoch: 177
2023-02-09 03:54:55,253	32k	INFO	====> Epoch: 178
2023-02-09 03:56:12,342	32k	INFO	====> Epoch: 179
2023-02-09 03:56:40,201	32k	INFO	Train Epoch: 180 [10%]
2023-02-09 03:56:40,202	32k	INFO	[2.377601146697998, 2.379459857940674, 10.841035842895508, 17.28376007080078, 1.0782395601272583, 12000, 9.778720961290439e-05]
2023-02-09 03:56:44,727	32k	INFO	Saving model and optimizer state at iteration 180 to ./logs\32k\G_12000.pth
2023-02-09 03:57:02,672	32k	INFO	Saving model and optimizer state at iteration 180 to ./logs\32k\D_12000.pth
2023-02-09 03:57:55,590	32k	INFO	====> Epoch: 180
2023-02-09 03:59:12,901	32k	INFO	====> Epoch: 181
2023-02-09 04:00:30,140	32k	INFO	====> Epoch: 182
2023-02-09 04:00:57,262	32k	INFO	Train Epoch: 183 [9%]
2023-02-09 04:00:57,263	32k	INFO	[2.599541664123535, 2.0492987632751465, 7.433438301086426, 15.581904411315918, 0.7799375653266907, 12200, 9.7750543992884e-05]
2023-02-09 04:01:47,831	32k	INFO	====> Epoch: 183
2023-02-09 04:03:05,064	32k	INFO	====> Epoch: 184
2023-02-09 04:04:22,336	32k	INFO	====> Epoch: 185
2023-02-09 04:04:48,629	32k	INFO	Train Epoch: 186 [7%]
2023-02-09 04:04:48,629	32k	INFO	[2.708937406539917, 2.195622682571411, 8.098736763000488, 16.33951187133789, 1.0215028524398804, 12400, 9.771389212075249e-05]
2023-02-09 04:05:39,876	32k	INFO	====> Epoch: 186
2023-02-09 04:06:57,132	32k	INFO	====> Epoch: 187
2023-02-09 04:08:14,442	32k	INFO	====> Epoch: 188
2023-02-09 04:08:39,906	32k	INFO	Train Epoch: 189 [6%]
2023-02-09 04:08:39,907	32k	INFO	[2.543393135070801, 2.578526258468628, 9.853076934814453, 19.175247192382812, 0.9220128655433655, 12600, 9.767725399135504e-05]
2023-02-09 04:09:31,978	32k	INFO	====> Epoch: 189
2023-02-09 04:10:49,213	32k	INFO	====> Epoch: 190
2023-02-09 04:12:06,344	32k	INFO	====> Epoch: 191
2023-02-09 04:12:31,054	32k	INFO	Train Epoch: 192 [4%]
2023-02-09 04:12:31,055	32k	INFO	[2.5891571044921875, 2.2922167778015137, 9.008637428283691, 15.618788719177246, 0.6253546476364136, 12800, 9.764062959953878e-05]
2023-02-09 04:13:24,094	32k	INFO	====> Epoch: 192
2023-02-09 04:14:41,399	32k	INFO	====> Epoch: 193
2023-02-09 04:15:58,594	32k	INFO	====> Epoch: 194
2023-02-09 04:16:22,307	32k	INFO	Train Epoch: 195 [3%]
2023-02-09 04:16:22,307	32k	INFO	[2.571204900741577, 2.3370144367218018, 11.431970596313477, 19.423154830932617, 0.8416497707366943, 13000, 9.760401894015275e-05]
2023-02-09 04:16:26,662	32k	INFO	Saving model and optimizer state at iteration 195 to ./logs\32k\G_13000.pth
2023-02-09 04:16:45,402	32k	INFO	Saving model and optimizer state at iteration 195 to ./logs\32k\D_13000.pth
2023-02-09 04:17:42,745	32k	INFO	====> Epoch: 195
2023-02-09 04:19:00,170	32k	INFO	====> Epoch: 196
2023-02-09 04:20:17,357	32k	INFO	====> Epoch: 197
2023-02-09 04:20:40,493	32k	INFO	Train Epoch: 198 [1%]
2023-02-09 04:20:40,493	32k	INFO	[2.6889920234680176, 2.216010332107544, 9.279974937438965, 17.859813690185547, 0.6048229932785034, 13200, 9.756742200804793e-05]
2023-02-09 04:21:35,077	32k	INFO	====> Epoch: 198
2023-02-09 04:22:52,432	32k	INFO	====> Epoch: 199
2023-02-09 04:24:09,676	32k	INFO	====> Epoch: 200
2023-02-09 04:24:31,716	32k	INFO	Train Epoch: 201 [0%]
2023-02-09 04:24:31,716	32k	INFO	[2.5305514335632324, 2.058469772338867, 7.646169662475586, 16.716352462768555, 1.0848625898361206, 13400, 9.753083879807726e-05]
2023-02-09 04:25:27,141	32k	INFO	====> Epoch: 201
2023-02-09 04:26:44,453	32k	INFO	====> Epoch: 202
2023-02-09 04:28:01,216	32k	INFO	Train Epoch: 203 [99%]
2023-02-09 04:28:01,217	32k	INFO	[2.600423812866211, 2.4881081581115723, 8.454794883728027, 15.183467864990234, 0.6778528690338135, 13600, 9.750645761229709e-05]
2023-02-09 04:28:01,979	32k	INFO	====> Epoch: 203
2023-02-09 04:29:19,697	32k	INFO	====> Epoch: 204
2023-02-09 04:30:36,964	32k	INFO	====> Epoch: 205
2023-02-09 04:31:52,908	32k	INFO	Train Epoch: 206 [97%]
2023-02-09 04:31:52,908	32k	INFO	[2.2509708404541016, 2.403043270111084, 12.252212524414062, 18.043561935424805, 0.5615130662918091, 13800, 9.746989726111722e-05]
2023-02-09 04:31:54,581	32k	INFO	====> Epoch: 206
2023-02-09 04:33:11,675	32k	INFO	====> Epoch: 207
2023-02-09 04:34:28,928	32k	INFO	====> Epoch: 208
2023-02-09 04:35:44,062	32k	INFO	Train Epoch: 209 [96%]
2023-02-09 04:35:44,062	32k	INFO	[2.617187261581421, 2.0524563789367676, 7.7549052238464355, 16.08784294128418, 0.8999805450439453, 14000, 9.743335061835535e-05]
2023-02-09 04:35:48,541	32k	INFO	Saving model and optimizer state at iteration 209 to ./logs\32k\G_14000.pth
2023-02-09 04:36:07,364	32k	INFO	Saving model and optimizer state at iteration 209 to ./logs\32k\D_14000.pth
2023-02-09 04:36:13,209	32k	INFO	====> Epoch: 209
2023-02-09 04:37:30,391	32k	INFO	====> Epoch: 210
2023-02-09 04:38:48,344	32k	INFO	====> Epoch: 211
2023-02-09 04:40:03,265	32k	INFO	Train Epoch: 212 [94%]
2023-02-09 04:40:03,266	32k	INFO	[2.545370578765869, 2.182567596435547, 11.445052146911621, 18.725894927978516, 1.0447421073913574, 14200, 9.739681767887146e-05]
2023-02-09 04:40:06,510	32k	INFO	====> Epoch: 212
2023-02-09 04:41:23,719	32k	INFO	====> Epoch: 213
2023-02-09 04:42:40,924	32k	INFO	====> Epoch: 214
2023-02-09 04:43:54,429	32k	INFO	Train Epoch: 215 [93%]
2023-02-09 04:43:54,429	32k	INFO	[2.492203950881958, 2.0672144889831543, 7.254634380340576, 17.217519760131836, 1.2190320491790771, 14400, 9.736029843752747e-05]
2023-02-09 04:43:58,496	32k	INFO	====> Epoch: 215
2023-02-09 04:45:16,448	32k	INFO	====> Epoch: 216
2023-02-09 04:46:33,534	32k	INFO	====> Epoch: 217
2023-02-09 04:47:46,895	32k	INFO	Train Epoch: 218 [91%]
2023-02-09 04:47:46,895	32k	INFO	[2.3578548431396484, 2.3237144947052, 9.533674240112305, 16.62578773498535, 0.6960291862487793, 14600, 9.732379288918723e-05]
2023-02-09 04:47:51,775	32k	INFO	====> Epoch: 218
2023-02-09 04:49:09,870	32k	INFO	====> Epoch: 219
2023-02-09 04:50:27,058	32k	INFO	====> Epoch: 220
2023-02-09 04:51:38,829	32k	INFO	Train Epoch: 221 [90%]
2023-02-09 04:51:38,829	32k	INFO	[2.4930238723754883, 2.0849337577819824, 10.19448471069336, 19.00885772705078, 0.8905020952224731, 14800, 9.728730102871649e-05]
2023-02-09 04:51:44,567	32k	INFO	====> Epoch: 221
2023-02-09 04:53:01,748	32k	INFO	====> Epoch: 222
2023-02-09 04:54:18,922	32k	INFO	====> Epoch: 223
2023-02-09 04:55:29,903	32k	INFO	Train Epoch: 224 [88%]
2023-02-09 04:55:29,903	32k	INFO	[2.5622823238372803, 2.385986566543579, 8.60080623626709, 15.33399486541748, 0.5517116189002991, 15000, 9.725082285098293e-05]
2023-02-09 04:55:34,236	32k	INFO	Saving model and optimizer state at iteration 224 to ./logs\32k\G_15000.pth
2023-02-09 04:55:51,622	32k	INFO	Saving model and optimizer state at iteration 224 to ./logs\32k\D_15000.pth
2023-02-09 04:56:01,949	32k	INFO	====> Epoch: 224
2023-02-09 04:57:20,182	32k	INFO	====> Epoch: 225
2023-02-09 04:58:38,052	32k	INFO	====> Epoch: 226
2023-02-09 04:59:48,934	32k	INFO	Train Epoch: 227 [87%]
2023-02-09 04:59:48,934	32k	INFO	[2.699136972427368, 2.1048390865325928, 7.052115440368652, 13.004521369934082, 0.8088562488555908, 15200, 9.721435835085619e-05]
2023-02-09 04:59:56,318	32k	INFO	====> Epoch: 227
2023-02-09 05:01:14,332	32k	INFO	====> Epoch: 228
2023-02-09 05:02:32,242	32k	INFO	====> Epoch: 229
2023-02-09 05:03:41,538	32k	INFO	Train Epoch: 230 [85%]
2023-02-09 05:03:41,538	32k	INFO	[2.5119049549102783, 2.255728244781494, 10.959632873535156, 17.58148765563965, 0.4408050775527954, 15400, 9.717790752320778e-05]
2023-02-09 05:03:49,736	32k	INFO	====> Epoch: 230
2023-02-09 05:05:07,018	32k	INFO	====> Epoch: 231
2023-02-09 05:06:24,410	32k	INFO	====> Epoch: 232
2023-02-09 05:07:32,817	32k	INFO	Train Epoch: 233 [84%]
2023-02-09 05:07:32,817	32k	INFO	[2.4837000370025635, 2.74263858795166, 8.370596885681152, 18.025814056396484, 0.5485965609550476, 15600, 9.714147036291117e-05]
2023-02-09 05:07:41,860	32k	INFO	====> Epoch: 233
2023-02-09 05:08:59,157	32k	INFO	====> Epoch: 234
2023-02-09 05:10:16,236	32k	INFO	====> Epoch: 235
2023-02-09 05:11:23,813	32k	INFO	Train Epoch: 236 [82%]
2023-02-09 05:11:23,814	32k	INFO	[2.615351915359497, 2.0890252590179443, 7.356450080871582, 16.96343994140625, 0.756279706954956, 15800, 9.710504686484176e-05]
2023-02-09 05:11:33,681	32k	INFO	====> Epoch: 236
2023-02-09 05:12:51,784	32k	INFO	====> Epoch: 237
2023-02-09 05:14:09,960	32k	INFO	====> Epoch: 238
2023-02-09 05:15:16,775	32k	INFO	Train Epoch: 239 [81%]
2023-02-09 05:15:16,775	32k	INFO	[2.424504518508911, 2.7784013748168945, 9.054712295532227, 16.200336456298828, 0.7321522831916809, 16000, 9.706863702387684e-05]
2023-02-09 05:15:21,217	32k	INFO	Saving model and optimizer state at iteration 239 to ./logs\32k\G_16000.pth
2023-02-09 05:15:38,638	32k	INFO	Saving model and optimizer state at iteration 239 to ./logs\32k\D_16000.pth
2023-02-09 05:15:52,955	32k	INFO	====> Epoch: 239
2023-02-09 05:17:11,161	32k	INFO	====> Epoch: 240
2023-02-09 05:18:29,322	32k	INFO	====> Epoch: 241
2023-02-09 05:19:35,475	32k	INFO	Train Epoch: 242 [79%]
2023-02-09 05:19:35,476	32k	INFO	[2.4205849170684814, 2.218247413635254, 9.974660873413086, 17.676557540893555, 0.6420414447784424, 16200, 9.703224083489565e-05]
2023-02-09 05:19:47,005	32k	INFO	====> Epoch: 242
2023-02-09 05:21:04,968	32k	INFO	====> Epoch: 243
2023-02-09 05:22:22,082	32k	INFO	====> Epoch: 244
2023-02-09 05:23:27,331	32k	INFO	Train Epoch: 245 [78%]
2023-02-09 05:23:27,332	32k	INFO	[2.514897584915161, 2.4238204956054688, 9.19957447052002, 17.169466018676758, 0.6433432698249817, 16400, 9.699585829277933e-05]
2023-02-09 05:23:39,660	32k	INFO	====> Epoch: 245
2023-02-09 05:24:56,840	32k	INFO	====> Epoch: 246
2023-02-09 05:26:14,893	32k	INFO	====> Epoch: 247
2023-02-09 05:27:19,222	32k	INFO	Train Epoch: 248 [76%]
2023-02-09 05:27:19,223	32k	INFO	[2.485236406326294, 2.0981593132019043, 8.128880500793457, 17.695823669433594, 0.830685555934906, 16600, 9.695948939241093e-05]
2023-02-09 05:27:32,499	32k	INFO	====> Epoch: 248
2023-02-09 05:28:49,748	32k	INFO	====> Epoch: 249
2023-02-09 05:30:07,019	32k	INFO	====> Epoch: 250
2023-02-09 05:31:10,400	32k	INFO	Train Epoch: 251 [75%]
2023-02-09 05:31:10,400	32k	INFO	[2.519704580307007, 2.247236490249634, 8.27247428894043, 16.95021629333496, 0.7045202255249023, 16800, 9.692313412867544e-05]
2023-02-09 05:31:24,372	32k	INFO	====> Epoch: 251
2023-02-09 05:32:41,518	32k	INFO	====> Epoch: 252
2023-02-09 05:33:58,597	32k	INFO	====> Epoch: 253
2023-02-09 05:35:01,233	32k	INFO	Train Epoch: 254 [73%]
2023-02-09 05:35:01,233	32k	INFO	[2.723464012145996, 2.004565477371216, 8.685633659362793, 17.136409759521484, 0.7529882788658142, 17000, 9.68867924964598e-05]
2023-02-09 05:35:05,562	32k	INFO	Saving model and optimizer state at iteration 254 to ./logs\32k\G_17000.pth
2023-02-09 05:35:21,651	32k	INFO	Saving model and optimizer state at iteration 254 to ./logs\32k\D_17000.pth
2023-02-09 05:35:40,285	32k	INFO	====> Epoch: 254
2023-02-09 05:36:58,360	32k	INFO	====> Epoch: 255
2023-02-09 05:38:16,245	32k	INFO	====> Epoch: 256
2023-02-09 05:39:18,827	32k	INFO	Train Epoch: 257 [72%]
2023-02-09 05:39:18,828	32k	INFO	[2.5846078395843506, 2.0677099227905273, 7.601481914520264, 16.82730484008789, 0.46195539832115173, 17200, 9.685046449065278e-05]
2023-02-09 05:39:34,463	32k	INFO	====> Epoch: 257
2023-02-09 05:40:52,484	32k	INFO	====> Epoch: 258
2023-02-09 05:42:09,468	32k	INFO	====> Epoch: 259
2023-02-09 05:43:10,293	32k	INFO	Train Epoch: 260 [70%]
2023-02-09 05:43:10,294	32k	INFO	[2.612074375152588, 2.061795234680176, 9.713607788085938, 17.434011459350586, 1.13643217086792, 17400, 9.681415010614512e-05]
2023-02-09 05:43:26,783	32k	INFO	====> Epoch: 260
2023-02-09 05:44:43,852	32k	INFO	====> Epoch: 261
2023-02-09 05:46:00,940	32k	INFO	====> Epoch: 262
2023-02-09 05:47:00,945	32k	INFO	Train Epoch: 263 [69%]
2023-02-09 05:47:00,945	32k	INFO	[2.5661118030548096, 2.090351104736328, 10.91147232055664, 18.185489654541016, 0.6497505903244019, 17600, 9.67778493378295e-05]
2023-02-09 05:47:18,327	32k	INFO	====> Epoch: 263
2023-02-09 05:48:35,339	32k	INFO	====> Epoch: 264
2023-02-09 05:49:52,519	32k	INFO	====> Epoch: 265
2023-02-09 05:50:51,655	32k	INFO	Train Epoch: 266 [67%]
2023-02-09 05:50:51,656	32k	INFO	[2.441783905029297, 2.2755415439605713, 8.574409484863281, 17.144365310668945, 1.0087649822235107, 17800, 9.674156218060047e-05]
2023-02-09 05:51:09,757	32k	INFO	====> Epoch: 266
2023-02-09 05:52:26,654	32k	INFO	====> Epoch: 267
2023-02-09 05:53:43,656	32k	INFO	====> Epoch: 268
2023-02-09 05:54:42,178	32k	INFO	Train Epoch: 269 [66%]
2023-02-09 05:54:42,178	32k	INFO	[2.4041616916656494, 2.2542026042938232, 10.453770637512207, 16.896394729614258, 0.874467670917511, 18000, 9.670528862935451e-05]
2023-02-09 05:54:46,567	32k	INFO	Saving model and optimizer state at iteration 269 to ./logs\32k\G_18000.pth
2023-02-09 05:55:05,522	32k	INFO	Saving model and optimizer state at iteration 269 to ./logs\32k\D_18000.pth
2023-02-09 05:55:28,321	32k	INFO	====> Epoch: 269
2023-02-09 05:56:46,319	32k	INFO	====> Epoch: 270
2023-02-09 05:58:04,206	32k	INFO	====> Epoch: 271
2023-02-09 05:59:02,672	32k	INFO	Train Epoch: 272 [64%]
2023-02-09 05:59:02,672	32k	INFO	[2.449748992919922, 2.5339150428771973, 10.715926170349121, 18.00714683532715, 0.7727646231651306, 18200, 9.666902867899003e-05]
2023-02-09 05:59:22,434	32k	INFO	====> Epoch: 272
2023-02-09 06:00:40,362	32k	INFO	====> Epoch: 273
2023-02-09 06:01:58,348	32k	INFO	====> Epoch: 274
2023-02-09 06:02:55,204	32k	INFO	Train Epoch: 275 [63%]
2023-02-09 06:02:55,204	32k	INFO	[2.5664258003234863, 2.2539126873016357, 8.40420913696289, 19.330455780029297, 1.2545685768127441, 18400, 9.663278232440732e-05]
2023-02-09 06:03:15,780	32k	INFO	====> Epoch: 275
2023-02-09 06:04:33,087	32k	INFO	====> Epoch: 276
2023-02-09 06:05:50,254	32k	INFO	====> Epoch: 277
2023-02-09 06:06:46,232	32k	INFO	Train Epoch: 278 [61%]
2023-02-09 06:06:46,233	32k	INFO	[2.5849533081054688, 2.1905155181884766, 7.024458885192871, 16.025548934936523, 0.6339879035949707, 18600, 9.659654956050859e-05]
2023-02-09 06:07:07,698	32k	INFO	====> Epoch: 278
2023-02-09 06:08:24,695	32k	INFO	====> Epoch: 279
2023-02-09 06:09:41,686	32k	INFO	====> Epoch: 280
2023-02-09 06:10:36,725	32k	INFO	Train Epoch: 281 [60%]
2023-02-09 06:10:36,725	32k	INFO	[2.621020793914795, 1.9545187950134277, 8.0020112991333, 14.753083229064941, 0.5816468000411987, 18800, 9.656033038219798e-05]
2023-02-09 06:10:58,970	32k	INFO	====> Epoch: 281
2023-02-09 06:12:16,092	32k	INFO	====> Epoch: 282
2023-02-09 06:13:34,226	32k	INFO	====> Epoch: 283
2023-02-09 06:14:29,367	32k	INFO	Train Epoch: 284 [58%]
2023-02-09 06:14:29,367	32k	INFO	[2.5978457927703857, 2.0676093101501465, 10.083847045898438, 15.90844440460205, 0.649118959903717, 19000, 9.652412478438153e-05]
2023-02-09 06:14:34,626	32k	INFO	Saving model and optimizer state at iteration 284 to ./logs\32k\G_19000.pth
2023-02-09 06:14:53,784	32k	INFO	Saving model and optimizer state at iteration 284 to ./logs\32k\D_19000.pth
2023-02-09 06:15:20,487	32k	INFO	====> Epoch: 284
2023-02-09 06:16:38,462	32k	INFO	====> Epoch: 285
2023-02-09 06:17:56,373	32k	INFO	====> Epoch: 286
2023-02-09 06:18:49,853	32k	INFO	Train Epoch: 287 [57%]
2023-02-09 06:18:49,853	32k	INFO	[2.6181414127349854, 2.086658477783203, 7.769612789154053, 13.018095970153809, 0.7441149950027466, 19200, 9.64879327619672e-05]
2023-02-09 06:19:13,818	32k	INFO	====> Epoch: 287
2023-02-09 06:20:30,767	32k	INFO	====> Epoch: 288
2023-02-09 06:21:47,755	32k	INFO	====> Epoch: 289
2023-02-09 06:22:41,198	32k	INFO	Train Epoch: 290 [55%]
2023-02-09 06:22:41,198	32k	INFO	[2.5569255352020264, 2.232271671295166, 9.287805557250977, 17.64458656311035, 0.9140328168869019, 19400, 9.645175430986486e-05]
2023-02-09 06:23:05,925	32k	INFO	====> Epoch: 290
2023-02-09 06:24:23,877	32k	INFO	====> Epoch: 291
2023-02-09 06:25:41,896	32k	INFO	====> Epoch: 292
2023-02-09 06:26:34,600	32k	INFO	Train Epoch: 293 [54%]
2023-02-09 06:26:34,600	32k	INFO	[2.3312571048736572, 2.471904993057251, 8.659703254699707, 14.936263084411621, 0.5374557971954346, 19600, 9.641558942298625e-05]
2023-02-09 06:27:00,329	32k	INFO	====> Epoch: 293
2023-02-09 06:28:17,379	32k	INFO	====> Epoch: 294
2023-02-09 06:29:34,319	32k	INFO	====> Epoch: 295
2023-02-09 06:30:25,273	32k	INFO	Train Epoch: 296 [52%]
2023-02-09 06:30:25,273	32k	INFO	[2.580073118209839, 2.0791285037994385, 6.087092876434326, 15.868849754333496, 0.6256889700889587, 19800, 9.637943809624507e-05]
2023-02-09 06:30:51,672	32k	INFO	====> Epoch: 296
2023-02-09 06:32:08,760	32k	INFO	====> Epoch: 297
2023-02-09 06:33:25,874	32k	INFO	====> Epoch: 298
2023-02-09 06:34:16,143	32k	INFO	Train Epoch: 299 [51%]
2023-02-09 06:34:16,143	32k	INFO	[2.7276787757873535, 2.1408498287200928, 7.651435852050781, 13.118131637573242, 0.8090221881866455, 20000, 9.634330032455689e-05]
2023-02-09 06:34:20,490	32k	INFO	Saving model and optimizer state at iteration 299 to ./logs\32k\G_20000.pth
2023-02-09 06:34:38,151	32k	INFO	Saving model and optimizer state at iteration 299 to ./logs\32k\D_20000.pth
2023-02-09 06:35:09,071	32k	INFO	====> Epoch: 299
2023-02-09 06:36:26,919	32k	INFO	====> Epoch: 300
2023-02-09 06:37:44,715	32k	INFO	====> Epoch: 301
2023-02-09 06:38:34,897	32k	INFO	Train Epoch: 302 [49%]
2023-02-09 06:38:34,897	32k	INFO	[2.3907358646392822, 2.586805820465088, 12.788217544555664, 17.23185157775879, 0.9444102048873901, 20200, 9.63071761028392e-05]
2023-02-09 06:39:02,960	32k	INFO	====> Epoch: 302
2023-02-09 06:40:19,965	32k	INFO	====> Epoch: 303
2023-02-09 06:41:36,910	32k	INFO	====> Epoch: 304
2023-02-09 06:42:25,288	32k	INFO	Train Epoch: 305 [48%]
2023-02-09 06:42:25,288	32k	INFO	[2.543513059616089, 2.2357592582702637, 11.66889476776123, 17.664663314819336, 0.9346078038215637, 20400, 9.627106542601141e-05]
2023-02-09 06:42:54,185	32k	INFO	====> Epoch: 305
2023-02-09 06:44:11,243	32k	INFO	====> Epoch: 306
2023-02-09 06:45:28,529	32k	INFO	====> Epoch: 307
2023-02-09 06:46:16,141	32k	INFO	Train Epoch: 308 [46%]
2023-02-09 06:46:16,142	32k	INFO	[2.2425007820129395, 2.718269109725952, 10.438041687011719, 14.429862022399902, 0.450414776802063, 20600, 9.62349682889948e-05]
2023-02-09 06:46:45,885	32k	INFO	====> Epoch: 308
2023-02-09 06:48:02,967	32k	INFO	====> Epoch: 309
2023-02-09 06:49:20,096	32k	INFO	====> Epoch: 310
2023-02-09 06:50:06,904	32k	INFO	Train Epoch: 311 [45%]
2023-02-09 06:50:06,904	32k	INFO	[2.511903762817383, 2.2772610187530518, 7.602670192718506, 16.86819839477539, 0.4354688823223114, 20800, 9.619888468671259e-05]
2023-02-09 06:50:37,485	32k	INFO	====> Epoch: 311
2023-02-09 06:51:54,650	32k	INFO	====> Epoch: 312
2023-02-09 06:53:11,706	32k	INFO	====> Epoch: 313
2023-02-09 06:53:57,594	32k	INFO	Train Epoch: 314 [43%]
2023-02-09 06:53:57,595	32k	INFO	[2.548445463180542, 2.205153226852417, 9.582110404968262, 17.887943267822266, 0.8334051966667175, 21000, 9.61628146140899e-05]
2023-02-09 06:54:01,984	32k	INFO	Saving model and optimizer state at iteration 314 to ./logs\32k\G_21000.pth
2023-02-09 06:54:19,329	32k	INFO	Saving model and optimizer state at iteration 314 to ./logs\32k\D_21000.pth
2023-02-09 06:54:54,644	32k	INFO	====> Epoch: 314
2023-02-09 06:56:12,706	32k	INFO	====> Epoch: 315
2023-02-09 06:57:30,625	32k	INFO	====> Epoch: 316
2023-02-09 06:58:16,770	32k	INFO	Train Epoch: 317 [42%]
2023-02-09 06:58:16,770	32k	INFO	[2.5582966804504395, 2.0421464443206787, 9.006149291992188, 15.637856483459473, 1.0011146068572998, 21200, 9.612675806605373e-05]
2023-02-09 06:58:48,980	32k	INFO	====> Epoch: 317
2023-02-09 07:00:06,236	32k	INFO	====> Epoch: 318
2023-02-09 07:01:23,359	32k	INFO	====> Epoch: 319
2023-02-09 07:02:08,658	32k	INFO	Train Epoch: 320 [40%]
2023-02-09 07:02:08,658	32k	INFO	[2.39801287651062, 2.3436264991760254, 10.229707717895508, 19.279922485351562, 0.727281391620636, 21400, 9.609071503753299e-05]
2023-02-09 07:02:41,674	32k	INFO	====> Epoch: 320
2023-02-09 07:03:59,633	32k	INFO	====> Epoch: 321
2023-02-09 07:05:17,720	32k	INFO	====> Epoch: 322
2023-02-09 07:06:01,216	32k	INFO	Train Epoch: 323 [39%]
2023-02-09 07:06:01,216	32k	INFO	[2.6565518379211426, 2.263072967529297, 6.5126566886901855, 15.140740394592285, 0.8894218802452087, 21600, 9.60546855234585e-05]
2023-02-09 07:06:35,104	32k	INFO	====> Epoch: 323
2023-02-09 07:07:52,224	32k	INFO	====> Epoch: 324
2023-02-09 07:09:09,258	32k	INFO	====> Epoch: 325
2023-02-09 07:09:51,895	32k	INFO	Train Epoch: 326 [37%]
2023-02-09 07:09:51,896	32k	INFO	[2.869607448577881, 1.8302068710327148, 5.35368013381958, 10.451361656188965, 0.7921611070632935, 21800, 9.601866951876297e-05]
2023-02-09 07:10:26,577	32k	INFO	====> Epoch: 326
2023-02-09 07:11:43,674	32k	INFO	====> Epoch: 327
2023-02-09 07:13:00,883	32k	INFO	====> Epoch: 328
2023-02-09 07:13:42,678	32k	INFO	Train Epoch: 329 [36%]
2023-02-09 07:13:42,678	32k	INFO	[2.542959451675415, 2.098376512527466, 9.891724586486816, 15.331761360168457, 0.7128269076347351, 22000, 9.5982667018381e-05]
2023-02-09 07:13:47,172	32k	INFO	Saving model and optimizer state at iteration 329 to ./logs\32k\G_22000.pth
2023-02-09 07:14:04,902	32k	INFO	Saving model and optimizer state at iteration 329 to ./logs\32k\D_22000.pth
2023-02-09 07:14:44,184	32k	INFO	====> Epoch: 329