File size: 51,660 Bytes
049a091 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
2023-02-08 23:42:36,711 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'resona': 0}, 'model_dir': './logs\\32k'}
2023-02-08 23:43:22,288 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'resona': 0}, 'model_dir': './logs\\32k'}
2023-02-08 23:48:45,714 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 12, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'resona': 0}, 'model_dir': './logs\\32k'}
2023-02-08 23:48:54,959 32k INFO Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-08 23:48:58,405 32k INFO Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-08 23:58:19,270 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 12, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'resona': 0}, 'model_dir': './logs\\32k'}
2023-02-08 23:58:24,560 32k INFO Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-08 23:58:24,968 32k INFO Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-08 23:59:37,724 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'resona': 0}, 'model_dir': './logs\\32k'}
2023-02-08 23:59:42,440 32k INFO Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-08 23:59:42,831 32k INFO Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-09 00:00:09,549 32k INFO Train Epoch: 1 [0%]
2023-02-09 00:00:09,550 32k INFO [2.2538223266601562, 2.6597347259521484, 11.763463020324707, 45.49671173095703, 11.207155227661133, 0, 0.0001]
2023-02-09 00:00:15,641 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
2023-02-09 00:00:34,164 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
2023-02-09 00:01:33,109 32k INFO ====> Epoch: 1
2023-02-09 00:02:50,380 32k INFO ====> Epoch: 2
2023-02-09 00:04:06,903 32k INFO Train Epoch: 3 [99%]
2023-02-09 00:04:06,904 32k INFO [2.4401040077209473, 2.5799942016601562, 9.811338424682617, 22.839824676513672, 1.509987711906433, 200, 9.99750015625e-05]
2023-02-09 00:04:07,676 32k INFO ====> Epoch: 3
2023-02-09 00:05:24,690 32k INFO ====> Epoch: 4
2023-02-09 00:06:41,699 32k INFO ====> Epoch: 5
2023-02-09 00:07:57,478 32k INFO Train Epoch: 6 [97%]
2023-02-09 00:07:57,479 32k INFO [2.500568389892578, 2.042257785797119, 10.643875122070312, 17.175233840942383, 1.2767752408981323, 400, 9.993751562304699e-05]
2023-02-09 00:07:59,058 32k INFO ====> Epoch: 6
2023-02-09 00:09:16,169 32k INFO ====> Epoch: 7
2023-02-09 00:10:33,248 32k INFO ====> Epoch: 8
2023-02-09 00:11:48,262 32k INFO Train Epoch: 9 [96%]
2023-02-09 00:11:48,262 32k INFO [2.4632694721221924, 2.3801445960998535, 6.719289779663086, 15.820771217346191, 1.1217436790466309, 600, 9.990004373906418e-05]
2023-02-09 00:11:50,769 32k INFO ====> Epoch: 9
2023-02-09 00:13:08,802 32k INFO ====> Epoch: 10
2023-02-09 00:14:26,016 32k INFO ====> Epoch: 11
2023-02-09 00:15:40,270 32k INFO Train Epoch: 12 [94%]
2023-02-09 00:15:40,271 32k INFO [2.455298662185669, 2.3402817249298096, 9.666932106018066, 20.384544372558594, 0.6758424043655396, 800, 9.986258590528146e-05]
2023-02-09 00:15:43,517 32k INFO ====> Epoch: 12
2023-02-09 00:17:00,741 32k INFO ====> Epoch: 13
2023-02-09 00:18:18,179 32k INFO ====> Epoch: 14
2023-02-09 00:19:31,643 32k INFO Train Epoch: 15 [93%]
2023-02-09 00:19:31,643 32k INFO [2.623318672180176, 2.104186534881592, 8.998331069946289, 18.40737533569336, 1.2988810539245605, 1000, 9.982514211643064e-05]
2023-02-09 00:19:36,017 32k INFO Saving model and optimizer state at iteration 15 to ./logs\32k\G_1000.pth
2023-02-09 00:19:56,035 32k INFO Saving model and optimizer state at iteration 15 to ./logs\32k\D_1000.pth
2023-02-09 00:20:03,963 32k INFO ====> Epoch: 15
2023-02-09 00:21:21,250 32k INFO ====> Epoch: 16
2023-02-09 00:22:38,564 32k INFO ====> Epoch: 17
2023-02-09 00:23:51,362 32k INFO Train Epoch: 18 [91%]
2023-02-09 00:23:51,362 32k INFO [2.5918359756469727, 2.205848217010498, 7.585756301879883, 19.934139251708984, 0.9796969294548035, 1200, 9.978771236724554e-05]
2023-02-09 00:23:56,283 32k INFO ====> Epoch: 18
2023-02-09 00:25:13,666 32k INFO ====> Epoch: 19
2023-02-09 00:26:30,886 32k INFO ====> Epoch: 20
2023-02-09 00:27:42,775 32k INFO Train Epoch: 21 [90%]
2023-02-09 00:27:42,775 32k INFO [2.3665695190429688, 2.329713821411133, 8.740349769592285, 18.66284942626953, 0.883953332901001, 1400, 9.975029665246193e-05]
2023-02-09 00:27:48,506 32k INFO ====> Epoch: 21
2023-02-09 00:29:05,836 32k INFO ====> Epoch: 22
2023-02-09 00:30:23,087 32k INFO ====> Epoch: 23
2023-02-09 00:31:34,123 32k INFO Train Epoch: 24 [88%]
2023-02-09 00:31:34,123 32k INFO [2.644050121307373, 2.4024436473846436, 3.807854652404785, 10.505730628967285, 0.7721247673034668, 1600, 9.971289496681757e-05]
2023-02-09 00:31:40,666 32k INFO ====> Epoch: 24
2023-02-09 00:32:57,901 32k INFO ====> Epoch: 25
2023-02-09 00:34:15,203 32k INFO ====> Epoch: 26
2023-02-09 00:35:25,363 32k INFO Train Epoch: 27 [87%]
2023-02-09 00:35:25,363 32k INFO [2.5081863403320312, 2.362135648727417, 10.08530044555664, 21.179523468017578, 1.0669621229171753, 1800, 9.967550730505221e-05]
2023-02-09 00:35:32,734 32k INFO ====> Epoch: 27
2023-02-09 00:36:49,992 32k INFO ====> Epoch: 28
2023-02-09 00:38:07,250 32k INFO ====> Epoch: 29
2023-02-09 00:39:16,660 32k INFO Train Epoch: 30 [85%]
2023-02-09 00:39:16,661 32k INFO [2.220442771911621, 2.801152229309082, 7.649630546569824, 14.329034805297852, 0.8535028696060181, 2000, 9.963813366190753e-05]
2023-02-09 00:39:21,154 32k INFO Saving model and optimizer state at iteration 30 to ./logs\32k\G_2000.pth
2023-02-09 00:39:37,843 32k INFO Saving model and optimizer state at iteration 30 to ./logs\32k\D_2000.pth
2023-02-09 00:39:49,595 32k INFO ====> Epoch: 30
2023-02-09 00:41:06,937 32k INFO ====> Epoch: 31
2023-02-09 00:42:24,214 32k INFO ====> Epoch: 32
2023-02-09 00:43:32,732 32k INFO Train Epoch: 33 [84%]
2023-02-09 00:43:32,732 32k INFO [2.5671257972717285, 2.225325107574463, 6.000064849853516, 14.645927429199219, 0.91252601146698, 2200, 9.960077403212722e-05]
2023-02-09 00:43:41,803 32k INFO ====> Epoch: 33
2023-02-09 00:44:59,115 32k INFO ====> Epoch: 34
2023-02-09 00:46:16,581 32k INFO ====> Epoch: 35
2023-02-09 00:47:24,262 32k INFO Train Epoch: 36 [82%]
2023-02-09 00:47:24,262 32k INFO [2.566441059112549, 2.1268556118011475, 7.592073440551758, 18.499162673950195, 0.9556418657302856, 2400, 9.956342841045691e-05]
2023-02-09 00:47:34,260 32k INFO ====> Epoch: 36
2023-02-09 00:48:51,449 32k INFO ====> Epoch: 37
2023-02-09 00:50:08,699 32k INFO ====> Epoch: 38
2023-02-09 00:51:15,505 32k INFO Train Epoch: 39 [81%]
2023-02-09 00:51:15,505 32k INFO [2.479832410812378, 2.2814459800720215, 7.773660182952881, 18.745792388916016, 1.0438538789749146, 2600, 9.952609679164422e-05]
2023-02-09 00:51:26,185 32k INFO ====> Epoch: 39
2023-02-09 00:52:43,425 32k INFO ====> Epoch: 40
2023-02-09 00:54:00,760 32k INFO ====> Epoch: 41
2023-02-09 00:55:06,807 32k INFO Train Epoch: 42 [79%]
2023-02-09 00:55:06,808 32k INFO [2.484856367111206, 2.320491313934326, 10.475366592407227, 19.472793579101562, 1.3102898597717285, 2800, 9.948877917043875e-05]
2023-02-09 00:55:18,363 32k INFO ====> Epoch: 42
2023-02-09 00:56:35,577 32k INFO ====> Epoch: 43
2023-02-09 00:57:52,857 32k INFO ====> Epoch: 44
2023-02-09 00:58:58,009 32k INFO Train Epoch: 45 [78%]
2023-02-09 00:58:58,010 32k INFO [2.4101104736328125, 2.2083635330200195, 11.62160587310791, 18.154218673706055, 0.8082653880119324, 3000, 9.945147554159202e-05]
2023-02-09 00:59:02,398 32k INFO Saving model and optimizer state at iteration 45 to ./logs\32k\G_3000.pth
2023-02-09 00:59:20,855 32k INFO Saving model and optimizer state at iteration 45 to ./logs\32k\D_3000.pth
2023-02-09 00:59:36,859 32k INFO ====> Epoch: 45
2023-02-09 01:00:54,227 32k INFO ====> Epoch: 46
2023-02-09 01:02:11,360 32k INFO ====> Epoch: 47
2023-02-09 01:03:15,636 32k INFO Train Epoch: 48 [76%]
2023-02-09 01:03:15,636 32k INFO [2.5076825618743896, 2.1728971004486084, 8.223286628723145, 14.673565864562988, 0.8116975426673889, 3200, 9.941418589985758e-05]
2023-02-09 01:03:28,785 32k INFO ====> Epoch: 48
2023-02-09 01:04:46,096 32k INFO ====> Epoch: 49
2023-02-09 01:06:03,441 32k INFO ====> Epoch: 50
2023-02-09 01:07:07,086 32k INFO Train Epoch: 51 [75%]
2023-02-09 01:07:07,086 32k INFO [2.6912717819213867, 2.093996047973633, 7.675986289978027, 15.62138557434082, 1.2493226528167725, 3400, 9.937691023999092e-05]
2023-02-09 01:07:21,073 32k INFO ====> Epoch: 51
2023-02-09 01:08:38,316 32k INFO ====> Epoch: 52
2023-02-09 01:09:55,540 32k INFO ====> Epoch: 53
2023-02-09 01:10:58,191 32k INFO Train Epoch: 54 [73%]
2023-02-09 01:10:58,192 32k INFO [2.269256114959717, 2.731293201446533, 8.000404357910156, 14.131468772888184, 1.039566159248352, 3600, 9.933964855674948e-05]
2023-02-09 01:11:13,014 32k INFO ====> Epoch: 54
2023-02-09 01:12:30,251 32k INFO ====> Epoch: 55
2023-02-09 01:13:47,584 32k INFO ====> Epoch: 56
2023-02-09 01:14:49,462 32k INFO Train Epoch: 57 [72%]
2023-02-09 01:14:49,462 32k INFO [2.462212324142456, 2.380282402038574, 9.700272560119629, 19.343175888061523, 1.1376886367797852, 3800, 9.930240084489267e-05]
2023-02-09 01:15:05,201 32k INFO ====> Epoch: 57
2023-02-09 01:16:22,533 32k INFO ====> Epoch: 58
2023-02-09 01:17:39,809 32k INFO ====> Epoch: 59
2023-02-09 01:18:40,881 32k INFO Train Epoch: 60 [70%]
2023-02-09 01:18:40,882 32k INFO [2.4092752933502197, 2.3126306533813477, 11.08122730255127, 19.267513275146484, 0.5496549010276794, 4000, 9.926516709918191e-05]
2023-02-09 01:18:45,348 32k INFO Saving model and optimizer state at iteration 60 to ./logs\32k\G_4000.pth
2023-02-09 01:19:01,949 32k INFO Saving model and optimizer state at iteration 60 to ./logs\32k\D_4000.pth
2023-02-09 01:19:22,256 32k INFO ====> Epoch: 60
2023-02-09 01:20:39,651 32k INFO ====> Epoch: 61
2023-02-09 01:21:57,031 32k INFO ====> Epoch: 62
2023-02-09 01:22:57,338 32k INFO Train Epoch: 63 [69%]
2023-02-09 01:22:57,338 32k INFO [2.407628059387207, 2.4265987873077393, 9.841700553894043, 20.425884246826172, 1.1777186393737793, 4200, 9.922794731438052e-05]
2023-02-09 01:23:14,639 32k INFO ====> Epoch: 63
2023-02-09 01:24:32,051 32k INFO ====> Epoch: 64
2023-02-09 01:25:49,407 32k INFO ====> Epoch: 65
2023-02-09 01:26:48,771 32k INFO Train Epoch: 66 [67%]
2023-02-09 01:26:48,772 32k INFO [2.4743025302886963, 2.436379909515381, 9.201873779296875, 18.20071029663086, 0.933559000492096, 4400, 9.919074148525384e-05]
2023-02-09 01:27:06,967 32k INFO ====> Epoch: 66
2023-02-09 01:28:24,205 32k INFO ====> Epoch: 67
2023-02-09 01:29:41,611 32k INFO ====> Epoch: 68
2023-02-09 01:30:55,639 32k INFO Train Epoch: 69 [66%]
2023-02-09 01:30:55,640 32k INFO [2.476935863494873, 2.297214984893799, 11.784645080566406, 20.394569396972656, 0.9714463353157043, 4600, 9.915354960656915e-05]
2023-02-09 01:31:14,621 32k INFO ====> Epoch: 69
2023-02-09 01:32:31,900 32k INFO ====> Epoch: 70
2023-02-09 01:33:49,165 32k INFO ====> Epoch: 71
2023-02-09 01:34:46,907 32k INFO Train Epoch: 72 [64%]
2023-02-09 01:34:46,908 32k INFO [2.5771408081054688, 2.3849239349365234, 10.185483932495117, 17.841482162475586, 0.7261289358139038, 4800, 9.911637167309565e-05]
2023-02-09 01:35:06,816 32k INFO ====> Epoch: 72
2023-02-09 01:36:24,001 32k INFO ====> Epoch: 73
2023-02-09 01:37:41,262 32k INFO ====> Epoch: 74
2023-02-09 01:38:38,250 32k INFO Train Epoch: 75 [63%]
2023-02-09 01:38:38,250 32k INFO [2.465418815612793, 2.232435941696167, 10.514191627502441, 20.439416885375977, 1.0744853019714355, 5000, 9.907920767960457e-05]
2023-02-09 01:38:42,755 32k INFO Saving model and optimizer state at iteration 75 to ./logs\32k\G_5000.pth
2023-02-09 01:38:58,887 32k INFO Saving model and optimizer state at iteration 75 to ./logs\32k\D_5000.pth
2023-02-09 01:39:23,174 32k INFO ====> Epoch: 75
2023-02-09 01:40:40,570 32k INFO ====> Epoch: 76
2023-02-09 01:41:58,063 32k INFO ====> Epoch: 77
2023-02-09 01:42:54,165 32k INFO Train Epoch: 78 [61%]
2023-02-09 01:42:54,165 32k INFO [2.6826303005218506, 2.095520496368408, 3.6221730709075928, 12.267330169677734, 0.8276277184486389, 5200, 9.904205762086905e-05]
2023-02-09 01:43:15,721 32k INFO ====> Epoch: 78
2023-02-09 01:44:33,155 32k INFO ====> Epoch: 79
2023-02-09 01:45:50,627 32k INFO ====> Epoch: 80
2023-02-09 01:46:45,893 32k INFO Train Epoch: 81 [60%]
2023-02-09 01:46:45,893 32k INFO [2.520723342895508, 2.3147475719451904, 9.123695373535156, 19.63064956665039, 0.5058915019035339, 5400, 9.900492149166423e-05]
2023-02-09 01:47:08,201 32k INFO ====> Epoch: 81
2023-02-09 01:48:25,508 32k INFO ====> Epoch: 82
2023-02-09 01:49:42,705 32k INFO ====> Epoch: 83
2023-02-09 01:50:37,129 32k INFO Train Epoch: 84 [58%]
2023-02-09 01:50:37,129 32k INFO [2.2849955558776855, 2.513012409210205, 12.865352630615234, 19.767900466918945, 0.9678688049316406, 5600, 9.896779928676716e-05]
2023-02-09 01:51:00,273 32k INFO ====> Epoch: 84
2023-02-09 01:52:17,483 32k INFO ====> Epoch: 85
2023-02-09 01:53:34,853 32k INFO ====> Epoch: 86
2023-02-09 01:54:28,632 32k INFO Train Epoch: 87 [57%]
2023-02-09 01:54:28,633 32k INFO [2.230534553527832, 2.553818464279175, 10.746828079223633, 17.61080551147461, 0.6103332042694092, 5800, 9.89306910009569e-05]
2023-02-09 01:54:52,593 32k INFO ====> Epoch: 87
2023-02-09 01:56:09,924 32k INFO ====> Epoch: 88
2023-02-09 01:57:27,133 32k INFO ====> Epoch: 89
2023-02-09 01:58:19,773 32k INFO Train Epoch: 90 [55%]
2023-02-09 01:58:19,773 32k INFO [2.9170384407043457, 1.8074010610580444, 6.252444267272949, 11.759191513061523, 0.5820555090904236, 6000, 9.889359662901445e-05]
2023-02-09 01:58:24,216 32k INFO Saving model and optimizer state at iteration 90 to ./logs\32k\G_6000.pth
2023-02-09 01:58:41,937 32k INFO Saving model and optimizer state at iteration 90 to ./logs\32k\D_6000.pth
2023-02-09 01:59:10,016 32k INFO ====> Epoch: 90
2023-02-09 02:00:27,480 32k INFO ====> Epoch: 91
2023-02-09 02:01:44,927 32k INFO ====> Epoch: 92
2023-02-09 02:02:36,973 32k INFO Train Epoch: 93 [54%]
2023-02-09 02:02:36,974 32k INFO [2.248124837875366, 2.691680908203125, 9.031513214111328, 17.063570022583008, 0.8340508937835693, 6200, 9.885651616572276e-05]
2023-02-09 02:03:02,579 32k INFO ====> Epoch: 93
2023-02-09 02:04:19,880 32k INFO ====> Epoch: 94
2023-02-09 02:05:37,183 32k INFO ====> Epoch: 95
2023-02-09 02:06:28,292 32k INFO Train Epoch: 96 [52%]
2023-02-09 02:06:28,292 32k INFO [2.7041618824005127, 2.0895659923553467, 6.933722019195557, 14.279449462890625, 0.9478716254234314, 6400, 9.881944960586671e-05]
2023-02-09 02:06:54,691 32k INFO ====> Epoch: 96
2023-02-09 02:08:11,826 32k INFO ====> Epoch: 97
2023-02-09 02:09:29,228 32k INFO ====> Epoch: 98
2023-02-09 02:10:19,605 32k INFO Train Epoch: 99 [51%]
2023-02-09 02:10:19,605 32k INFO [2.465763568878174, 2.286102294921875, 8.612666130065918, 17.839487075805664, 0.8176154494285583, 6600, 9.87823969442332e-05]
2023-02-09 02:10:46,982 32k INFO ====> Epoch: 99
2023-02-09 02:12:04,533 32k INFO ====> Epoch: 100
2023-02-09 02:13:21,854 32k INFO ====> Epoch: 101
2023-02-09 02:14:11,250 32k INFO Train Epoch: 102 [49%]
2023-02-09 02:14:11,250 32k INFO [2.325270652770996, 2.503894567489624, 13.427793502807617, 18.58626937866211, 1.1115485429763794, 6800, 9.874535817561101e-05]
2023-02-09 02:14:39,395 32k INFO ====> Epoch: 102
2023-02-09 02:15:56,665 32k INFO ====> Epoch: 103
2023-02-09 02:17:13,783 32k INFO ====> Epoch: 104
2023-02-09 02:18:02,422 32k INFO Train Epoch: 105 [48%]
2023-02-09 02:18:02,422 32k INFO [2.5144426822662354, 2.262126922607422, 9.593130111694336, 19.810073852539062, 0.9265149235725403, 7000, 9.870833329479095e-05]
2023-02-09 02:18:06,802 32k INFO Saving model and optimizer state at iteration 105 to ./logs\32k\G_7000.pth
2023-02-09 02:18:26,842 32k INFO Saving model and optimizer state at iteration 105 to ./logs\32k\D_7000.pth
2023-02-09 02:18:59,625 32k INFO ====> Epoch: 105
2023-02-09 02:20:16,918 32k INFO ====> Epoch: 106
2023-02-09 02:21:34,168 32k INFO ====> Epoch: 107
2023-02-09 02:22:22,051 32k INFO Train Epoch: 108 [46%]
2023-02-09 02:22:22,051 32k INFO [2.5437726974487305, 1.968860387802124, 8.248473167419434, 15.724898338317871, 0.8549317717552185, 7200, 9.867132229656573e-05]
2023-02-09 02:22:51,735 32k INFO ====> Epoch: 108
2023-02-09 02:24:08,913 32k INFO ====> Epoch: 109
2023-02-09 02:25:26,159 32k INFO ====> Epoch: 110
2023-02-09 02:26:13,089 32k INFO Train Epoch: 111 [45%]
2023-02-09 02:26:13,090 32k INFO [2.4943034648895264, 2.1690049171447754, 8.534195899963379, 18.047616958618164, 0.6213272213935852, 7400, 9.863432517573002e-05]
2023-02-09 02:26:43,675 32k INFO ====> Epoch: 111
2023-02-09 02:28:00,862 32k INFO ====> Epoch: 112
2023-02-09 02:29:18,116 32k INFO ====> Epoch: 113
2023-02-09 02:30:04,341 32k INFO Train Epoch: 114 [43%]
2023-02-09 02:30:04,342 32k INFO [2.590273141860962, 2.244678497314453, 8.331713676452637, 17.773584365844727, 0.4851672947406769, 7600, 9.859734192708044e-05]
2023-02-09 02:30:35,745 32k INFO ====> Epoch: 114
2023-02-09 02:31:52,967 32k INFO ====> Epoch: 115
2023-02-09 02:33:10,215 32k INFO ====> Epoch: 116
2023-02-09 02:33:55,596 32k INFO Train Epoch: 117 [42%]
2023-02-09 02:33:55,597 32k INFO [2.43920636177063, 2.299633026123047, 10.326704978942871, 19.797151565551758, 0.7202500104904175, 7800, 9.85603725454156e-05]
2023-02-09 02:34:27,882 32k INFO ====> Epoch: 117
2023-02-09 02:35:45,221 32k INFO ====> Epoch: 118
2023-02-09 02:37:02,373 32k INFO ====> Epoch: 119
2023-02-09 02:37:46,886 32k INFO Train Epoch: 120 [40%]
2023-02-09 02:37:46,887 32k INFO [2.7452502250671387, 1.881577968597412, 6.52833890914917, 14.799930572509766, 0.5330202579498291, 8000, 9.8523417025536e-05]
2023-02-09 02:37:51,352 32k INFO Saving model and optimizer state at iteration 120 to ./logs\32k\G_8000.pth
2023-02-09 02:38:05,481 32k INFO Saving model and optimizer state at iteration 120 to ./logs\32k\D_8000.pth
2023-02-09 02:38:41,822 32k INFO ====> Epoch: 120
2023-02-09 02:39:59,271 32k INFO ====> Epoch: 121
2023-02-09 02:41:16,709 32k INFO ====> Epoch: 122
2023-02-09 02:42:00,437 32k INFO Train Epoch: 123 [39%]
2023-02-09 02:42:00,437 32k INFO [2.5362741947174072, 2.0902092456817627, 8.579750061035156, 16.44462776184082, 0.640954852104187, 8200, 9.848647536224416e-05]
2023-02-09 02:42:34,336 32k INFO ====> Epoch: 123
2023-02-09 02:43:51,542 32k INFO ====> Epoch: 124
2023-02-09 02:45:08,701 32k INFO ====> Epoch: 125
2023-02-09 02:45:51,519 32k INFO Train Epoch: 126 [37%]
2023-02-09 02:45:51,519 32k INFO [2.5620243549346924, 2.1529924869537354, 6.262371063232422, 14.607771873474121, 0.6447804570198059, 8400, 9.84495475503445e-05]
2023-02-09 02:46:26,225 32k INFO ====> Epoch: 126
2023-02-09 02:47:43,549 32k INFO ====> Epoch: 127
2023-02-09 02:49:00,851 32k INFO ====> Epoch: 128
2023-02-09 02:49:43,071 32k INFO Train Epoch: 129 [36%]
2023-02-09 02:49:43,072 32k INFO [2.6855649948120117, 2.093135356903076, 8.865744590759277, 14.999298095703125, 0.4640387296676636, 8600, 9.841263358464336e-05]
2023-02-09 02:50:18,555 32k INFO ====> Epoch: 129
2023-02-09 02:51:35,826 32k INFO ====> Epoch: 130
2023-02-09 02:52:53,221 32k INFO ====> Epoch: 131
2023-02-09 02:53:34,341 32k INFO Train Epoch: 132 [34%]
2023-02-09 02:53:34,342 32k INFO [2.45322322845459, 2.1377835273742676, 7.04033899307251, 14.747097969055176, 0.6762568950653076, 8800, 9.837573345994909e-05]
2023-02-09 02:54:10,739 32k INFO ====> Epoch: 132
2023-02-09 02:55:27,964 32k INFO ====> Epoch: 133
2023-02-09 02:56:45,156 32k INFO ====> Epoch: 134
2023-02-09 02:57:25,569 32k INFO Train Epoch: 135 [33%]
2023-02-09 02:57:25,569 32k INFO [2.516730308532715, 2.3212270736694336, 9.098499298095703, 18.753353118896484, 0.8016514182090759, 9000, 9.833884717107196e-05]
2023-02-09 02:57:30,052 32k INFO Saving model and optimizer state at iteration 135 to ./logs\32k\G_9000.pth
2023-02-09 02:57:49,313 32k INFO Saving model and optimizer state at iteration 135 to ./logs\32k\D_9000.pth
2023-02-09 02:58:30,142 32k INFO ====> Epoch: 135
2023-02-09 02:59:47,578 32k INFO ====> Epoch: 136
2023-02-09 03:01:04,989 32k INFO ====> Epoch: 137
2023-02-09 03:01:44,604 32k INFO Train Epoch: 138 [31%]
2023-02-09 03:01:44,604 32k INFO [2.5661885738372803, 2.1553306579589844, 12.048609733581543, 19.532424926757812, 1.2839446067810059, 9200, 9.830197471282419e-05]
2023-02-09 03:02:22,615 32k INFO ====> Epoch: 138
2023-02-09 03:03:39,975 32k INFO ====> Epoch: 139
2023-02-09 03:04:57,273 32k INFO ====> Epoch: 140
2023-02-09 03:05:35,900 32k INFO Train Epoch: 141 [30%]
2023-02-09 03:05:35,901 32k INFO [2.4171464443206787, 2.1831154823303223, 7.9948649406433105, 16.37220001220703, 0.44416582584381104, 9400, 9.826511608001993e-05]
2023-02-09 03:06:14,772 32k INFO ====> Epoch: 141
2023-02-09 03:07:32,122 32k INFO ====> Epoch: 142
2023-02-09 03:08:49,280 32k INFO ====> Epoch: 143
2023-02-09 03:09:27,103 32k INFO Train Epoch: 144 [28%]
2023-02-09 03:09:27,104 32k INFO [2.356396436691284, 2.559436798095703, 10.186924934387207, 18.508615493774414, 0.9834058284759521, 9600, 9.822827126747529e-05]
2023-02-09 03:10:06,785 32k INFO ====> Epoch: 144
2023-02-09 03:11:24,022 32k INFO ====> Epoch: 145
2023-02-09 03:12:41,266 32k INFO ====> Epoch: 146
2023-02-09 03:13:18,484 32k INFO Train Epoch: 147 [27%]
2023-02-09 03:13:18,485 32k INFO [2.5275373458862305, 2.34236478805542, 11.132747650146484, 20.919368743896484, 0.8620054721832275, 9800, 9.819144027000834e-05]
2023-02-09 03:13:58,998 32k INFO ====> Epoch: 147
2023-02-09 03:15:16,211 32k INFO ====> Epoch: 148
2023-02-09 03:16:33,518 32k INFO ====> Epoch: 149
2023-02-09 03:17:09,655 32k INFO Train Epoch: 150 [25%]
2023-02-09 03:17:09,655 32k INFO [2.490751028060913, 2.18687105178833, 8.969452857971191, 16.82117462158203, 0.8959197998046875, 10000, 9.815462308243906e-05]
2023-02-09 03:17:14,164 32k INFO Saving model and optimizer state at iteration 150 to ./logs\32k\G_10000.pth
2023-02-09 03:17:34,194 32k INFO Saving model and optimizer state at iteration 150 to ./logs\32k\D_10000.pth
2023-02-09 03:18:19,227 32k INFO ====> Epoch: 150
2023-02-09 03:19:36,776 32k INFO ====> Epoch: 151
2023-02-09 03:20:54,200 32k INFO ====> Epoch: 152
2023-02-09 03:21:29,735 32k INFO Train Epoch: 153 [24%]
2023-02-09 03:21:29,735 32k INFO [2.548633575439453, 2.158717393875122, 10.489928245544434, 18.32561683654785, 1.113476276397705, 10200, 9.811781969958938e-05]
2023-02-09 03:22:11,964 32k INFO ====> Epoch: 153
2023-02-09 03:23:29,243 32k INFO ====> Epoch: 154
2023-02-09 03:24:46,521 32k INFO ====> Epoch: 155
2023-02-09 03:25:21,203 32k INFO Train Epoch: 156 [22%]
2023-02-09 03:25:21,204 32k INFO [2.6085586547851562, 2.2196943759918213, 6.367833137512207, 16.077957153320312, 1.0498080253601074, 10400, 9.808103011628319e-05]
2023-02-09 03:26:04,324 32k INFO ====> Epoch: 156
2023-02-09 03:27:21,640 32k INFO ====> Epoch: 157
2023-02-09 03:28:38,959 32k INFO ====> Epoch: 158
2023-02-09 03:29:12,697 32k INFO Train Epoch: 159 [21%]
2023-02-09 03:29:12,697 32k INFO [2.4405250549316406, 2.2709829807281494, 9.20801830291748, 17.569778442382812, 0.8504314422607422, 10600, 9.804425432734629e-05]
2023-02-09 03:29:56,480 32k INFO ====> Epoch: 159
2023-02-09 03:31:13,840 32k INFO ====> Epoch: 160
2023-02-09 03:32:31,264 32k INFO ====> Epoch: 161
2023-02-09 03:33:04,232 32k INFO Train Epoch: 162 [19%]
2023-02-09 03:33:04,232 32k INFO [2.257436752319336, 2.3079981803894043, 7.7498016357421875, 11.477513313293457, 0.9249159693717957, 10800, 9.800749232760646e-05]
2023-02-09 03:33:48,914 32k INFO ====> Epoch: 162
2023-02-09 03:35:06,402 32k INFO ====> Epoch: 163
2023-02-09 03:36:23,790 32k INFO ====> Epoch: 164
2023-02-09 03:36:56,013 32k INFO Train Epoch: 165 [18%]
2023-02-09 03:36:56,014 32k INFO [2.8059158325195312, 2.351126194000244, 6.358356952667236, 17.166919708251953, 0.9102870225906372, 11000, 9.797074411189339e-05]
2023-02-09 03:37:00,483 32k INFO Saving model and optimizer state at iteration 165 to ./logs\32k\G_11000.pth
2023-02-09 03:37:19,672 32k INFO Saving model and optimizer state at iteration 165 to ./logs\32k\D_11000.pth
2023-02-09 03:38:09,015 32k INFO ====> Epoch: 165
2023-02-09 03:39:26,362 32k INFO ====> Epoch: 166
2023-02-09 03:40:43,704 32k INFO ====> Epoch: 167
2023-02-09 03:41:15,021 32k INFO Train Epoch: 168 [16%]
2023-02-09 03:41:15,021 32k INFO [2.475376844406128, 2.1227407455444336, 12.1411771774292, 18.27838897705078, 0.7968288064002991, 11200, 9.79340096750387e-05]
2023-02-09 03:42:01,310 32k INFO ====> Epoch: 168
2023-02-09 03:43:18,712 32k INFO ====> Epoch: 169
2023-02-09 03:44:36,075 32k INFO ====> Epoch: 170
2023-02-09 03:45:06,554 32k INFO Train Epoch: 171 [15%]
2023-02-09 03:45:06,554 32k INFO [2.3927536010742188, 2.2263312339782715, 12.99544620513916, 19.178787231445312, 0.8865859508514404, 11400, 9.789728901187598e-05]
2023-02-09 03:45:53,638 32k INFO ====> Epoch: 171
2023-02-09 03:47:10,832 32k INFO ====> Epoch: 172
2023-02-09 03:48:28,090 32k INFO ====> Epoch: 173
2023-02-09 03:48:57,840 32k INFO Train Epoch: 174 [13%]
2023-02-09 03:48:57,841 32k INFO [2.629887580871582, 1.9182734489440918, 8.588482856750488, 16.633516311645508, 0.8498013019561768, 11600, 9.786058211724074e-05]
2023-02-09 03:49:45,780 32k INFO ====> Epoch: 174
2023-02-09 03:51:03,165 32k INFO ====> Epoch: 175
2023-02-09 03:52:20,366 32k INFO ====> Epoch: 176
2023-02-09 03:52:48,998 32k INFO Train Epoch: 177 [12%]
2023-02-09 03:52:48,999 32k INFO [2.5986101627349854, 2.2137248516082764, 8.166472434997559, 14.432415962219238, 0.9092381596565247, 11800, 9.782388898597041e-05]
2023-02-09 03:53:37,879 32k INFO ====> Epoch: 177
2023-02-09 03:54:55,253 32k INFO ====> Epoch: 178
2023-02-09 03:56:12,342 32k INFO ====> Epoch: 179
2023-02-09 03:56:40,201 32k INFO Train Epoch: 180 [10%]
2023-02-09 03:56:40,202 32k INFO [2.377601146697998, 2.379459857940674, 10.841035842895508, 17.28376007080078, 1.0782395601272583, 12000, 9.778720961290439e-05]
2023-02-09 03:56:44,727 32k INFO Saving model and optimizer state at iteration 180 to ./logs\32k\G_12000.pth
2023-02-09 03:57:02,672 32k INFO Saving model and optimizer state at iteration 180 to ./logs\32k\D_12000.pth
2023-02-09 03:57:55,590 32k INFO ====> Epoch: 180
2023-02-09 03:59:12,901 32k INFO ====> Epoch: 181
2023-02-09 04:00:30,140 32k INFO ====> Epoch: 182
2023-02-09 04:00:57,262 32k INFO Train Epoch: 183 [9%]
2023-02-09 04:00:57,263 32k INFO [2.599541664123535, 2.0492987632751465, 7.433438301086426, 15.581904411315918, 0.7799375653266907, 12200, 9.7750543992884e-05]
2023-02-09 04:01:47,831 32k INFO ====> Epoch: 183
2023-02-09 04:03:05,064 32k INFO ====> Epoch: 184
2023-02-09 04:04:22,336 32k INFO ====> Epoch: 185
2023-02-09 04:04:48,629 32k INFO Train Epoch: 186 [7%]
2023-02-09 04:04:48,629 32k INFO [2.708937406539917, 2.195622682571411, 8.098736763000488, 16.33951187133789, 1.0215028524398804, 12400, 9.771389212075249e-05]
2023-02-09 04:05:39,876 32k INFO ====> Epoch: 186
2023-02-09 04:06:57,132 32k INFO ====> Epoch: 187
2023-02-09 04:08:14,442 32k INFO ====> Epoch: 188
2023-02-09 04:08:39,906 32k INFO Train Epoch: 189 [6%]
2023-02-09 04:08:39,907 32k INFO [2.543393135070801, 2.578526258468628, 9.853076934814453, 19.175247192382812, 0.9220128655433655, 12600, 9.767725399135504e-05]
2023-02-09 04:09:31,978 32k INFO ====> Epoch: 189
2023-02-09 04:10:49,213 32k INFO ====> Epoch: 190
2023-02-09 04:12:06,344 32k INFO ====> Epoch: 191
2023-02-09 04:12:31,054 32k INFO Train Epoch: 192 [4%]
2023-02-09 04:12:31,055 32k INFO [2.5891571044921875, 2.2922167778015137, 9.008637428283691, 15.618788719177246, 0.6253546476364136, 12800, 9.764062959953878e-05]
2023-02-09 04:13:24,094 32k INFO ====> Epoch: 192
2023-02-09 04:14:41,399 32k INFO ====> Epoch: 193
2023-02-09 04:15:58,594 32k INFO ====> Epoch: 194
2023-02-09 04:16:22,307 32k INFO Train Epoch: 195 [3%]
2023-02-09 04:16:22,307 32k INFO [2.571204900741577, 2.3370144367218018, 11.431970596313477, 19.423154830932617, 0.8416497707366943, 13000, 9.760401894015275e-05]
2023-02-09 04:16:26,662 32k INFO Saving model and optimizer state at iteration 195 to ./logs\32k\G_13000.pth
2023-02-09 04:16:45,402 32k INFO Saving model and optimizer state at iteration 195 to ./logs\32k\D_13000.pth
2023-02-09 04:17:42,745 32k INFO ====> Epoch: 195
2023-02-09 04:19:00,170 32k INFO ====> Epoch: 196
2023-02-09 04:20:17,357 32k INFO ====> Epoch: 197
2023-02-09 04:20:40,493 32k INFO Train Epoch: 198 [1%]
2023-02-09 04:20:40,493 32k INFO [2.6889920234680176, 2.216010332107544, 9.279974937438965, 17.859813690185547, 0.6048229932785034, 13200, 9.756742200804793e-05]
2023-02-09 04:21:35,077 32k INFO ====> Epoch: 198
2023-02-09 04:22:52,432 32k INFO ====> Epoch: 199
2023-02-09 04:24:09,676 32k INFO ====> Epoch: 200
2023-02-09 04:24:31,716 32k INFO Train Epoch: 201 [0%]
2023-02-09 04:24:31,716 32k INFO [2.5305514335632324, 2.058469772338867, 7.646169662475586, 16.716352462768555, 1.0848625898361206, 13400, 9.753083879807726e-05]
2023-02-09 04:25:27,141 32k INFO ====> Epoch: 201
2023-02-09 04:26:44,453 32k INFO ====> Epoch: 202
2023-02-09 04:28:01,216 32k INFO Train Epoch: 203 [99%]
2023-02-09 04:28:01,217 32k INFO [2.600423812866211, 2.4881081581115723, 8.454794883728027, 15.183467864990234, 0.6778528690338135, 13600, 9.750645761229709e-05]
2023-02-09 04:28:01,979 32k INFO ====> Epoch: 203
2023-02-09 04:29:19,697 32k INFO ====> Epoch: 204
2023-02-09 04:30:36,964 32k INFO ====> Epoch: 205
2023-02-09 04:31:52,908 32k INFO Train Epoch: 206 [97%]
2023-02-09 04:31:52,908 32k INFO [2.2509708404541016, 2.403043270111084, 12.252212524414062, 18.043561935424805, 0.5615130662918091, 13800, 9.746989726111722e-05]
2023-02-09 04:31:54,581 32k INFO ====> Epoch: 206
2023-02-09 04:33:11,675 32k INFO ====> Epoch: 207
2023-02-09 04:34:28,928 32k INFO ====> Epoch: 208
2023-02-09 04:35:44,062 32k INFO Train Epoch: 209 [96%]
2023-02-09 04:35:44,062 32k INFO [2.617187261581421, 2.0524563789367676, 7.7549052238464355, 16.08784294128418, 0.8999805450439453, 14000, 9.743335061835535e-05]
2023-02-09 04:35:48,541 32k INFO Saving model and optimizer state at iteration 209 to ./logs\32k\G_14000.pth
2023-02-09 04:36:07,364 32k INFO Saving model and optimizer state at iteration 209 to ./logs\32k\D_14000.pth
2023-02-09 04:36:13,209 32k INFO ====> Epoch: 209
2023-02-09 04:37:30,391 32k INFO ====> Epoch: 210
2023-02-09 04:38:48,344 32k INFO ====> Epoch: 211
2023-02-09 04:40:03,265 32k INFO Train Epoch: 212 [94%]
2023-02-09 04:40:03,266 32k INFO [2.545370578765869, 2.182567596435547, 11.445052146911621, 18.725894927978516, 1.0447421073913574, 14200, 9.739681767887146e-05]
2023-02-09 04:40:06,510 32k INFO ====> Epoch: 212
2023-02-09 04:41:23,719 32k INFO ====> Epoch: 213
2023-02-09 04:42:40,924 32k INFO ====> Epoch: 214
2023-02-09 04:43:54,429 32k INFO Train Epoch: 215 [93%]
2023-02-09 04:43:54,429 32k INFO [2.492203950881958, 2.0672144889831543, 7.254634380340576, 17.217519760131836, 1.2190320491790771, 14400, 9.736029843752747e-05]
2023-02-09 04:43:58,496 32k INFO ====> Epoch: 215
2023-02-09 04:45:16,448 32k INFO ====> Epoch: 216
2023-02-09 04:46:33,534 32k INFO ====> Epoch: 217
2023-02-09 04:47:46,895 32k INFO Train Epoch: 218 [91%]
2023-02-09 04:47:46,895 32k INFO [2.3578548431396484, 2.3237144947052, 9.533674240112305, 16.62578773498535, 0.6960291862487793, 14600, 9.732379288918723e-05]
2023-02-09 04:47:51,775 32k INFO ====> Epoch: 218
2023-02-09 04:49:09,870 32k INFO ====> Epoch: 219
2023-02-09 04:50:27,058 32k INFO ====> Epoch: 220
2023-02-09 04:51:38,829 32k INFO Train Epoch: 221 [90%]
2023-02-09 04:51:38,829 32k INFO [2.4930238723754883, 2.0849337577819824, 10.19448471069336, 19.00885772705078, 0.8905020952224731, 14800, 9.728730102871649e-05]
2023-02-09 04:51:44,567 32k INFO ====> Epoch: 221
2023-02-09 04:53:01,748 32k INFO ====> Epoch: 222
2023-02-09 04:54:18,922 32k INFO ====> Epoch: 223
2023-02-09 04:55:29,903 32k INFO Train Epoch: 224 [88%]
2023-02-09 04:55:29,903 32k INFO [2.5622823238372803, 2.385986566543579, 8.60080623626709, 15.33399486541748, 0.5517116189002991, 15000, 9.725082285098293e-05]
2023-02-09 04:55:34,236 32k INFO Saving model and optimizer state at iteration 224 to ./logs\32k\G_15000.pth
2023-02-09 04:55:51,622 32k INFO Saving model and optimizer state at iteration 224 to ./logs\32k\D_15000.pth
2023-02-09 04:56:01,949 32k INFO ====> Epoch: 224
2023-02-09 04:57:20,182 32k INFO ====> Epoch: 225
2023-02-09 04:58:38,052 32k INFO ====> Epoch: 226
2023-02-09 04:59:48,934 32k INFO Train Epoch: 227 [87%]
2023-02-09 04:59:48,934 32k INFO [2.699136972427368, 2.1048390865325928, 7.052115440368652, 13.004521369934082, 0.8088562488555908, 15200, 9.721435835085619e-05]
2023-02-09 04:59:56,318 32k INFO ====> Epoch: 227
2023-02-09 05:01:14,332 32k INFO ====> Epoch: 228
2023-02-09 05:02:32,242 32k INFO ====> Epoch: 229
2023-02-09 05:03:41,538 32k INFO Train Epoch: 230 [85%]
2023-02-09 05:03:41,538 32k INFO [2.5119049549102783, 2.255728244781494, 10.959632873535156, 17.58148765563965, 0.4408050775527954, 15400, 9.717790752320778e-05]
2023-02-09 05:03:49,736 32k INFO ====> Epoch: 230
2023-02-09 05:05:07,018 32k INFO ====> Epoch: 231
2023-02-09 05:06:24,410 32k INFO ====> Epoch: 232
2023-02-09 05:07:32,817 32k INFO Train Epoch: 233 [84%]
2023-02-09 05:07:32,817 32k INFO [2.4837000370025635, 2.74263858795166, 8.370596885681152, 18.025814056396484, 0.5485965609550476, 15600, 9.714147036291117e-05]
2023-02-09 05:07:41,860 32k INFO ====> Epoch: 233
2023-02-09 05:08:59,157 32k INFO ====> Epoch: 234
2023-02-09 05:10:16,236 32k INFO ====> Epoch: 235
2023-02-09 05:11:23,813 32k INFO Train Epoch: 236 [82%]
2023-02-09 05:11:23,814 32k INFO [2.615351915359497, 2.0890252590179443, 7.356450080871582, 16.96343994140625, 0.756279706954956, 15800, 9.710504686484176e-05]
2023-02-09 05:11:33,681 32k INFO ====> Epoch: 236
2023-02-09 05:12:51,784 32k INFO ====> Epoch: 237
2023-02-09 05:14:09,960 32k INFO ====> Epoch: 238
2023-02-09 05:15:16,775 32k INFO Train Epoch: 239 [81%]
2023-02-09 05:15:16,775 32k INFO [2.424504518508911, 2.7784013748168945, 9.054712295532227, 16.200336456298828, 0.7321522831916809, 16000, 9.706863702387684e-05]
2023-02-09 05:15:21,217 32k INFO Saving model and optimizer state at iteration 239 to ./logs\32k\G_16000.pth
2023-02-09 05:15:38,638 32k INFO Saving model and optimizer state at iteration 239 to ./logs\32k\D_16000.pth
2023-02-09 05:15:52,955 32k INFO ====> Epoch: 239
2023-02-09 05:17:11,161 32k INFO ====> Epoch: 240
2023-02-09 05:18:29,322 32k INFO ====> Epoch: 241
2023-02-09 05:19:35,475 32k INFO Train Epoch: 242 [79%]
2023-02-09 05:19:35,476 32k INFO [2.4205849170684814, 2.218247413635254, 9.974660873413086, 17.676557540893555, 0.6420414447784424, 16200, 9.703224083489565e-05]
2023-02-09 05:19:47,005 32k INFO ====> Epoch: 242
2023-02-09 05:21:04,968 32k INFO ====> Epoch: 243
2023-02-09 05:22:22,082 32k INFO ====> Epoch: 244
2023-02-09 05:23:27,331 32k INFO Train Epoch: 245 [78%]
2023-02-09 05:23:27,332 32k INFO [2.514897584915161, 2.4238204956054688, 9.19957447052002, 17.169466018676758, 0.6433432698249817, 16400, 9.699585829277933e-05]
2023-02-09 05:23:39,660 32k INFO ====> Epoch: 245
2023-02-09 05:24:56,840 32k INFO ====> Epoch: 246
2023-02-09 05:26:14,893 32k INFO ====> Epoch: 247
2023-02-09 05:27:19,222 32k INFO Train Epoch: 248 [76%]
2023-02-09 05:27:19,223 32k INFO [2.485236406326294, 2.0981593132019043, 8.128880500793457, 17.695823669433594, 0.830685555934906, 16600, 9.695948939241093e-05]
2023-02-09 05:27:32,499 32k INFO ====> Epoch: 248
2023-02-09 05:28:49,748 32k INFO ====> Epoch: 249
2023-02-09 05:30:07,019 32k INFO ====> Epoch: 250
2023-02-09 05:31:10,400 32k INFO Train Epoch: 251 [75%]
2023-02-09 05:31:10,400 32k INFO [2.519704580307007, 2.247236490249634, 8.27247428894043, 16.95021629333496, 0.7045202255249023, 16800, 9.692313412867544e-05]
2023-02-09 05:31:24,372 32k INFO ====> Epoch: 251
2023-02-09 05:32:41,518 32k INFO ====> Epoch: 252
2023-02-09 05:33:58,597 32k INFO ====> Epoch: 253
2023-02-09 05:35:01,233 32k INFO Train Epoch: 254 [73%]
2023-02-09 05:35:01,233 32k INFO [2.723464012145996, 2.004565477371216, 8.685633659362793, 17.136409759521484, 0.7529882788658142, 17000, 9.68867924964598e-05]
2023-02-09 05:35:05,562 32k INFO Saving model and optimizer state at iteration 254 to ./logs\32k\G_17000.pth
2023-02-09 05:35:21,651 32k INFO Saving model and optimizer state at iteration 254 to ./logs\32k\D_17000.pth
2023-02-09 05:35:40,285 32k INFO ====> Epoch: 254
2023-02-09 05:36:58,360 32k INFO ====> Epoch: 255
2023-02-09 05:38:16,245 32k INFO ====> Epoch: 256
2023-02-09 05:39:18,827 32k INFO Train Epoch: 257 [72%]
2023-02-09 05:39:18,828 32k INFO [2.5846078395843506, 2.0677099227905273, 7.601481914520264, 16.82730484008789, 0.46195539832115173, 17200, 9.685046449065278e-05]
2023-02-09 05:39:34,463 32k INFO ====> Epoch: 257
2023-02-09 05:40:52,484 32k INFO ====> Epoch: 258
2023-02-09 05:42:09,468 32k INFO ====> Epoch: 259
2023-02-09 05:43:10,293 32k INFO Train Epoch: 260 [70%]
2023-02-09 05:43:10,294 32k INFO [2.612074375152588, 2.061795234680176, 9.713607788085938, 17.434011459350586, 1.13643217086792, 17400, 9.681415010614512e-05]
2023-02-09 05:43:26,783 32k INFO ====> Epoch: 260
2023-02-09 05:44:43,852 32k INFO ====> Epoch: 261
2023-02-09 05:46:00,940 32k INFO ====> Epoch: 262
2023-02-09 05:47:00,945 32k INFO Train Epoch: 263 [69%]
2023-02-09 05:47:00,945 32k INFO [2.5661118030548096, 2.090351104736328, 10.91147232055664, 18.185489654541016, 0.6497505903244019, 17600, 9.67778493378295e-05]
2023-02-09 05:47:18,327 32k INFO ====> Epoch: 263
2023-02-09 05:48:35,339 32k INFO ====> Epoch: 264
2023-02-09 05:49:52,519 32k INFO ====> Epoch: 265
2023-02-09 05:50:51,655 32k INFO Train Epoch: 266 [67%]
2023-02-09 05:50:51,656 32k INFO [2.441783905029297, 2.2755415439605713, 8.574409484863281, 17.144365310668945, 1.0087649822235107, 17800, 9.674156218060047e-05]
2023-02-09 05:51:09,757 32k INFO ====> Epoch: 266
2023-02-09 05:52:26,654 32k INFO ====> Epoch: 267
2023-02-09 05:53:43,656 32k INFO ====> Epoch: 268
2023-02-09 05:54:42,178 32k INFO Train Epoch: 269 [66%]
2023-02-09 05:54:42,178 32k INFO [2.4041616916656494, 2.2542026042938232, 10.453770637512207, 16.896394729614258, 0.874467670917511, 18000, 9.670528862935451e-05]
2023-02-09 05:54:46,567 32k INFO Saving model and optimizer state at iteration 269 to ./logs\32k\G_18000.pth
2023-02-09 05:55:05,522 32k INFO Saving model and optimizer state at iteration 269 to ./logs\32k\D_18000.pth
2023-02-09 05:55:28,321 32k INFO ====> Epoch: 269
2023-02-09 05:56:46,319 32k INFO ====> Epoch: 270
2023-02-09 05:58:04,206 32k INFO ====> Epoch: 271
2023-02-09 05:59:02,672 32k INFO Train Epoch: 272 [64%]
2023-02-09 05:59:02,672 32k INFO [2.449748992919922, 2.5339150428771973, 10.715926170349121, 18.00714683532715, 0.7727646231651306, 18200, 9.666902867899003e-05]
2023-02-09 05:59:22,434 32k INFO ====> Epoch: 272
2023-02-09 06:00:40,362 32k INFO ====> Epoch: 273
2023-02-09 06:01:58,348 32k INFO ====> Epoch: 274
2023-02-09 06:02:55,204 32k INFO Train Epoch: 275 [63%]
2023-02-09 06:02:55,204 32k INFO [2.5664258003234863, 2.2539126873016357, 8.40420913696289, 19.330455780029297, 1.2545685768127441, 18400, 9.663278232440732e-05]
2023-02-09 06:03:15,780 32k INFO ====> Epoch: 275
2023-02-09 06:04:33,087 32k INFO ====> Epoch: 276
2023-02-09 06:05:50,254 32k INFO ====> Epoch: 277
2023-02-09 06:06:46,232 32k INFO Train Epoch: 278 [61%]
2023-02-09 06:06:46,233 32k INFO [2.5849533081054688, 2.1905155181884766, 7.024458885192871, 16.025548934936523, 0.6339879035949707, 18600, 9.659654956050859e-05]
2023-02-09 06:07:07,698 32k INFO ====> Epoch: 278
2023-02-09 06:08:24,695 32k INFO ====> Epoch: 279
2023-02-09 06:09:41,686 32k INFO ====> Epoch: 280
2023-02-09 06:10:36,725 32k INFO Train Epoch: 281 [60%]
2023-02-09 06:10:36,725 32k INFO [2.621020793914795, 1.9545187950134277, 8.0020112991333, 14.753083229064941, 0.5816468000411987, 18800, 9.656033038219798e-05]
2023-02-09 06:10:58,970 32k INFO ====> Epoch: 281
2023-02-09 06:12:16,092 32k INFO ====> Epoch: 282
2023-02-09 06:13:34,226 32k INFO ====> Epoch: 283
2023-02-09 06:14:29,367 32k INFO Train Epoch: 284 [58%]
2023-02-09 06:14:29,367 32k INFO [2.5978457927703857, 2.0676093101501465, 10.083847045898438, 15.90844440460205, 0.649118959903717, 19000, 9.652412478438153e-05]
2023-02-09 06:14:34,626 32k INFO Saving model and optimizer state at iteration 284 to ./logs\32k\G_19000.pth
2023-02-09 06:14:53,784 32k INFO Saving model and optimizer state at iteration 284 to ./logs\32k\D_19000.pth
2023-02-09 06:15:20,487 32k INFO ====> Epoch: 284
2023-02-09 06:16:38,462 32k INFO ====> Epoch: 285
2023-02-09 06:17:56,373 32k INFO ====> Epoch: 286
2023-02-09 06:18:49,853 32k INFO Train Epoch: 287 [57%]
2023-02-09 06:18:49,853 32k INFO [2.6181414127349854, 2.086658477783203, 7.769612789154053, 13.018095970153809, 0.7441149950027466, 19200, 9.64879327619672e-05]
2023-02-09 06:19:13,818 32k INFO ====> Epoch: 287
2023-02-09 06:20:30,767 32k INFO ====> Epoch: 288
2023-02-09 06:21:47,755 32k INFO ====> Epoch: 289
2023-02-09 06:22:41,198 32k INFO Train Epoch: 290 [55%]
2023-02-09 06:22:41,198 32k INFO [2.5569255352020264, 2.232271671295166, 9.287805557250977, 17.64458656311035, 0.9140328168869019, 19400, 9.645175430986486e-05]
2023-02-09 06:23:05,925 32k INFO ====> Epoch: 290
2023-02-09 06:24:23,877 32k INFO ====> Epoch: 291
2023-02-09 06:25:41,896 32k INFO ====> Epoch: 292
2023-02-09 06:26:34,600 32k INFO Train Epoch: 293 [54%]
2023-02-09 06:26:34,600 32k INFO [2.3312571048736572, 2.471904993057251, 8.659703254699707, 14.936263084411621, 0.5374557971954346, 19600, 9.641558942298625e-05]
2023-02-09 06:27:00,329 32k INFO ====> Epoch: 293
2023-02-09 06:28:17,379 32k INFO ====> Epoch: 294
2023-02-09 06:29:34,319 32k INFO ====> Epoch: 295
2023-02-09 06:30:25,273 32k INFO Train Epoch: 296 [52%]
2023-02-09 06:30:25,273 32k INFO [2.580073118209839, 2.0791285037994385, 6.087092876434326, 15.868849754333496, 0.6256889700889587, 19800, 9.637943809624507e-05]
2023-02-09 06:30:51,672 32k INFO ====> Epoch: 296
2023-02-09 06:32:08,760 32k INFO ====> Epoch: 297
2023-02-09 06:33:25,874 32k INFO ====> Epoch: 298
2023-02-09 06:34:16,143 32k INFO Train Epoch: 299 [51%]
2023-02-09 06:34:16,143 32k INFO [2.7276787757873535, 2.1408498287200928, 7.651435852050781, 13.118131637573242, 0.8090221881866455, 20000, 9.634330032455689e-05]
2023-02-09 06:34:20,490 32k INFO Saving model and optimizer state at iteration 299 to ./logs\32k\G_20000.pth
2023-02-09 06:34:38,151 32k INFO Saving model and optimizer state at iteration 299 to ./logs\32k\D_20000.pth
2023-02-09 06:35:09,071 32k INFO ====> Epoch: 299
2023-02-09 06:36:26,919 32k INFO ====> Epoch: 300
2023-02-09 06:37:44,715 32k INFO ====> Epoch: 301
2023-02-09 06:38:34,897 32k INFO Train Epoch: 302 [49%]
2023-02-09 06:38:34,897 32k INFO [2.3907358646392822, 2.586805820465088, 12.788217544555664, 17.23185157775879, 0.9444102048873901, 20200, 9.63071761028392e-05]
2023-02-09 06:39:02,960 32k INFO ====> Epoch: 302
2023-02-09 06:40:19,965 32k INFO ====> Epoch: 303
2023-02-09 06:41:36,910 32k INFO ====> Epoch: 304
2023-02-09 06:42:25,288 32k INFO Train Epoch: 305 [48%]
2023-02-09 06:42:25,288 32k INFO [2.543513059616089, 2.2357592582702637, 11.66889476776123, 17.664663314819336, 0.9346078038215637, 20400, 9.627106542601141e-05]
2023-02-09 06:42:54,185 32k INFO ====> Epoch: 305
2023-02-09 06:44:11,243 32k INFO ====> Epoch: 306
2023-02-09 06:45:28,529 32k INFO ====> Epoch: 307
2023-02-09 06:46:16,141 32k INFO Train Epoch: 308 [46%]
2023-02-09 06:46:16,142 32k INFO [2.2425007820129395, 2.718269109725952, 10.438041687011719, 14.429862022399902, 0.450414776802063, 20600, 9.62349682889948e-05]
2023-02-09 06:46:45,885 32k INFO ====> Epoch: 308
2023-02-09 06:48:02,967 32k INFO ====> Epoch: 309
2023-02-09 06:49:20,096 32k INFO ====> Epoch: 310
2023-02-09 06:50:06,904 32k INFO Train Epoch: 311 [45%]
2023-02-09 06:50:06,904 32k INFO [2.511903762817383, 2.2772610187530518, 7.602670192718506, 16.86819839477539, 0.4354688823223114, 20800, 9.619888468671259e-05]
2023-02-09 06:50:37,485 32k INFO ====> Epoch: 311
2023-02-09 06:51:54,650 32k INFO ====> Epoch: 312
2023-02-09 06:53:11,706 32k INFO ====> Epoch: 313
2023-02-09 06:53:57,594 32k INFO Train Epoch: 314 [43%]
2023-02-09 06:53:57,595 32k INFO [2.548445463180542, 2.205153226852417, 9.582110404968262, 17.887943267822266, 0.8334051966667175, 21000, 9.61628146140899e-05]
2023-02-09 06:54:01,984 32k INFO Saving model and optimizer state at iteration 314 to ./logs\32k\G_21000.pth
2023-02-09 06:54:19,329 32k INFO Saving model and optimizer state at iteration 314 to ./logs\32k\D_21000.pth
2023-02-09 06:54:54,644 32k INFO ====> Epoch: 314
2023-02-09 06:56:12,706 32k INFO ====> Epoch: 315
2023-02-09 06:57:30,625 32k INFO ====> Epoch: 316
2023-02-09 06:58:16,770 32k INFO Train Epoch: 317 [42%]
2023-02-09 06:58:16,770 32k INFO [2.5582966804504395, 2.0421464443206787, 9.006149291992188, 15.637856483459473, 1.0011146068572998, 21200, 9.612675806605373e-05]
2023-02-09 06:58:48,980 32k INFO ====> Epoch: 317
2023-02-09 07:00:06,236 32k INFO ====> Epoch: 318
2023-02-09 07:01:23,359 32k INFO ====> Epoch: 319
2023-02-09 07:02:08,658 32k INFO Train Epoch: 320 [40%]
2023-02-09 07:02:08,658 32k INFO [2.39801287651062, 2.3436264991760254, 10.229707717895508, 19.279922485351562, 0.727281391620636, 21400, 9.609071503753299e-05]
2023-02-09 07:02:41,674 32k INFO ====> Epoch: 320
2023-02-09 07:03:59,633 32k INFO ====> Epoch: 321
2023-02-09 07:05:17,720 32k INFO ====> Epoch: 322
2023-02-09 07:06:01,216 32k INFO Train Epoch: 323 [39%]
2023-02-09 07:06:01,216 32k INFO [2.6565518379211426, 2.263072967529297, 6.5126566886901855, 15.140740394592285, 0.8894218802452087, 21600, 9.60546855234585e-05]
2023-02-09 07:06:35,104 32k INFO ====> Epoch: 323
2023-02-09 07:07:52,224 32k INFO ====> Epoch: 324
2023-02-09 07:09:09,258 32k INFO ====> Epoch: 325
2023-02-09 07:09:51,895 32k INFO Train Epoch: 326 [37%]
2023-02-09 07:09:51,896 32k INFO [2.869607448577881, 1.8302068710327148, 5.35368013381958, 10.451361656188965, 0.7921611070632935, 21800, 9.601866951876297e-05]
2023-02-09 07:10:26,577 32k INFO ====> Epoch: 326
2023-02-09 07:11:43,674 32k INFO ====> Epoch: 327
2023-02-09 07:13:00,883 32k INFO ====> Epoch: 328
2023-02-09 07:13:42,678 32k INFO Train Epoch: 329 [36%]
2023-02-09 07:13:42,678 32k INFO [2.542959451675415, 2.098376512527466, 9.891724586486816, 15.331761360168457, 0.7128269076347351, 22000, 9.5982667018381e-05]
2023-02-09 07:13:47,172 32k INFO Saving model and optimizer state at iteration 329 to ./logs\32k\G_22000.pth
2023-02-09 07:14:04,902 32k INFO Saving model and optimizer state at iteration 329 to ./logs\32k\D_22000.pth
2023-02-09 07:14:44,184 32k INFO ====> Epoch: 329
|