File size: 62,253 Bytes
8237492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
2023-02-19 00:52:17,563	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'yuuka': 0}, 'model_dir': './logs\\32k'}
2023-02-19 00:52:17,563	32k	WARNING	K:\AI\so-vits-svc-32k is not a git repository, therefore hash value comparison will be ignored.
2023-02-19 00:52:22,439	32k	INFO	Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-19 00:52:22,854	32k	INFO	Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-19 00:52:30,954	32k	INFO	Train Epoch: 1 [0%]
2023-02-19 00:52:30,955	32k	INFO	[6.259579658508301, 2.384648084640503, 21.68582534790039, 51.37621307373047, 29.241214752197266, 0, 0.0001]
2023-02-19 00:52:36,208	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
2023-02-19 00:52:55,481	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
2023-02-19 00:53:15,383	32k	INFO	====> Epoch: 1
2023-02-19 00:53:35,194	32k	INFO	====> Epoch: 2
2023-02-19 00:53:54,475	32k	INFO	====> Epoch: 3
2023-02-19 00:54:14,074	32k	INFO	====> Epoch: 4
2023-02-19 00:54:33,774	32k	INFO	====> Epoch: 5
2023-02-19 00:54:53,292	32k	INFO	====> Epoch: 6
2023-02-19 00:55:12,950	32k	INFO	====> Epoch: 7
2023-02-19 00:55:32,408	32k	INFO	====> Epoch: 8
2023-02-19 00:55:51,786	32k	INFO	====> Epoch: 9
2023-02-19 00:56:11,304	32k	INFO	====> Epoch: 10
2023-02-19 00:56:23,833	32k	INFO	Train Epoch: 11 [53%]
2023-02-19 00:56:23,834	32k	INFO	[2.5820298194885254, 2.9517571926116943, 15.889677047729492, 22.983726501464844, 1.490109920501709, 200, 9.987507028906759e-05]
2023-02-19 00:56:31,013	32k	INFO	====> Epoch: 11
2023-02-19 00:56:50,430	32k	INFO	====> Epoch: 12
2023-02-19 00:57:09,908	32k	INFO	====> Epoch: 13
2023-02-19 00:57:29,328	32k	INFO	====> Epoch: 14
2023-02-19 00:57:48,792	32k	INFO	====> Epoch: 15
2023-02-19 00:58:08,199	32k	INFO	====> Epoch: 16
2023-02-19 00:58:27,628	32k	INFO	====> Epoch: 17
2023-02-19 00:58:47,154	32k	INFO	====> Epoch: 18
2023-02-19 00:59:06,558	32k	INFO	====> Epoch: 19
2023-02-19 00:59:26,031	32k	INFO	====> Epoch: 20
2023-02-19 00:59:45,505	32k	INFO	====> Epoch: 21
2023-02-19 00:59:50,417	32k	INFO	Train Epoch: 22 [5%]
2023-02-19 00:59:50,417	32k	INFO	[2.3022522926330566, 2.7468957901000977, 13.526983261108398, 18.26525115966797, 1.2778617143630981, 400, 9.973782786538036e-05]
2023-02-19 01:00:05,254	32k	INFO	====> Epoch: 22
2023-02-19 01:00:24,645	32k	INFO	====> Epoch: 23
2023-02-19 01:00:44,092	32k	INFO	====> Epoch: 24
2023-02-19 01:01:03,835	32k	INFO	====> Epoch: 25
2023-02-19 01:01:23,360	32k	INFO	====> Epoch: 26
2023-02-19 01:01:43,029	32k	INFO	====> Epoch: 27
2023-02-19 01:02:02,552	32k	INFO	====> Epoch: 28
2023-02-19 01:02:22,021	32k	INFO	====> Epoch: 29
2023-02-19 01:02:41,450	32k	INFO	====> Epoch: 30
2023-02-19 01:03:00,956	32k	INFO	====> Epoch: 31
2023-02-19 01:03:14,323	32k	INFO	Train Epoch: 32 [58%]
2023-02-19 01:03:14,323	32k	INFO	[2.2709786891937256, 2.5444483757019043, 16.769325256347656, 22.406368255615234, 1.2876263856887817, 600, 9.961322568533789e-05]
2023-02-19 01:03:20,673	32k	INFO	====> Epoch: 32
2023-02-19 01:03:40,138	32k	INFO	====> Epoch: 33
2023-02-19 01:03:59,566	32k	INFO	====> Epoch: 34
2023-02-19 01:04:19,064	32k	INFO	====> Epoch: 35
2023-02-19 01:04:38,491	32k	INFO	====> Epoch: 36
2023-02-19 01:04:57,953	32k	INFO	====> Epoch: 37
2023-02-19 01:05:17,368	32k	INFO	====> Epoch: 38
2023-02-19 01:05:36,826	32k	INFO	====> Epoch: 39
2023-02-19 01:05:56,268	32k	INFO	====> Epoch: 40
2023-02-19 01:06:15,805	32k	INFO	====> Epoch: 41
2023-02-19 01:06:35,572	32k	INFO	====> Epoch: 42
2023-02-19 01:06:41,408	32k	INFO	Train Epoch: 43 [11%]
2023-02-19 01:06:41,408	32k	INFO	[2.2252748012542725, 2.711310386657715, 18.655017852783203, 23.06989097595215, 0.9809578657150269, 800, 9.947634307304244e-05]
2023-02-19 01:06:55,421	32k	INFO	====> Epoch: 43
2023-02-19 01:07:15,100	32k	INFO	====> Epoch: 44
2023-02-19 01:07:34,525	32k	INFO	====> Epoch: 45
2023-02-19 09:58:01,753	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'yuuka': 0}, 'model_dir': './logs\\32k'}
2023-02-19 09:58:01,753	32k	WARNING	K:\AI\so-vits-svc-32k is not a git repository, therefore hash value comparison will be ignored.
2023-02-19 09:58:06,761	32k	INFO	Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-19 09:58:07,189	32k	INFO	Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-19 09:58:15,314	32k	INFO	Train Epoch: 1 [0%]
2023-02-19 09:58:15,315	32k	INFO	[4.885988712310791, 2.5791049003601074, 20.521387100219727, 48.8116455078125, 23.21308135986328, 0, 0.0001]
2023-02-19 09:58:20,541	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
2023-02-19 09:58:38,703	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
2023-02-19 09:58:59,317	32k	INFO	====> Epoch: 1
2023-02-19 09:59:19,529	32k	INFO	====> Epoch: 2
2023-02-19 09:59:40,549	32k	INFO	====> Epoch: 3
2023-02-19 10:00:00,988	32k	INFO	====> Epoch: 4
2023-02-19 10:00:20,947	32k	INFO	====> Epoch: 5
2023-02-19 10:00:40,486	32k	INFO	====> Epoch: 6
2023-02-19 10:01:00,800	32k	INFO	====> Epoch: 7
2023-02-19 10:01:24,452	32k	INFO	====> Epoch: 8
2023-02-19 10:01:44,672	32k	INFO	====> Epoch: 9
2023-02-19 10:02:04,480	32k	INFO	====> Epoch: 10
2023-02-19 10:02:17,182	32k	INFO	Train Epoch: 11 [53%]
2023-02-19 10:02:17,183	32k	INFO	[2.7012827396392822, 2.8637466430664062, 15.74413013458252, 22.798664093017578, 1.4917662143707275, 200, 9.987507028906759e-05]
2023-02-19 10:02:24,886	32k	INFO	====> Epoch: 11
2023-02-19 10:02:44,970	32k	INFO	====> Epoch: 12
2023-02-19 10:03:05,381	32k	INFO	====> Epoch: 13
2023-02-19 10:03:27,787	32k	INFO	====> Epoch: 14
2023-02-19 10:03:48,128	32k	INFO	====> Epoch: 15
2023-02-19 10:04:09,326	32k	INFO	====> Epoch: 16
2023-02-19 10:04:30,931	32k	INFO	====> Epoch: 17
2023-02-19 10:04:50,506	32k	INFO	====> Epoch: 18
2023-02-19 10:05:10,053	32k	INFO	====> Epoch: 19
2023-02-19 10:05:29,550	32k	INFO	====> Epoch: 20
2023-02-19 10:05:49,075	32k	INFO	====> Epoch: 21
2023-02-19 10:05:54,186	32k	INFO	Train Epoch: 22 [5%]
2023-02-19 10:05:54,186	32k	INFO	[2.638063669204712, 2.1183853149414062, 12.34074878692627, 17.773197174072266, 1.2548296451568604, 400, 9.973782786538036e-05]
2023-02-19 10:06:11,523	32k	INFO	====> Epoch: 22
2023-02-19 10:06:31,785	32k	INFO	====> Epoch: 23
2023-02-19 10:06:51,275	32k	INFO	====> Epoch: 24
2023-02-19 10:07:10,746	32k	INFO	====> Epoch: 25
2023-02-19 10:07:30,179	32k	INFO	====> Epoch: 26
2023-02-19 10:07:49,638	32k	INFO	====> Epoch: 27
2023-02-19 10:08:09,150	32k	INFO	====> Epoch: 28
2023-02-19 10:08:28,647	32k	INFO	====> Epoch: 29
2023-02-19 10:08:48,090	32k	INFO	====> Epoch: 30
2023-02-19 10:09:07,588	32k	INFO	====> Epoch: 31
2023-02-19 10:09:20,991	32k	INFO	Train Epoch: 32 [58%]
2023-02-19 10:09:20,992	32k	INFO	[2.252321481704712, 2.6135807037353516, 16.764589309692383, 22.221206665039062, 1.2719413042068481, 600, 9.961322568533789e-05]
2023-02-19 10:09:27,359	32k	INFO	====> Epoch: 32
2023-02-19 10:09:46,836	32k	INFO	====> Epoch: 33
2023-02-19 10:10:06,405	32k	INFO	====> Epoch: 34
2023-02-19 10:10:25,867	32k	INFO	====> Epoch: 35
2023-02-19 10:10:45,391	32k	INFO	====> Epoch: 36
2023-02-19 10:11:04,848	32k	INFO	====> Epoch: 37
2023-02-19 10:11:24,345	32k	INFO	====> Epoch: 38
2023-02-19 10:11:43,820	32k	INFO	====> Epoch: 39
2023-02-19 10:12:03,363	32k	INFO	====> Epoch: 40
2023-02-19 10:12:22,862	32k	INFO	====> Epoch: 41
2023-02-19 10:12:42,390	32k	INFO	====> Epoch: 42
2023-02-19 10:12:48,119	32k	INFO	Train Epoch: 43 [11%]
2023-02-19 10:12:48,119	32k	INFO	[2.34789776802063, 2.904107093811035, 18.322242736816406, 23.1386661529541, 0.9494408369064331, 800, 9.947634307304244e-05]
2023-02-19 10:13:02,224	32k	INFO	====> Epoch: 43
2023-02-19 10:13:22,121	32k	INFO	====> Epoch: 44
2023-02-19 10:13:42,138	32k	INFO	====> Epoch: 45
2023-02-19 10:14:03,880	32k	INFO	====> Epoch: 46
2023-02-19 10:14:23,490	32k	INFO	====> Epoch: 47
2023-02-19 10:14:43,058	32k	INFO	====> Epoch: 48
2023-02-19 10:15:02,615	32k	INFO	====> Epoch: 49
2023-02-19 10:15:22,189	32k	INFO	====> Epoch: 50
2023-02-19 10:15:41,717	32k	INFO	====> Epoch: 51
2023-02-19 10:16:01,286	32k	INFO	====> Epoch: 52
2023-02-19 10:16:15,520	32k	INFO	Train Epoch: 53 [63%]
2023-02-19 10:16:15,521	32k	INFO	[2.2673277854919434, 2.6267404556274414, 14.748597145080566, 20.428760528564453, 0.9188843965530396, 1000, 9.935206756519513e-05]
2023-02-19 10:16:19,825	32k	INFO	Saving model and optimizer state at iteration 53 to ./logs\32k\G_1000.pth
2023-02-19 10:16:38,782	32k	INFO	Saving model and optimizer state at iteration 53 to ./logs\32k\D_1000.pth
2023-02-19 10:16:47,949	32k	INFO	====> Epoch: 53
2023-02-19 10:17:11,828	32k	INFO	====> Epoch: 54
2023-02-19 10:17:32,602	32k	INFO	====> Epoch: 55
2023-02-19 10:17:54,697	32k	INFO	====> Epoch: 56
2023-02-19 10:18:15,505	32k	INFO	====> Epoch: 57
2023-02-19 10:18:36,471	32k	INFO	====> Epoch: 58
2023-02-19 10:18:56,129	32k	INFO	====> Epoch: 59
2023-02-19 10:19:15,687	32k	INFO	====> Epoch: 60
2023-02-19 10:19:35,249	32k	INFO	====> Epoch: 61
2023-02-19 10:19:54,920	32k	INFO	====> Epoch: 62
2023-02-19 10:20:14,564	32k	INFO	====> Epoch: 63
2023-02-19 10:20:21,217	32k	INFO	Train Epoch: 64 [16%]
2023-02-19 10:20:21,217	32k	INFO	[2.6431660652160645, 2.1686131954193115, 11.168325424194336, 15.736719131469727, 0.8130778074264526, 1200, 9.921554382096622e-05]
2023-02-19 10:20:34,458	32k	INFO	====> Epoch: 64
2023-02-19 10:20:54,137	32k	INFO	====> Epoch: 65
2023-02-19 10:21:13,820	32k	INFO	====> Epoch: 66
2023-02-19 10:21:33,481	32k	INFO	====> Epoch: 67
2023-02-19 10:21:53,127	32k	INFO	====> Epoch: 68
2023-02-19 10:22:12,705	32k	INFO	====> Epoch: 69
2023-02-19 10:22:32,335	32k	INFO	====> Epoch: 70
2023-02-19 10:22:52,013	32k	INFO	====> Epoch: 71
2023-02-19 10:23:11,631	32k	INFO	====> Epoch: 72
2023-02-19 10:23:31,243	32k	INFO	====> Epoch: 73
2023-02-19 10:23:46,491	32k	INFO	Train Epoch: 74 [68%]
2023-02-19 10:23:46,491	32k	INFO	[2.523651361465454, 2.3198585510253906, 13.49683952331543, 19.15787124633789, 0.8243404626846313, 1400, 9.909159412887068e-05]
2023-02-19 10:23:51,274	32k	INFO	====> Epoch: 74
2023-02-19 10:24:10,913	32k	INFO	====> Epoch: 75
2023-02-19 10:24:30,500	32k	INFO	====> Epoch: 76
2023-02-19 10:24:50,118	32k	INFO	====> Epoch: 77
2023-02-19 10:25:09,788	32k	INFO	====> Epoch: 78
2023-02-19 10:25:29,434	32k	INFO	====> Epoch: 79
2023-02-19 10:25:49,013	32k	INFO	====> Epoch: 80
2023-02-19 10:26:08,630	32k	INFO	====> Epoch: 81
2023-02-19 10:26:28,322	32k	INFO	====> Epoch: 82
2023-02-19 10:26:47,986	32k	INFO	====> Epoch: 83
2023-02-19 10:27:07,609	32k	INFO	====> Epoch: 84
2023-02-19 10:27:15,126	32k	INFO	Train Epoch: 85 [21%]
2023-02-19 10:27:15,126	32k	INFO	[2.234614610671997, 2.673915386199951, 15.113679885864258, 20.68456268310547, 0.9050352573394775, 1600, 9.895542831185631e-05]
2023-02-19 10:27:27,568	32k	INFO	====> Epoch: 85
2023-02-19 10:27:47,162	32k	INFO	====> Epoch: 86
2023-02-19 10:28:06,803	32k	INFO	====> Epoch: 87
2023-02-19 10:28:26,491	32k	INFO	====> Epoch: 88
2023-02-19 10:28:46,205	32k	INFO	====> Epoch: 89
2023-02-19 10:29:05,923	32k	INFO	====> Epoch: 90
2023-02-19 10:29:25,543	32k	INFO	====> Epoch: 91
2023-02-19 10:29:45,199	32k	INFO	====> Epoch: 92
2023-02-19 10:30:04,872	32k	INFO	====> Epoch: 93
2023-02-19 10:30:24,573	32k	INFO	====> Epoch: 94
2023-02-19 10:30:40,658	32k	INFO	Train Epoch: 95 [74%]
2023-02-19 10:30:40,658	32k	INFO	[2.3925275802612305, 2.410752773284912, 16.29819679260254, 21.02007484436035, 1.3434288501739502, 1800, 9.883180358131438e-05]
2023-02-19 10:30:44,524	32k	INFO	====> Epoch: 95
2023-02-19 10:31:04,176	32k	INFO	====> Epoch: 96
2023-02-19 10:31:23,746	32k	INFO	====> Epoch: 97
2023-02-19 10:31:43,345	32k	INFO	====> Epoch: 98
2023-02-19 10:32:02,965	32k	INFO	====> Epoch: 99
2023-02-19 10:32:22,613	32k	INFO	====> Epoch: 100
2023-02-19 10:32:42,215	32k	INFO	====> Epoch: 101
2023-02-19 10:33:01,781	32k	INFO	====> Epoch: 102
2023-02-19 10:33:21,347	32k	INFO	====> Epoch: 103
2023-02-19 10:33:40,936	32k	INFO	====> Epoch: 104
2023-02-19 10:34:00,582	32k	INFO	====> Epoch: 105
2023-02-19 10:34:08,972	32k	INFO	Train Epoch: 106 [26%]
2023-02-19 10:34:08,972	32k	INFO	[2.4520838260650635, 2.415198564529419, 12.142949104309082, 16.184589385986328, 0.6698657274246216, 2000, 9.86959947531291e-05]
2023-02-19 10:34:13,205	32k	INFO	Saving model and optimizer state at iteration 106 to ./logs\32k\G_2000.pth
2023-02-19 10:34:31,330	32k	INFO	Saving model and optimizer state at iteration 106 to ./logs\32k\D_2000.pth
2023-02-19 10:34:46,550	32k	INFO	====> Epoch: 106
2023-02-19 10:35:06,128	32k	INFO	====> Epoch: 107
2023-02-19 10:35:25,770	32k	INFO	====> Epoch: 108
2023-02-19 10:35:45,316	32k	INFO	====> Epoch: 109
2023-02-19 10:36:04,886	32k	INFO	====> Epoch: 110
2023-02-19 10:36:24,494	32k	INFO	====> Epoch: 111
2023-02-19 10:36:44,060	32k	INFO	====> Epoch: 112
2023-02-19 10:37:03,612	32k	INFO	====> Epoch: 113
2023-02-19 10:37:23,126	32k	INFO	====> Epoch: 114
2023-02-19 10:37:42,791	32k	INFO	====> Epoch: 115
2023-02-19 10:37:59,739	32k	INFO	Train Epoch: 116 [79%]
2023-02-19 10:37:59,740	32k	INFO	[2.173581600189209, 2.597672939300537, 19.673391342163086, 20.529300689697266, 0.6353464722633362, 2200, 9.857269413218213e-05]
2023-02-19 10:38:02,696	32k	INFO	====> Epoch: 116
2023-02-19 10:38:22,357	32k	INFO	====> Epoch: 117
2023-02-19 10:38:42,132	32k	INFO	====> Epoch: 118
2023-02-19 10:39:01,840	32k	INFO	====> Epoch: 119
2023-02-19 10:39:21,476	32k	INFO	====> Epoch: 120
2023-02-19 10:39:41,098	32k	INFO	====> Epoch: 121
2023-02-19 10:40:00,770	32k	INFO	====> Epoch: 122
2023-02-19 10:40:20,435	32k	INFO	====> Epoch: 123
2023-02-19 10:40:40,053	32k	INFO	====> Epoch: 124
2023-02-19 10:40:59,685	32k	INFO	====> Epoch: 125
2023-02-19 10:41:19,254	32k	INFO	====> Epoch: 126
2023-02-19 10:41:28,468	32k	INFO	Train Epoch: 127 [32%]
2023-02-19 10:41:28,468	32k	INFO	[2.2418031692504883, 2.729581356048584, 17.634613037109375, 18.02391815185547, 0.39771148562431335, 2400, 9.84372413569007e-05]
2023-02-19 10:41:39,158	32k	INFO	====> Epoch: 127
2023-02-19 10:41:58,736	32k	INFO	====> Epoch: 128
2023-02-19 10:42:18,349	32k	INFO	====> Epoch: 129
2023-02-19 10:42:37,898	32k	INFO	====> Epoch: 130
2023-02-19 10:42:57,642	32k	INFO	====> Epoch: 131
2023-02-19 10:43:17,176	32k	INFO	====> Epoch: 132
2023-02-19 10:43:36,760	32k	INFO	====> Epoch: 133
2023-02-19 10:43:56,375	32k	INFO	====> Epoch: 134
2023-02-19 10:44:15,877	32k	INFO	====> Epoch: 135
2023-02-19 10:44:35,387	32k	INFO	====> Epoch: 136
2023-02-19 10:44:53,146	32k	INFO	Train Epoch: 137 [84%]
2023-02-19 10:44:53,146	32k	INFO	[1.9678010940551758, 2.595189094543457, 15.501832962036133, 17.879207611083984, 0.4402991235256195, 2600, 9.831426399582366e-05]
2023-02-19 10:44:55,266	32k	INFO	====> Epoch: 137
2023-02-19 10:45:14,872	32k	INFO	====> Epoch: 138
2023-02-19 10:45:34,425	32k	INFO	====> Epoch: 139
2023-02-19 10:45:53,939	32k	INFO	====> Epoch: 140
2023-02-19 10:46:13,513	32k	INFO	====> Epoch: 141
2023-02-19 10:46:33,087	32k	INFO	====> Epoch: 142
2023-02-19 10:46:52,703	32k	INFO	====> Epoch: 143
2023-02-19 10:47:12,387	32k	INFO	====> Epoch: 144
2023-02-19 10:47:31,975	32k	INFO	====> Epoch: 145
2023-02-19 10:47:51,629	32k	INFO	====> Epoch: 146
2023-02-19 10:48:11,263	32k	INFO	====> Epoch: 147
2023-02-19 10:48:21,336	32k	INFO	Train Epoch: 148 [37%]
2023-02-19 10:48:21,336	32k	INFO	[2.5357589721679688, 2.358914613723755, 13.429749488830566, 18.84111785888672, 1.1937034130096436, 2800, 9.817916633997459e-05]
2023-02-19 10:48:31,130	32k	INFO	====> Epoch: 148
2023-02-19 10:48:50,747	32k	INFO	====> Epoch: 149
2023-02-19 10:49:10,411	32k	INFO	====> Epoch: 150
2023-02-19 10:49:29,989	32k	INFO	====> Epoch: 151
2023-02-19 10:49:49,583	32k	INFO	====> Epoch: 152
2023-02-19 10:50:09,163	32k	INFO	====> Epoch: 153
2023-02-19 10:50:28,800	32k	INFO	====> Epoch: 154
2023-02-19 10:50:48,404	32k	INFO	====> Epoch: 155
2023-02-19 10:51:08,009	32k	INFO	====> Epoch: 156
2023-02-19 10:51:27,600	32k	INFO	====> Epoch: 157
2023-02-19 10:51:46,235	32k	INFO	Train Epoch: 158 [89%]
2023-02-19 10:51:46,236	32k	INFO	[2.284935712814331, 2.6029856204986572, 16.011905670166016, 19.070634841918945, 0.9385358095169067, 3000, 9.80565113912702e-05]
2023-02-19 10:51:50,428	32k	INFO	Saving model and optimizer state at iteration 158 to ./logs\32k\G_3000.pth
2023-02-19 10:52:08,420	32k	INFO	Saving model and optimizer state at iteration 158 to ./logs\32k\D_3000.pth
2023-02-19 10:52:13,226	32k	INFO	====> Epoch: 158
2023-02-19 10:52:32,753	32k	INFO	====> Epoch: 159
2023-02-19 10:52:52,288	32k	INFO	====> Epoch: 160
2023-02-19 10:53:11,815	32k	INFO	====> Epoch: 161
2023-02-19 10:53:31,531	32k	INFO	====> Epoch: 162
2023-02-19 10:53:51,096	32k	INFO	====> Epoch: 163
2023-02-19 10:54:10,786	32k	INFO	====> Epoch: 164
2023-02-19 10:54:30,334	32k	INFO	====> Epoch: 165
2023-02-19 10:54:49,856	32k	INFO	====> Epoch: 166
2023-02-19 10:55:09,469	32k	INFO	====> Epoch: 167
2023-02-19 10:55:29,052	32k	INFO	====> Epoch: 168
2023-02-19 10:55:39,985	32k	INFO	Train Epoch: 169 [42%]
2023-02-19 10:55:39,985	32k	INFO	[2.055294990539551, 2.645547389984131, 18.572147369384766, 21.72458839416504, 0.7422290444374084, 3200, 9.792176792382932e-05]
2023-02-19 10:55:48,948	32k	INFO	====> Epoch: 169
2023-02-19 10:56:08,592	32k	INFO	====> Epoch: 170
2023-02-19 10:56:28,191	32k	INFO	====> Epoch: 171
2023-02-19 10:56:47,791	32k	INFO	====> Epoch: 172
2023-02-19 10:57:07,401	32k	INFO	====> Epoch: 173
2023-02-19 10:57:26,913	32k	INFO	====> Epoch: 174
2023-02-19 10:57:46,480	32k	INFO	====> Epoch: 175
2023-02-19 10:58:06,125	32k	INFO	====> Epoch: 176
2023-02-19 10:58:25,833	32k	INFO	====> Epoch: 177
2023-02-19 10:58:45,438	32k	INFO	====> Epoch: 178
2023-02-19 10:59:04,582	32k	INFO	Train Epoch: 179 [95%]
2023-02-19 10:59:04,583	32k	INFO	[2.4237661361694336, 2.700900077819824, 12.830799102783203, 15.212872505187988, 0.817108690738678, 3400, 9.779943454222217e-05]
2023-02-19 10:59:05,360	32k	INFO	====> Epoch: 179
2023-02-19 10:59:24,965	32k	INFO	====> Epoch: 180
2023-02-19 10:59:44,593	32k	INFO	====> Epoch: 181
2023-02-19 11:00:04,235	32k	INFO	====> Epoch: 182
2023-02-19 11:00:23,857	32k	INFO	====> Epoch: 183
2023-02-19 11:00:43,474	32k	INFO	====> Epoch: 184
2023-02-19 11:01:03,074	32k	INFO	====> Epoch: 185
2023-02-19 11:01:22,689	32k	INFO	====> Epoch: 186
2023-02-19 11:01:42,329	32k	INFO	====> Epoch: 187
2023-02-19 11:02:01,887	32k	INFO	====> Epoch: 188
2023-02-19 11:02:21,485	32k	INFO	====> Epoch: 189
2023-02-19 11:02:33,363	32k	INFO	Train Epoch: 190 [47%]
2023-02-19 11:02:33,363	32k	INFO	[1.858404278755188, 3.373487949371338, 13.83063793182373, 16.426828384399414, 0.5386475324630737, 3600, 9.766504433460612e-05]
2023-02-19 11:02:41,573	32k	INFO	====> Epoch: 190
2023-02-19 11:03:01,193	32k	INFO	====> Epoch: 191
2023-02-19 11:03:20,789	32k	INFO	====> Epoch: 192
2023-02-19 11:03:40,453	32k	INFO	====> Epoch: 193
2023-02-19 11:04:00,059	32k	INFO	====> Epoch: 194
2023-02-19 11:04:19,651	32k	INFO	====> Epoch: 195
2023-02-19 11:04:39,248	32k	INFO	====> Epoch: 196
2023-02-19 11:04:58,894	32k	INFO	====> Epoch: 197
2023-02-19 11:05:18,520	32k	INFO	====> Epoch: 198
2023-02-19 11:05:38,110	32k	INFO	====> Epoch: 199
2023-02-19 11:05:57,738	32k	INFO	====> Epoch: 200
2023-02-19 11:06:01,790	32k	INFO	Train Epoch: 201 [0%]
2023-02-19 11:06:01,790	32k	INFO	[2.286409854888916, 2.695997714996338, 20.394229888916016, 19.332231521606445, 0.7787021994590759, 3800, 9.753083879807726e-05]
2023-02-19 11:06:17,635	32k	INFO	====> Epoch: 201
2023-02-19 11:06:37,273	32k	INFO	====> Epoch: 202
2023-02-19 11:06:56,889	32k	INFO	====> Epoch: 203
2023-02-19 11:07:16,485	32k	INFO	====> Epoch: 204
2023-02-19 11:07:36,099	32k	INFO	====> Epoch: 205
2023-02-19 11:07:55,728	32k	INFO	====> Epoch: 206
2023-02-19 11:08:15,343	32k	INFO	====> Epoch: 207
2023-02-19 11:08:34,891	32k	INFO	====> Epoch: 208
2023-02-19 11:08:54,540	32k	INFO	====> Epoch: 209
2023-02-19 11:09:14,170	32k	INFO	====> Epoch: 210
2023-02-19 11:09:26,797	32k	INFO	Train Epoch: 211 [53%]
2023-02-19 11:09:26,798	32k	INFO	[2.2917189598083496, 2.7440385818481445, 15.518340110778809, 16.26446533203125, 0.6934877038002014, 4000, 9.740899380309685e-05]
2023-02-19 11:09:31,011	32k	INFO	Saving model and optimizer state at iteration 211 to ./logs\32k\G_4000.pth
2023-02-19 11:09:51,469	32k	INFO	Saving model and optimizer state at iteration 211 to ./logs\32k\D_4000.pth
2023-02-19 11:10:02,495	32k	INFO	====> Epoch: 211
2023-02-19 11:10:22,019	32k	INFO	====> Epoch: 212
2023-02-19 11:10:41,554	32k	INFO	====> Epoch: 213
2023-02-19 11:11:01,073	32k	INFO	====> Epoch: 214
2023-02-19 11:11:20,612	32k	INFO	====> Epoch: 215
2023-02-19 11:11:40,229	32k	INFO	====> Epoch: 216
2023-02-19 11:11:59,823	32k	INFO	====> Epoch: 217
2023-02-19 11:12:19,432	32k	INFO	====> Epoch: 218
2023-02-19 11:12:38,982	32k	INFO	====> Epoch: 219
2023-02-19 11:12:58,555	32k	INFO	====> Epoch: 220
2023-02-19 11:13:18,155	32k	INFO	====> Epoch: 221
2023-02-19 11:13:23,102	32k	INFO	Train Epoch: 222 [5%]
2023-02-19 11:13:23,102	32k	INFO	[2.2692172527313232, 2.6678965091705322, 17.69780731201172, 20.136995315551758, 0.6864567995071411, 4200, 9.727514011608789e-05]
2023-02-19 11:13:38,082	32k	INFO	====> Epoch: 222
2023-02-19 11:13:57,751	32k	INFO	====> Epoch: 223
2023-02-19 11:14:17,317	32k	INFO	====> Epoch: 224
2023-02-19 11:14:36,905	32k	INFO	====> Epoch: 225
2023-02-19 11:14:56,538	32k	INFO	====> Epoch: 226
2023-02-19 11:15:16,180	32k	INFO	====> Epoch: 227
2023-02-19 11:15:35,773	32k	INFO	====> Epoch: 228
2023-02-19 11:15:55,427	32k	INFO	====> Epoch: 229
2023-02-19 11:16:15,006	32k	INFO	====> Epoch: 230
2023-02-19 11:16:34,619	32k	INFO	====> Epoch: 231
2023-02-19 11:16:48,169	32k	INFO	Train Epoch: 232 [58%]
2023-02-19 11:16:48,170	32k	INFO	[2.2375569343566895, 2.629099130630493, 15.8519868850708, 17.997573852539062, 0.4304458200931549, 4400, 9.715361456473177e-05]
2023-02-19 11:16:54,566	32k	INFO	====> Epoch: 232
2023-02-19 11:17:14,203	32k	INFO	====> Epoch: 233
2023-02-19 11:17:33,790	32k	INFO	====> Epoch: 234
2023-02-19 11:17:53,406	32k	INFO	====> Epoch: 235
2023-02-19 11:18:13,072	32k	INFO	====> Epoch: 236
2023-02-19 11:18:32,696	32k	INFO	====> Epoch: 237
2023-02-19 11:18:52,331	32k	INFO	====> Epoch: 238
2023-02-19 11:19:11,901	32k	INFO	====> Epoch: 239
2023-02-19 11:19:31,520	32k	INFO	====> Epoch: 240
2023-02-19 11:19:51,132	32k	INFO	====> Epoch: 241
2023-02-19 11:20:10,731	32k	INFO	====> Epoch: 242
2023-02-19 11:20:16,470	32k	INFO	Train Epoch: 243 [11%]
2023-02-19 11:20:16,470	32k	INFO	[2.1481809616088867, 2.5824615955352783, 14.348868370056152, 17.293001174926758, 0.6088849902153015, 4600, 9.702011180479129e-05]
2023-02-19 11:20:30,580	32k	INFO	====> Epoch: 243
2023-02-19 11:20:50,191	32k	INFO	====> Epoch: 244
2023-02-19 11:21:09,779	32k	INFO	====> Epoch: 245
2023-02-19 11:21:29,444	32k	INFO	====> Epoch: 246
2023-02-19 11:21:49,014	32k	INFO	====> Epoch: 247
2023-02-19 11:22:08,589	32k	INFO	====> Epoch: 248
2023-02-19 11:22:28,235	32k	INFO	====> Epoch: 249
2023-02-19 11:22:47,886	32k	INFO	====> Epoch: 250
2023-02-19 11:23:07,478	32k	INFO	====> Epoch: 251
2023-02-19 11:23:27,108	32k	INFO	====> Epoch: 252
2023-02-19 11:23:41,516	32k	INFO	Train Epoch: 253 [63%]
2023-02-19 11:23:41,516	32k	INFO	[2.2075626850128174, 2.759037733078003, 16.229446411132812, 19.35388946533203, 0.7824491858482361, 4800, 9.689890485956725e-05]
2023-02-19 11:23:47,056	32k	INFO	====> Epoch: 253
2023-02-19 11:24:06,652	32k	INFO	====> Epoch: 254
2023-02-19 11:24:26,228	32k	INFO	====> Epoch: 255
2023-02-19 11:24:45,885	32k	INFO	====> Epoch: 256
2023-02-19 11:25:05,450	32k	INFO	====> Epoch: 257
2023-02-19 11:25:25,062	32k	INFO	====> Epoch: 258
2023-02-19 11:25:44,680	32k	INFO	====> Epoch: 259
2023-02-19 11:26:04,299	32k	INFO	====> Epoch: 260
2023-02-19 11:26:23,879	32k	INFO	====> Epoch: 261
2023-02-19 11:26:43,517	32k	INFO	====> Epoch: 262
2023-02-19 11:27:03,127	32k	INFO	====> Epoch: 263
2023-02-19 11:27:09,821	32k	INFO	Train Epoch: 264 [16%]
2023-02-19 11:27:09,821	32k	INFO	[2.3156111240386963, 2.653826951980591, 14.277311325073242, 16.898771286010742, 0.792119026184082, 5000, 9.676575210666227e-05]
2023-02-19 11:27:14,004	32k	INFO	Saving model and optimizer state at iteration 264 to ./logs\32k\G_5000.pth
2023-02-19 11:27:31,625	32k	INFO	Saving model and optimizer state at iteration 264 to ./logs\32k\D_5000.pth
2023-02-19 11:27:48,527	32k	INFO	====> Epoch: 264
2023-02-19 11:28:08,128	32k	INFO	====> Epoch: 265
2023-02-19 11:28:27,718	32k	INFO	====> Epoch: 266
2023-02-19 11:28:47,282	32k	INFO	====> Epoch: 267
2023-02-19 11:29:06,849	32k	INFO	====> Epoch: 268
2023-02-19 11:29:26,398	32k	INFO	====> Epoch: 269
2023-02-19 11:29:45,966	32k	INFO	====> Epoch: 270
2023-02-19 11:30:05,588	32k	INFO	====> Epoch: 271
2023-02-19 11:30:25,210	32k	INFO	====> Epoch: 272
2023-02-19 11:30:44,805	32k	INFO	====> Epoch: 273
2023-02-19 11:31:00,163	32k	INFO	Train Epoch: 274 [68%]
2023-02-19 11:31:00,163	32k	INFO	[2.5202348232269287, 2.6853830814361572, 12.198919296264648, 17.470657348632812, 1.010284423828125, 5200, 9.664486293227385e-05]
2023-02-19 11:31:04,871	32k	INFO	====> Epoch: 274
2023-02-19 11:31:24,524	32k	INFO	====> Epoch: 275
2023-02-19 11:31:44,192	32k	INFO	====> Epoch: 276
2023-02-19 11:32:03,771	32k	INFO	====> Epoch: 277
2023-02-19 11:32:23,441	32k	INFO	====> Epoch: 278
2023-02-19 11:32:43,028	32k	INFO	====> Epoch: 279
2023-02-19 11:33:02,669	32k	INFO	====> Epoch: 280
2023-02-19 11:33:22,327	32k	INFO	====> Epoch: 281
2023-02-19 11:33:41,904	32k	INFO	====> Epoch: 282
2023-02-19 11:34:01,510	32k	INFO	====> Epoch: 283
2023-02-19 11:34:21,149	32k	INFO	====> Epoch: 284
2023-02-19 11:34:28,645	32k	INFO	Train Epoch: 285 [21%]
2023-02-19 11:34:28,645	32k	INFO	[2.1849722862243652, 2.6742019653320312, 17.45437240600586, 19.302379608154297, 0.47049564123153687, 5400, 9.651205926878348e-05]
2023-02-19 11:34:41,074	32k	INFO	====> Epoch: 285
2023-02-19 11:35:00,663	32k	INFO	====> Epoch: 286
2023-02-19 11:35:20,204	32k	INFO	====> Epoch: 287
2023-02-19 11:35:39,792	32k	INFO	====> Epoch: 288
2023-02-19 11:35:59,412	32k	INFO	====> Epoch: 289
2023-02-19 11:36:19,030	32k	INFO	====> Epoch: 290
2023-02-19 11:36:38,610	32k	INFO	====> Epoch: 291
2023-02-19 11:36:58,221	32k	INFO	====> Epoch: 292
2023-02-19 11:37:17,873	32k	INFO	====> Epoch: 293
2023-02-19 11:37:37,744	32k	INFO	====> Epoch: 294
2023-02-19 11:37:53,973	32k	INFO	Train Epoch: 295 [74%]
2023-02-19 11:37:53,973	32k	INFO	[2.275301933288574, 2.737536907196045, 16.912981033325195, 20.602113723754883, 1.1094117164611816, 5600, 9.639148703212408e-05]
2023-02-19 11:37:57,829	32k	INFO	====> Epoch: 295
2023-02-19 11:38:17,495	32k	INFO	====> Epoch: 296
2023-02-19 11:38:37,068	32k	INFO	====> Epoch: 297
2023-02-19 11:38:56,622	32k	INFO	====> Epoch: 298
2023-02-19 11:39:16,278	32k	INFO	====> Epoch: 299
2023-02-19 11:39:35,894	32k	INFO	====> Epoch: 300
2023-02-19 11:39:55,537	32k	INFO	====> Epoch: 301
2023-02-19 11:40:15,105	32k	INFO	====> Epoch: 302
2023-02-19 11:40:34,680	32k	INFO	====> Epoch: 303
2023-02-19 11:40:54,337	32k	INFO	====> Epoch: 304
2023-02-19 11:41:13,926	32k	INFO	====> Epoch: 305
2023-02-19 11:41:22,265	32k	INFO	Train Epoch: 306 [26%]
2023-02-19 11:41:22,266	32k	INFO	[2.1130294799804688, 2.605156660079956, 13.737504005432129, 18.2040958404541, 0.6517429351806641, 5800, 9.625903154283315e-05]
2023-02-19 11:41:33,904	32k	INFO	====> Epoch: 306
2023-02-19 11:41:53,551	32k	INFO	====> Epoch: 307
2023-02-19 11:42:13,197	32k	INFO	====> Epoch: 308
2023-02-19 11:42:32,740	32k	INFO	====> Epoch: 309
2023-02-19 11:42:52,382	32k	INFO	====> Epoch: 310
2023-02-19 11:43:12,004	32k	INFO	====> Epoch: 311
2023-02-19 11:43:31,599	32k	INFO	====> Epoch: 312
2023-02-19 11:43:51,218	32k	INFO	====> Epoch: 313
2023-02-19 11:44:10,806	32k	INFO	====> Epoch: 314
2023-02-19 11:44:30,411	32k	INFO	====> Epoch: 315
2023-02-19 11:44:47,303	32k	INFO	Train Epoch: 316 [79%]
2023-02-19 11:44:47,303	32k	INFO	[1.8626766204833984, 2.7689990997314453, 22.44615364074707, 18.596677780151367, 0.9108448028564453, 6000, 9.613877541298036e-05]
2023-02-19 11:44:51,515	32k	INFO	Saving model and optimizer state at iteration 316 to ./logs\32k\G_6000.pth
2023-02-19 11:45:09,459	32k	INFO	Saving model and optimizer state at iteration 316 to ./logs\32k\D_6000.pth
2023-02-19 11:45:15,966	32k	INFO	====> Epoch: 316
2023-02-19 11:45:35,566	32k	INFO	====> Epoch: 317
2023-02-19 11:45:55,162	32k	INFO	====> Epoch: 318
2023-02-19 11:46:14,676	32k	INFO	====> Epoch: 319
2023-02-19 11:46:34,275	32k	INFO	====> Epoch: 320
2023-02-19 11:46:53,846	32k	INFO	====> Epoch: 321
2023-02-19 11:47:13,481	32k	INFO	====> Epoch: 322
2023-02-19 11:47:33,118	32k	INFO	====> Epoch: 323
2023-02-19 11:47:52,781	32k	INFO	====> Epoch: 324
2023-02-19 11:48:12,412	32k	INFO	====> Epoch: 325
2023-02-19 11:48:31,983	32k	INFO	====> Epoch: 326
2023-02-19 11:48:41,283	32k	INFO	Train Epoch: 327 [32%]
2023-02-19 11:48:41,283	32k	INFO	[2.134446620941162, 2.5606751441955566, 17.715618133544922, 18.039941787719727, 0.7827563285827637, 6200, 9.600666718507311e-05]
2023-02-19 11:48:51,957	32k	INFO	====> Epoch: 327
2023-02-19 11:49:11,559	32k	INFO	====> Epoch: 328
2023-02-19 11:49:31,233	32k	INFO	====> Epoch: 329
2023-02-19 11:49:50,840	32k	INFO	====> Epoch: 330
2023-02-19 11:50:10,505	32k	INFO	====> Epoch: 331
2023-02-19 11:50:30,086	32k	INFO	====> Epoch: 332
2023-02-19 11:50:49,767	32k	INFO	====> Epoch: 333
2023-02-19 11:51:09,467	32k	INFO	====> Epoch: 334
2023-02-19 11:51:29,060	32k	INFO	====> Epoch: 335
2023-02-19 11:51:48,709	32k	INFO	====> Epoch: 336
2023-02-19 11:52:06,472	32k	INFO	Train Epoch: 337 [84%]
2023-02-19 11:52:06,472	32k	INFO	[2.3614232540130615, 2.127523183822632, 13.096696853637695, 15.430811882019043, 1.0329926013946533, 6400, 9.588672633328296e-05]
2023-02-19 11:52:08,588	32k	INFO	====> Epoch: 337
2023-02-19 11:52:28,158	32k	INFO	====> Epoch: 338
2023-02-19 11:52:47,762	32k	INFO	====> Epoch: 339
2023-02-19 11:53:07,351	32k	INFO	====> Epoch: 340
2023-02-19 11:53:26,929	32k	INFO	====> Epoch: 341
2023-02-19 11:53:46,569	32k	INFO	====> Epoch: 342
2023-02-19 11:54:06,210	32k	INFO	====> Epoch: 343
2023-02-19 11:54:25,837	32k	INFO	====> Epoch: 344
2023-02-19 11:54:45,483	32k	INFO	====> Epoch: 345
2023-02-19 11:55:05,098	32k	INFO	====> Epoch: 346
2023-02-19 11:55:24,762	32k	INFO	====> Epoch: 347
2023-02-19 11:55:34,848	32k	INFO	Train Epoch: 348 [37%]
2023-02-19 11:55:34,849	32k	INFO	[2.5325193405151367, 2.0467236042022705, 9.755393028259277, 12.007466316223145, 0.2873714864253998, 6600, 9.575496445633683e-05]
2023-02-19 11:55:44,674	32k	INFO	====> Epoch: 348
2023-02-19 11:56:04,439	32k	INFO	====> Epoch: 349
2023-02-19 11:56:24,075	32k	INFO	====> Epoch: 350
2023-02-19 11:56:43,652	32k	INFO	====> Epoch: 351
2023-02-19 11:57:03,215	32k	INFO	====> Epoch: 352
2023-02-19 11:57:22,843	32k	INFO	====> Epoch: 353
2023-02-19 11:57:42,508	32k	INFO	====> Epoch: 354
2023-02-19 11:58:02,106	32k	INFO	====> Epoch: 355
2023-02-19 11:58:21,710	32k	INFO	====> Epoch: 356
2023-02-19 11:58:41,438	32k	INFO	====> Epoch: 357
2023-02-19 11:59:00,100	32k	INFO	Train Epoch: 358 [89%]
2023-02-19 11:59:00,101	32k	INFO	[2.309570074081421, 2.5850276947021484, 13.4173583984375, 16.9825382232666, 0.4784981906414032, 6800, 9.56353380560381e-05]
2023-02-19 11:59:01,366	32k	INFO	====> Epoch: 358
2023-02-19 11:59:20,928	32k	INFO	====> Epoch: 359
2023-02-19 11:59:40,589	32k	INFO	====> Epoch: 360
2023-02-19 12:00:00,179	32k	INFO	====> Epoch: 361
2023-02-19 12:00:19,818	32k	INFO	====> Epoch: 362
2023-02-19 12:00:39,433	32k	INFO	====> Epoch: 363
2023-02-19 12:00:59,077	32k	INFO	====> Epoch: 364
2023-02-19 12:01:18,665	32k	INFO	====> Epoch: 365
2023-02-19 12:01:38,287	32k	INFO	====> Epoch: 366
2023-02-19 12:01:57,919	32k	INFO	====> Epoch: 367
2023-02-19 12:02:17,535	32k	INFO	====> Epoch: 368
2023-02-19 12:02:28,494	32k	INFO	Train Epoch: 369 [42%]
2023-02-19 12:02:28,494	32k	INFO	[2.1438865661621094, 2.569798231124878, 18.708538055419922, 19.017616271972656, 0.3679341971874237, 7000, 9.550392162201736e-05]
2023-02-19 12:02:32,717	32k	INFO	Saving model and optimizer state at iteration 369 to ./logs\32k\G_7000.pth
2023-02-19 12:02:50,778	32k	INFO	Saving model and optimizer state at iteration 369 to ./logs\32k\D_7000.pth
2023-02-19 12:03:03,651	32k	INFO	====> Epoch: 369
2023-02-19 12:03:23,235	32k	INFO	====> Epoch: 370
2023-02-19 12:03:42,803	32k	INFO	====> Epoch: 371
2023-02-19 12:04:02,411	32k	INFO	====> Epoch: 372
2023-02-19 12:04:21,953	32k	INFO	====> Epoch: 373
2023-02-19 12:04:41,504	32k	INFO	====> Epoch: 374
2023-02-19 12:05:01,114	32k	INFO	====> Epoch: 375
2023-02-19 12:05:20,776	32k	INFO	====> Epoch: 376
2023-02-19 12:05:40,345	32k	INFO	====> Epoch: 377
2023-02-19 12:05:59,933	32k	INFO	====> Epoch: 378
2023-02-19 12:06:19,091	32k	INFO	Train Epoch: 379 [95%]
2023-02-19 12:06:19,091	32k	INFO	[2.0112531185150146, 3.151000499725342, 21.729772567749023, 17.626426696777344, 0.05288940668106079, 7200, 9.538460884880585e-05]
2023-02-19 12:06:19,867	32k	INFO	====> Epoch: 379
2023-02-19 12:06:39,460	32k	INFO	====> Epoch: 380
2023-02-19 12:06:59,053	32k	INFO	====> Epoch: 381
2023-02-19 12:07:18,709	32k	INFO	====> Epoch: 382
2023-02-19 12:07:38,341	32k	INFO	====> Epoch: 383
2023-02-19 12:07:57,934	32k	INFO	====> Epoch: 384
2023-02-19 12:08:17,553	32k	INFO	====> Epoch: 385
2023-02-19 12:08:37,236	32k	INFO	====> Epoch: 386
2023-02-19 12:08:56,799	32k	INFO	====> Epoch: 387
2023-02-19 12:09:16,406	32k	INFO	====> Epoch: 388
2023-02-19 12:09:36,019	32k	INFO	====> Epoch: 389
2023-02-19 12:09:47,851	32k	INFO	Train Epoch: 390 [47%]
2023-02-19 12:09:47,851	32k	INFO	[2.3823697566986084, 2.554415702819824, 13.744731903076172, 18.62793731689453, 0.7019649147987366, 7400, 9.525353695205543e-05]
2023-02-19 12:09:55,957	32k	INFO	====> Epoch: 390
2023-02-19 12:10:15,602	32k	INFO	====> Epoch: 391
2023-02-19 12:10:35,217	32k	INFO	====> Epoch: 392
2023-02-19 12:10:54,874	32k	INFO	====> Epoch: 393
2023-02-19 12:11:14,510	32k	INFO	====> Epoch: 394
2023-02-19 12:11:34,263	32k	INFO	====> Epoch: 395
2023-02-19 12:11:53,845	32k	INFO	====> Epoch: 396
2023-02-19 12:12:13,473	32k	INFO	====> Epoch: 397
2023-02-19 12:12:33,092	32k	INFO	====> Epoch: 398
2023-02-19 12:12:52,723	32k	INFO	====> Epoch: 399
2023-02-19 12:13:12,340	32k	INFO	====> Epoch: 400
2023-02-19 12:13:16,360	32k	INFO	Train Epoch: 401 [0%]
2023-02-19 12:13:16,361	32k	INFO	[2.060042381286621, 2.767242670059204, 16.21058464050293, 16.564598083496094, 0.580163836479187, 7600, 9.512264516656537e-05]
2023-02-19 12:13:32,189	32k	INFO	====> Epoch: 401
2023-02-19 12:13:51,798	32k	INFO	====> Epoch: 402
2023-02-19 12:14:11,417	32k	INFO	====> Epoch: 403
2023-02-19 12:14:31,034	32k	INFO	====> Epoch: 404
2023-02-19 12:14:50,628	32k	INFO	====> Epoch: 405
2023-02-19 12:15:10,268	32k	INFO	====> Epoch: 406
2023-02-19 12:15:29,856	32k	INFO	====> Epoch: 407
2023-02-19 12:15:49,473	32k	INFO	====> Epoch: 408
2023-02-19 12:16:09,070	32k	INFO	====> Epoch: 409
2023-02-19 12:16:28,647	32k	INFO	====> Epoch: 410
2023-02-19 12:16:41,291	32k	INFO	Train Epoch: 411 [53%]
2023-02-19 12:16:41,291	32k	INFO	[2.276326894760132, 2.791963815689087, 16.988666534423828, 16.02008819580078, 1.0126944780349731, 7800, 9.500380872092753e-05]
2023-02-19 12:16:48,539	32k	INFO	====> Epoch: 411
2023-02-19 12:17:08,149	32k	INFO	====> Epoch: 412
2023-02-19 12:17:27,812	32k	INFO	====> Epoch: 413
2023-02-19 12:17:47,415	32k	INFO	====> Epoch: 414
2023-02-19 12:18:07,018	32k	INFO	====> Epoch: 415
2023-02-19 12:18:26,626	32k	INFO	====> Epoch: 416
2023-02-19 12:18:46,268	32k	INFO	====> Epoch: 417
2023-02-19 12:19:05,865	32k	INFO	====> Epoch: 418
2023-02-19 12:19:25,510	32k	INFO	====> Epoch: 419
2023-02-19 12:19:45,050	32k	INFO	====> Epoch: 420
2023-02-19 12:20:04,641	32k	INFO	====> Epoch: 421
2023-02-19 12:20:09,552	32k	INFO	Train Epoch: 422 [5%]
2023-02-19 12:20:09,552	32k	INFO	[1.8605238199234009, 2.7951276302337646, 22.017553329467773, 20.881940841674805, 0.5991621017456055, 8000, 9.487326009722552e-05]
2023-02-19 12:20:13,861	32k	INFO	Saving model and optimizer state at iteration 422 to ./logs\32k\G_8000.pth
2023-02-19 12:20:30,750	32k	INFO	Saving model and optimizer state at iteration 422 to ./logs\32k\D_8000.pth
2023-02-19 12:20:49,367	32k	INFO	====> Epoch: 422
2023-02-19 12:21:09,253	32k	INFO	====> Epoch: 423
2023-02-19 12:21:29,092	32k	INFO	====> Epoch: 424
2023-02-19 12:21:48,850	32k	INFO	====> Epoch: 425
2023-02-19 12:22:08,448	32k	INFO	====> Epoch: 426
2023-02-19 12:22:28,085	32k	INFO	====> Epoch: 427
2023-02-19 12:22:47,686	32k	INFO	====> Epoch: 428
2023-02-19 12:23:07,278	32k	INFO	====> Epoch: 429
2023-02-19 12:23:27,118	32k	INFO	====> Epoch: 430
2023-02-19 12:23:46,825	32k	INFO	====> Epoch: 431
2023-02-19 12:24:00,324	32k	INFO	Train Epoch: 432 [58%]
2023-02-19 12:24:00,325	32k	INFO	[2.2748827934265137, 2.393998861312866, 16.518442153930664, 15.991931915283203, 0.6844744086265564, 8200, 9.475473520763392e-05]
2023-02-19 12:24:06,743	32k	INFO	====> Epoch: 432
2023-02-19 12:24:26,417	32k	INFO	====> Epoch: 433
2023-02-19 12:24:46,429	32k	INFO	====> Epoch: 434
2023-02-19 12:25:06,352	32k	INFO	====> Epoch: 435
2023-02-19 12:25:26,166	32k	INFO	====> Epoch: 436
2023-02-19 12:25:45,962	32k	INFO	====> Epoch: 437
2023-02-19 12:26:05,572	32k	INFO	====> Epoch: 438
2023-02-19 12:26:25,223	32k	INFO	====> Epoch: 439
2023-02-19 12:26:44,804	32k	INFO	====> Epoch: 440
2023-02-19 12:27:04,427	32k	INFO	====> Epoch: 441
2023-02-19 12:27:23,994	32k	INFO	====> Epoch: 442
2023-02-19 12:27:29,761	32k	INFO	Train Epoch: 443 [11%]
2023-02-19 12:27:29,761	32k	INFO	[2.212078332901001, 2.7991578578948975, 14.290653228759766, 16.723142623901367, 0.758256733417511, 8400, 9.46245288460454e-05]
2023-02-19 12:27:43,980	32k	INFO	====> Epoch: 443
2023-02-19 12:28:03,844	32k	INFO	====> Epoch: 444
2023-02-19 12:28:23,653	32k	INFO	====> Epoch: 445
2023-02-19 12:28:43,304	32k	INFO	====> Epoch: 446
2023-02-19 12:29:03,085	32k	INFO	====> Epoch: 447
2023-02-19 12:29:22,793	32k	INFO	====> Epoch: 448
2023-02-19 12:29:42,697	32k	INFO	====> Epoch: 449
2023-02-19 12:30:02,286	32k	INFO	====> Epoch: 450
2023-02-19 12:30:21,939	32k	INFO	====> Epoch: 451
2023-02-19 12:30:41,561	32k	INFO	====> Epoch: 452
2023-02-19 12:30:55,959	32k	INFO	Train Epoch: 453 [63%]
2023-02-19 12:30:55,960	32k	INFO	[2.3873302936553955, 2.6133875846862793, 14.57663631439209, 17.228395462036133, 0.6703507900238037, 8600, 9.450631469568687e-05]
2023-02-19 12:31:01,484	32k	INFO	====> Epoch: 453
2023-02-19 12:31:21,352	32k	INFO	====> Epoch: 454
2023-02-19 12:31:41,004	32k	INFO	====> Epoch: 455
2023-02-19 12:32:00,663	32k	INFO	====> Epoch: 456
2023-02-19 12:32:20,262	32k	INFO	====> Epoch: 457
2023-02-19 12:32:39,921	32k	INFO	====> Epoch: 458
2023-02-19 12:32:59,815	32k	INFO	====> Epoch: 459
2023-02-19 12:33:20,886	32k	INFO	====> Epoch: 460
2023-02-19 12:33:40,723	32k	INFO	====> Epoch: 461
2023-02-19 12:34:00,374	32k	INFO	====> Epoch: 462
2023-02-19 12:34:20,007	32k	INFO	====> Epoch: 463
2023-02-19 12:34:37,407	32k	INFO	Train Epoch: 464 [16%]
2023-02-19 12:34:37,407	32k	INFO	[3.0064706802368164, 2.5415701866149902, 9.37286376953125, 13.644079208374023, 0.7945896983146667, 8800, 9.437644969889592e-05]
2023-02-19 12:34:50,681	32k	INFO	====> Epoch: 464
2023-02-19 12:35:10,328	32k	INFO	====> Epoch: 465
2023-02-19 12:35:29,951	32k	INFO	====> Epoch: 466
2023-02-19 12:35:49,602	32k	INFO	====> Epoch: 467
2023-02-19 12:36:09,383	32k	INFO	====> Epoch: 468
2023-02-19 12:36:29,051	32k	INFO	====> Epoch: 469
2023-02-19 12:36:48,693	32k	INFO	====> Epoch: 470
2023-02-19 12:37:08,307	32k	INFO	====> Epoch: 471
2023-02-19 12:37:27,980	32k	INFO	====> Epoch: 472
2023-02-19 12:37:47,600	32k	INFO	====> Epoch: 473
2023-02-19 12:38:02,872	32k	INFO	Train Epoch: 474 [68%]
2023-02-19 12:38:02,873	32k	INFO	[2.2592387199401855, 2.68511962890625, 14.775422096252441, 18.476463317871094, 0.7293793559074402, 9000, 9.425854547309881e-05]
2023-02-19 12:38:07,146	32k	INFO	Saving model and optimizer state at iteration 474 to ./logs\32k\G_9000.pth
2023-02-19 12:38:23,693	32k	INFO	Saving model and optimizer state at iteration 474 to ./logs\32k\D_9000.pth
2023-02-19 12:38:31,718	32k	INFO	====> Epoch: 474
2023-02-19 12:38:51,663	32k	INFO	====> Epoch: 475
2023-02-19 12:39:11,421	32k	INFO	====> Epoch: 476
2023-02-19 12:39:31,207	32k	INFO	====> Epoch: 477
2023-02-19 12:39:50,792	32k	INFO	====> Epoch: 478
2023-02-19 12:40:10,453	32k	INFO	====> Epoch: 479
2023-02-19 12:40:30,150	32k	INFO	====> Epoch: 480
2023-02-19 12:40:49,778	32k	INFO	====> Epoch: 481
2023-02-19 12:41:09,416	32k	INFO	====> Epoch: 482
2023-02-19 12:41:29,039	32k	INFO	====> Epoch: 483
2023-02-19 12:41:48,739	32k	INFO	====> Epoch: 484
2023-02-19 12:41:56,274	32k	INFO	Train Epoch: 485 [21%]
2023-02-19 12:41:56,274	32k	INFO	[2.0364489555358887, 2.666236400604248, 15.535277366638184, 17.430566787719727, 0.9094477891921997, 9200, 9.412902094614211e-05]
2023-02-19 12:42:08,707	32k	INFO	====> Epoch: 485
2023-02-19 12:42:28,424	32k	INFO	====> Epoch: 486
2023-02-19 12:42:48,137	32k	INFO	====> Epoch: 487
2023-02-19 12:43:07,787	32k	INFO	====> Epoch: 488
2023-02-19 12:43:27,391	32k	INFO	====> Epoch: 489
2023-02-19 12:43:47,060	32k	INFO	====> Epoch: 490
2023-02-19 12:44:06,721	32k	INFO	====> Epoch: 491
2023-02-19 12:44:26,376	32k	INFO	====> Epoch: 492
2023-02-19 12:44:46,053	32k	INFO	====> Epoch: 493
2023-02-19 12:45:05,716	32k	INFO	====> Epoch: 494
2023-02-19 12:45:21,792	32k	INFO	Train Epoch: 495 [74%]
2023-02-19 12:45:21,793	32k	INFO	[2.3733603954315186, 2.47238826751709, 12.350341796875, 17.111530303955078, 0.7110298275947571, 9400, 9.401142583237059e-05]
2023-02-19 12:45:25,630	32k	INFO	====> Epoch: 495
2023-02-19 12:45:45,272	32k	INFO	====> Epoch: 496
2023-02-19 12:46:04,842	32k	INFO	====> Epoch: 497
2023-02-19 12:46:24,549	32k	INFO	====> Epoch: 498
2023-02-19 12:46:44,160	32k	INFO	====> Epoch: 499
2023-02-19 12:47:03,818	32k	INFO	====> Epoch: 500
2023-02-19 12:47:23,460	32k	INFO	====> Epoch: 501
2023-02-19 12:47:43,079	32k	INFO	====> Epoch: 502
2023-02-19 12:48:02,692	32k	INFO	====> Epoch: 503
2023-02-19 12:48:22,357	32k	INFO	====> Epoch: 504
2023-02-19 12:48:41,987	32k	INFO	====> Epoch: 505
2023-02-19 12:48:50,352	32k	INFO	Train Epoch: 506 [26%]
2023-02-19 12:48:50,353	32k	INFO	[2.4896092414855957, 2.6762804985046387, 7.441979885101318, 12.384513854980469, 0.8221025466918945, 9600, 9.388224088263103e-05]
2023-02-19 12:49:01,920	32k	INFO	====> Epoch: 506
2023-02-19 12:49:21,631	32k	INFO	====> Epoch: 507
2023-02-19 12:49:41,235	32k	INFO	====> Epoch: 508
2023-02-19 12:50:00,878	32k	INFO	====> Epoch: 509
2023-02-19 12:50:20,529	32k	INFO	====> Epoch: 510
2023-02-19 12:50:40,218	32k	INFO	====> Epoch: 511
2023-02-19 12:50:59,886	32k	INFO	====> Epoch: 512
2023-02-19 12:51:19,546	32k	INFO	====> Epoch: 513
2023-02-19 12:51:39,163	32k	INFO	====> Epoch: 514
2023-02-19 12:51:58,821	32k	INFO	====> Epoch: 515
2023-02-19 12:52:15,760	32k	INFO	Train Epoch: 516 [79%]
2023-02-19 12:52:15,761	32k	INFO	[1.8880212306976318, 2.990048885345459, 18.54258918762207, 15.826509475708008, 0.7649766206741333, 9800, 9.376495407047951e-05]
2023-02-19 12:52:18,707	32k	INFO	====> Epoch: 516
2023-02-19 12:52:38,388	32k	INFO	====> Epoch: 517
2023-02-19 12:52:58,019	32k	INFO	====> Epoch: 518
2023-02-19 12:53:17,689	32k	INFO	====> Epoch: 519
2023-02-19 12:53:37,358	32k	INFO	====> Epoch: 520
2023-02-19 12:53:56,945	32k	INFO	====> Epoch: 521
2023-02-19 12:54:16,610	32k	INFO	====> Epoch: 522
2023-02-19 12:54:36,229	32k	INFO	====> Epoch: 523
2023-02-19 12:54:55,834	32k	INFO	====> Epoch: 524
2023-02-19 12:55:15,475	32k	INFO	====> Epoch: 525
2023-02-19 12:55:35,099	32k	INFO	====> Epoch: 526
2023-02-19 12:55:44,384	32k	INFO	Train Epoch: 527 [32%]
2023-02-19 12:55:44,385	32k	INFO	[2.205662727355957, 2.867584705352783, 16.78660774230957, 16.71090316772461, 0.8774336576461792, 10000, 9.36361078076803e-05]
2023-02-19 12:55:48,586	32k	INFO	Saving model and optimizer state at iteration 527 to ./logs\32k\G_10000.pth
2023-02-19 12:56:06,798	32k	INFO	Saving model and optimizer state at iteration 527 to ./logs\32k\D_10000.pth
2023-02-19 12:56:21,401	32k	INFO	====> Epoch: 527
2023-02-19 12:56:41,345	32k	INFO	====> Epoch: 528
2023-02-19 12:57:00,917	32k	INFO	====> Epoch: 529
2023-02-19 12:57:20,811	32k	INFO	====> Epoch: 530
2023-02-19 12:57:40,435	32k	INFO	====> Epoch: 531
2023-02-19 12:58:00,053	32k	INFO	====> Epoch: 532
2023-02-19 12:58:19,745	32k	INFO	====> Epoch: 533
2023-02-19 12:58:39,609	32k	INFO	====> Epoch: 534
2023-02-19 12:58:59,368	32k	INFO	====> Epoch: 535
2023-02-19 12:59:18,968	32k	INFO	====> Epoch: 536
2023-02-19 12:59:36,810	32k	INFO	Train Epoch: 537 [84%]
2023-02-19 12:59:36,811	32k	INFO	[2.1262154579162598, 2.892063856124878, 15.072270393371582, 16.91364288330078, 0.7413275837898254, 10200, 9.351912848886779e-05]
2023-02-19 12:59:38,927	32k	INFO	====> Epoch: 537
2023-02-19 12:59:58,556	32k	INFO	====> Epoch: 538
2023-02-19 13:00:18,246	32k	INFO	====> Epoch: 539
2023-02-19 13:00:38,193	32k	INFO	====> Epoch: 540
2023-02-19 13:00:57,974	32k	INFO	====> Epoch: 541
2023-02-19 13:01:17,641	32k	INFO	====> Epoch: 542
2023-02-19 13:01:37,271	32k	INFO	====> Epoch: 543
2023-02-19 13:01:56,865	32k	INFO	====> Epoch: 544
2023-02-19 13:02:16,505	32k	INFO	====> Epoch: 545
2023-02-19 13:02:36,125	32k	INFO	====> Epoch: 546
2023-02-19 13:02:55,699	32k	INFO	====> Epoch: 547
2023-02-19 13:03:05,776	32k	INFO	Train Epoch: 548 [37%]
2023-02-19 13:03:05,776	32k	INFO	[2.2443082332611084, 2.77612566947937, 14.530040740966797, 16.31207275390625, 0.7399520874023438, 10400, 9.339062002506615e-05]
2023-02-19 13:03:15,650	32k	INFO	====> Epoch: 548
2023-02-19 13:03:35,253	32k	INFO	====> Epoch: 549
2023-02-19 13:03:54,904	32k	INFO	====> Epoch: 550
2023-02-19 13:04:14,500	32k	INFO	====> Epoch: 551
2023-02-19 13:04:34,189	32k	INFO	====> Epoch: 552
2023-02-19 13:04:53,801	32k	INFO	====> Epoch: 553
2023-02-19 13:05:13,431	32k	INFO	====> Epoch: 554
2023-02-19 13:05:33,057	32k	INFO	====> Epoch: 555
2023-02-19 13:05:52,677	32k	INFO	====> Epoch: 556
2023-02-19 13:06:12,273	32k	INFO	====> Epoch: 557
2023-02-19 13:06:30,977	32k	INFO	Train Epoch: 558 [89%]
2023-02-19 13:06:30,978	32k	INFO	[1.9971816539764404, 2.9987430572509766, 16.42749786376953, 17.72498893737793, 0.7169369459152222, 10600, 9.327394739343082e-05]
2023-02-19 13:06:32,240	32k	INFO	====> Epoch: 558
2023-02-19 13:06:51,888	32k	INFO	====> Epoch: 559
2023-02-19 13:07:11,500	32k	INFO	====> Epoch: 560
2023-02-19 13:07:31,432	32k	INFO	====> Epoch: 561
2023-02-19 13:07:51,063	32k	INFO	====> Epoch: 562
2023-02-19 13:08:10,683	32k	INFO	====> Epoch: 563
2023-02-19 13:08:30,306	32k	INFO	====> Epoch: 564
2023-02-19 13:08:49,925	32k	INFO	====> Epoch: 565
2023-02-19 13:09:09,599	32k	INFO	====> Epoch: 566
2023-02-19 13:09:29,187	32k	INFO	====> Epoch: 567
2023-02-19 13:09:48,800	32k	INFO	====> Epoch: 568
2023-02-19 13:09:59,768	32k	INFO	Train Epoch: 569 [42%]
2023-02-19 13:09:59,768	32k	INFO	[2.171602725982666, 2.590355157852173, 13.851484298706055, 15.077618598937988, 0.7326598167419434, 10800, 9.314577584301187e-05]
2023-02-19 13:10:08,772	32k	INFO	====> Epoch: 569
2023-02-19 13:10:28,413	32k	INFO	====> Epoch: 570
2023-02-19 13:10:48,029	32k	INFO	====> Epoch: 571
2023-02-19 13:11:07,762	32k	INFO	====> Epoch: 572
2023-02-19 13:11:27,359	32k	INFO	====> Epoch: 573
2023-02-19 13:11:46,968	32k	INFO	====> Epoch: 574
2023-02-19 13:12:06,652	32k	INFO	====> Epoch: 575
2023-02-19 13:12:26,301	32k	INFO	====> Epoch: 576
2023-02-19 13:12:45,960	32k	INFO	====> Epoch: 577
2023-02-19 13:13:05,579	32k	INFO	====> Epoch: 578
2023-02-19 13:13:24,791	32k	INFO	Train Epoch: 579 [95%]
2023-02-19 13:13:24,792	32k	INFO	[2.4127438068389893, 2.4390709400177, 18.234426498413086, 15.20917797088623, 0.9935965538024902, 11000, 9.302940909450543e-05]
2023-02-19 13:13:29,089	32k	INFO	Saving model and optimizer state at iteration 579 to ./logs\32k\G_11000.pth
2023-02-19 13:13:46,080	32k	INFO	Saving model and optimizer state at iteration 579 to ./logs\32k\D_11000.pth
2023-02-19 13:13:50,303	32k	INFO	====> Epoch: 579
2023-02-19 13:14:10,200	32k	INFO	====> Epoch: 580
2023-02-19 13:14:29,994	32k	INFO	====> Epoch: 581
2023-02-19 13:14:49,886	32k	INFO	====> Epoch: 582
2023-02-19 13:15:09,476	32k	INFO	====> Epoch: 583
2023-02-19 13:15:29,373	32k	INFO	====> Epoch: 584
2023-02-19 13:15:49,189	32k	INFO	====> Epoch: 585
2023-02-19 13:16:09,053	32k	INFO	====> Epoch: 586
2023-02-19 13:16:28,930	32k	INFO	====> Epoch: 587
2023-02-19 13:16:48,676	32k	INFO	====> Epoch: 588
2023-02-19 13:17:08,497	32k	INFO	====> Epoch: 589
2023-02-19 13:17:20,344	32k	INFO	Train Epoch: 590 [47%]
2023-02-19 13:17:20,345	32k	INFO	[2.5262322425842285, 2.621953010559082, 13.513108253479004, 15.703678131103516, 0.5160157680511475, 11200, 9.29015735741762e-05]
2023-02-19 13:17:28,485	32k	INFO	====> Epoch: 590
2023-02-19 13:17:48,164	32k	INFO	====> Epoch: 591
2023-02-19 13:18:07,959	32k	INFO	====> Epoch: 592
2023-02-19 13:18:27,653	32k	INFO	====> Epoch: 593
2023-02-19 13:18:47,325	32k	INFO	====> Epoch: 594
2023-02-19 13:19:06,920	32k	INFO	====> Epoch: 595
2023-02-19 13:19:26,787	32k	INFO	====> Epoch: 596
2023-02-19 13:19:46,492	32k	INFO	====> Epoch: 597
2023-02-19 13:20:06,128	32k	INFO	====> Epoch: 598
2023-02-19 13:20:25,792	32k	INFO	====> Epoch: 599
2023-02-19 13:20:45,413	32k	INFO	====> Epoch: 600
2023-02-19 13:20:49,465	32k	INFO	Train Epoch: 601 [0%]
2023-02-19 13:20:49,465	32k	INFO	[2.056851625442505, 2.9963862895965576, 17.283754348754883, 17.02275848388672, 0.9403309226036072, 11400, 9.277391371786995e-05]
2023-02-19 13:21:05,470	32k	INFO	====> Epoch: 601
2023-02-19 13:21:25,118	32k	INFO	====> Epoch: 602
2023-02-19 13:21:44,922	32k	INFO	====> Epoch: 603
2023-02-19 13:22:04,542	32k	INFO	====> Epoch: 604
2023-02-19 13:22:24,116	32k	INFO	====> Epoch: 605
2023-02-19 13:22:43,845	32k	INFO	====> Epoch: 606
2023-02-19 13:23:03,995	32k	INFO	====> Epoch: 607
2023-02-19 13:23:24,240	32k	INFO	====> Epoch: 608
2023-02-19 13:23:44,685	32k	INFO	====> Epoch: 609
2023-02-19 13:24:06,943	32k	INFO	====> Epoch: 610
2023-02-19 13:24:21,160	32k	INFO	Train Epoch: 611 [53%]
2023-02-19 13:24:21,161	32k	INFO	[2.046140193939209, 3.0505690574645996, 18.795839309692383, 19.634422302246094, 0.7730445265769958, 11600, 9.265801153564152e-05]
2023-02-19 13:24:28,568	32k	INFO	====> Epoch: 611
2023-02-19 13:24:48,706	32k	INFO	====> Epoch: 612
2023-02-19 13:25:08,885	32k	INFO	====> Epoch: 613
2023-02-19 13:25:28,992	32k	INFO	====> Epoch: 614
2023-02-19 13:25:48,957	32k	INFO	====> Epoch: 615
2023-02-19 13:26:08,955	32k	INFO	====> Epoch: 616
2023-02-19 13:26:28,851	32k	INFO	====> Epoch: 617
2023-02-19 13:26:48,849	32k	INFO	====> Epoch: 618
2023-02-19 13:27:08,836	32k	INFO	====> Epoch: 619
2023-02-19 13:27:28,912	32k	INFO	====> Epoch: 620
2023-02-19 13:27:49,369	32k	INFO	====> Epoch: 621
2023-02-19 13:27:54,743	32k	INFO	Train Epoch: 622 [5%]
2023-02-19 13:27:54,744	32k	INFO	[2.1044559478759766, 2.9037117958068848, 18.362964630126953, 17.604398727416992, 0.6811983585357666, 11800, 9.25306863679056e-05]
2023-02-19 13:28:10,067	32k	INFO	====> Epoch: 622
2023-02-19 13:28:30,230	32k	INFO	====> Epoch: 623
2023-02-19 13:28:50,259	32k	INFO	====> Epoch: 624
2023-02-19 13:29:10,185	32k	INFO	====> Epoch: 625
2023-02-19 13:29:30,067	32k	INFO	====> Epoch: 626
2023-02-19 13:29:50,074	32k	INFO	====> Epoch: 627
2023-02-19 13:30:10,092	32k	INFO	====> Epoch: 628
2023-02-19 13:30:30,071	32k	INFO	====> Epoch: 629
2023-02-19 13:30:50,611	32k	INFO	====> Epoch: 630
2023-02-19 13:31:10,685	32k	INFO	====> Epoch: 631
2023-02-19 13:31:24,362	32k	INFO	Train Epoch: 632 [58%]
2023-02-19 13:31:24,362	32k	INFO	[2.0907158851623535, 2.8510940074920654, 16.303882598876953, 16.795988082885742, 0.6851125359535217, 12000, 9.24150880489024e-05]
2023-02-19 13:31:28,856	32k	INFO	Saving model and optimizer state at iteration 632 to ./logs\32k\G_12000.pth
2023-02-19 13:31:46,760	32k	INFO	Saving model and optimizer state at iteration 632 to ./logs\32k\D_12000.pth
2023-02-19 13:31:56,955	32k	INFO	====> Epoch: 632
2023-02-19 13:32:17,156	32k	INFO	====> Epoch: 633
2023-02-19 13:32:37,149	32k	INFO	====> Epoch: 634
2023-02-19 13:32:56,970	32k	INFO	====> Epoch: 635
2023-02-19 13:33:16,861	32k	INFO	====> Epoch: 636
2023-02-19 13:33:36,793	32k	INFO	====> Epoch: 637
2023-02-19 13:33:56,654	32k	INFO	====> Epoch: 638
2023-02-19 13:34:16,576	32k	INFO	====> Epoch: 639
2023-02-19 13:34:36,445	32k	INFO	====> Epoch: 640
2023-02-19 13:34:56,252	32k	INFO	====> Epoch: 641
2023-02-19 13:35:16,142	32k	INFO	====> Epoch: 642
2023-02-19 13:35:21,999	32k	INFO	Train Epoch: 643 [11%]
2023-02-19 13:35:21,999	32k	INFO	[2.3126425743103027, 3.3445053100585938, 15.56027889251709, 17.644582748413086, 0.5389391779899597, 12200, 9.228809669227663e-05]
2023-02-19 13:35:36,442	32k	INFO	====> Epoch: 643
2023-02-19 13:35:56,329	32k	INFO	====> Epoch: 644
2023-02-19 13:36:16,285	32k	INFO	====> Epoch: 645
2023-02-19 13:36:36,225	32k	INFO	====> Epoch: 646
2023-02-19 13:36:56,109	32k	INFO	====> Epoch: 647
2023-02-19 13:37:15,986	32k	INFO	====> Epoch: 648
2023-02-19 13:37:36,535	32k	INFO	====> Epoch: 649
2023-02-19 13:37:58,438	32k	INFO	====> Epoch: 650
2023-02-19 13:38:20,631	32k	INFO	====> Epoch: 651
2023-02-19 13:38:48,478	32k	INFO	====> Epoch: 652
2023-02-19 13:39:15,549	32k	INFO	Train Epoch: 653 [63%]
2023-02-19 13:39:15,549	32k	INFO	[2.3998544216156006, 2.5205063819885254, 13.50827693939209, 16.829593658447266, 0.518319845199585, 12400, 9.217280143985396e-05]
2023-02-19 13:39:23,399	32k	INFO	====> Epoch: 653
2023-02-19 13:39:44,062	32k	INFO	====> Epoch: 654
2023-02-19 13:40:04,509	32k	INFO	====> Epoch: 655
2023-02-19 13:40:24,966	32k	INFO	====> Epoch: 656
2023-02-19 13:40:46,616	32k	INFO	====> Epoch: 657
2023-02-19 13:41:06,997	32k	INFO	====> Epoch: 658
2023-02-19 13:41:27,230	32k	INFO	====> Epoch: 659
2023-02-19 13:41:47,556	32k	INFO	====> Epoch: 660
2023-02-19 13:42:07,868	32k	INFO	====> Epoch: 661
2023-02-19 13:42:28,224	32k	INFO	====> Epoch: 662
2023-02-19 13:42:48,842	32k	INFO	====> Epoch: 663
2023-02-19 13:42:55,986	32k	INFO	Train Epoch: 664 [16%]
2023-02-19 13:42:55,987	32k	INFO	[2.1531105041503906, 2.9205827713012695, 12.979509353637695, 14.956928253173828, 1.0134525299072266, 12600, 9.204614301917867e-05]
2023-02-19 13:43:09,755	32k	INFO	====> Epoch: 664
2023-02-19 13:43:30,293	32k	INFO	====> Epoch: 665
2023-02-19 13:43:50,838	32k	INFO	====> Epoch: 666
2023-02-19 13:44:11,454	32k	INFO	====> Epoch: 667
2023-02-19 13:44:32,018	32k	INFO	====> Epoch: 668
2023-02-19 13:44:52,353	32k	INFO	====> Epoch: 669
2023-02-19 13:45:12,710	32k	INFO	====> Epoch: 670
2023-02-19 13:45:32,939	32k	INFO	====> Epoch: 671
2023-02-19 13:45:53,246	32k	INFO	====> Epoch: 672
2023-02-19 13:46:13,398	32k	INFO	====> Epoch: 673
2023-02-19 13:46:29,187	32k	INFO	Train Epoch: 674 [68%]
2023-02-19 13:46:29,187	32k	INFO	[2.120356321334839, 2.7157726287841797, 13.795363426208496, 18.83095932006836, 0.682133138179779, 12800, 9.193115003878036e-05]
2023-02-19 13:46:34,017	32k	INFO	====> Epoch: 674
2023-02-19 13:46:54,188	32k	INFO	====> Epoch: 675
2023-02-19 13:47:14,233	32k	INFO	====> Epoch: 676
2023-02-19 13:47:34,315	32k	INFO	====> Epoch: 677
2023-02-19 13:47:54,390	32k	INFO	====> Epoch: 678
2023-02-19 13:48:14,419	32k	INFO	====> Epoch: 679
2023-02-19 13:48:34,434	32k	INFO	====> Epoch: 680
2023-02-19 13:48:54,500	32k	INFO	====> Epoch: 681
2023-02-19 13:49:14,535	32k	INFO	====> Epoch: 682
2023-02-19 13:49:34,589	32k	INFO	====> Epoch: 683
2023-02-19 13:49:54,633	32k	INFO	====> Epoch: 684
2023-02-19 13:50:02,241	32k	INFO	Train Epoch: 685 [21%]
2023-02-19 13:50:02,241	32k	INFO	[1.9549205303192139, 2.509674549102783, 15.415645599365234, 16.405630111694336, 0.5037123560905457, 13000, 9.180482368119022e-05]
2023-02-19 13:50:06,487	32k	INFO	Saving model and optimizer state at iteration 685 to ./logs\32k\G_13000.pth
2023-02-19 13:50:24,993	32k	INFO	Saving model and optimizer state at iteration 685 to ./logs\32k\D_13000.pth
2023-02-19 13:50:41,214	32k	INFO	====> Epoch: 685
2023-02-19 13:51:01,502	32k	INFO	====> Epoch: 686
2023-02-19 13:51:21,512	32k	INFO	====> Epoch: 687
2023-02-19 13:51:41,753	32k	INFO	====> Epoch: 688
2023-02-19 13:52:01,822	32k	INFO	====> Epoch: 689
2023-02-19 13:52:21,926	32k	INFO	====> Epoch: 690
2023-02-19 13:52:41,986	32k	INFO	====> Epoch: 691
2023-02-19 13:53:02,270	32k	INFO	====> Epoch: 692
2023-02-19 13:53:22,470	32k	INFO	====> Epoch: 693
2023-02-19 13:53:42,473	32k	INFO	====> Epoch: 694
2023-02-19 13:53:58,964	32k	INFO	Train Epoch: 695 [74%]
2023-02-19 13:53:58,964	32k	INFO	[2.0492773056030273, 2.9210152626037598, 20.51807403564453, 21.43520164489746, 1.142478108406067, 13200, 9.169013218034329e-05]
2023-02-19 13:54:02,863	32k	INFO	====> Epoch: 695
2023-02-19 13:54:22,924	32k	INFO	====> Epoch: 696
2023-02-19 13:54:42,972	32k	INFO	====> Epoch: 697
2023-02-19 13:55:03,260	32k	INFO	====> Epoch: 698
2023-02-19 13:55:23,335	32k	INFO	====> Epoch: 699
2023-02-19 13:55:43,367	32k	INFO	====> Epoch: 700
2023-02-19 13:56:03,452	32k	INFO	====> Epoch: 701
2023-02-19 13:56:23,507	32k	INFO	====> Epoch: 702
2023-02-19 13:56:43,553	32k	INFO	====> Epoch: 703
2023-02-19 13:57:03,890	32k	INFO	====> Epoch: 704
2023-02-19 13:57:24,195	32k	INFO	====> Epoch: 705
2023-02-19 13:57:32,664	32k	INFO	Train Epoch: 706 [26%]
2023-02-19 13:57:32,664	32k	INFO	[2.137279987335205, 2.8736164569854736, 16.14851188659668, 14.964777946472168, 0.5104328393936157, 13400, 9.156413701526141e-05]
2023-02-19 13:57:44,470	32k	INFO	====> Epoch: 706
2023-02-19 13:58:04,489	32k	INFO	====> Epoch: 707
2023-02-19 13:58:24,565	32k	INFO	====> Epoch: 708
2023-02-19 13:58:44,632	32k	INFO	====> Epoch: 709
2023-02-19 13:59:04,804	32k	INFO	====> Epoch: 710
2023-02-19 13:59:24,867	32k	INFO	====> Epoch: 711
2023-02-19 13:59:45,104	32k	INFO	====> Epoch: 712
2023-02-19 14:00:05,190	32k	INFO	====> Epoch: 713
2023-02-19 14:00:25,258	32k	INFO	====> Epoch: 714
2023-02-19 14:00:45,336	32k	INFO	====> Epoch: 715
2023-02-19 14:01:02,624	32k	INFO	Train Epoch: 716 [79%]
2023-02-19 14:01:02,624	32k	INFO	[1.762975811958313, 2.899984359741211, 21.13072967529297, 15.85500717163086, 1.2023099660873413, 13600, 9.144974620357048e-05]
2023-02-19 14:01:05,730	32k	INFO	====> Epoch: 716
2023-02-19 14:01:25,807	32k	INFO	====> Epoch: 717
2023-02-19 14:01:45,813	32k	INFO	====> Epoch: 718
2023-02-19 14:02:05,878	32k	INFO	====> Epoch: 719
2023-02-19 14:02:26,003	32k	INFO	====> Epoch: 720
2023-02-19 14:02:46,038	32k	INFO	====> Epoch: 721
2023-02-19 14:03:06,130	32k	INFO	====> Epoch: 722
2023-02-19 14:03:26,223	32k	INFO	====> Epoch: 723
2023-02-19 14:03:46,269	32k	INFO	====> Epoch: 724
2023-02-19 14:04:06,294	32k	INFO	====> Epoch: 725
2023-02-19 14:04:26,438	32k	INFO	====> Epoch: 726
2023-02-19 14:04:35,838	32k	INFO	Train Epoch: 727 [32%]
2023-02-19 14:04:35,839	32k	INFO	[2.231358051300049, 2.4955027103424072, 12.61548137664795, 13.37820816040039, 0.7114076614379883, 13800, 9.132408136270243e-05]
2023-02-19 14:04:46,835	32k	INFO	====> Epoch: 727
2023-02-19 14:05:07,009	32k	INFO	====> Epoch: 728
2023-02-19 14:05:27,022	32k	INFO	====> Epoch: 729
2023-02-19 14:05:47,131	32k	INFO	====> Epoch: 730
2023-02-19 14:06:07,140	32k	INFO	====> Epoch: 731
2023-02-19 14:06:27,225	32k	INFO	====> Epoch: 732
2023-02-19 14:06:47,266	32k	INFO	====> Epoch: 733
2023-02-19 14:07:07,365	32k	INFO	====> Epoch: 734
2023-02-19 14:07:27,419	32k	INFO	====> Epoch: 735
2023-02-19 14:07:47,463	32k	INFO	====> Epoch: 736
2023-02-19 14:08:05,749	32k	INFO	Train Epoch: 737 [84%]
2023-02-19 14:08:05,750	32k	INFO	[2.0271754264831543, 2.876140594482422, 14.655152320861816, 14.280223846435547, 0.5791776180267334, 14000, 9.120999045184433e-05]
2023-02-19 14:08:10,006	32k	INFO	Saving model and optimizer state at iteration 737 to ./logs\32k\G_14000.pth
2023-02-19 14:08:26,063	32k	INFO	Saving model and optimizer state at iteration 737 to ./logs\32k\D_14000.pth
2023-02-19 14:08:31,910	32k	INFO	====> Epoch: 737
2023-02-19 14:08:52,271	32k	INFO	====> Epoch: 738
2023-02-19 14:09:12,223	32k	INFO	====> Epoch: 739
2023-02-19 14:09:32,201	32k	INFO	====> Epoch: 740
2023-02-19 14:09:52,186	32k	INFO	====> Epoch: 741
2023-02-19 14:10:12,190	32k	INFO	====> Epoch: 742
2023-02-19 14:10:32,165	32k	INFO	====> Epoch: 743
2023-02-19 14:10:52,419	32k	INFO	====> Epoch: 744
2023-02-19 14:11:12,589	32k	INFO	====> Epoch: 745
2023-02-19 14:11:32,627	32k	INFO	====> Epoch: 746
2023-02-19 14:11:52,686	32k	INFO	====> Epoch: 747