File size: 24,531 Bytes
8237492 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
2023-02-14 13:12:41,308 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'hiyo': 0}, 'model_dir': './logs\\32k'}
2023-02-14 13:12:58,959 32k INFO Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-14 13:12:59,334 32k INFO Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-14 13:13:25,423 32k INFO Train Epoch: 1 [0%]
2023-02-14 13:13:25,424 32k INFO [2.7184720039367676, 2.6034836769104004, 11.849114418029785, 47.374595642089844, 9.48661994934082, 0, 0.0001]
2023-02-14 13:13:30,918 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
2023-02-14 13:13:47,803 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
2023-02-14 13:15:02,651 32k INFO ====> Epoch: 1
2023-02-14 13:16:34,036 32k INFO ====> Epoch: 2
2023-02-14 13:17:26,475 32k INFO Train Epoch: 3 [44%]
2023-02-14 13:17:26,475 32k INFO [2.6585214138031006, 2.366513252258301, 10.955318450927734, 23.930110931396484, 1.0435259342193604, 200, 9.99750015625e-05]
2023-02-14 13:18:05,652 32k INFO ====> Epoch: 3
2023-02-14 13:19:36,775 32k INFO ====> Epoch: 4
2023-02-14 13:20:59,955 32k INFO Train Epoch: 5 [88%]
2023-02-14 13:20:59,955 32k INFO [2.501133441925049, 2.350158452987671, 9.644698143005371, 22.92068862915039, 0.7671791315078735, 400, 9.995000937421877e-05]
2023-02-14 13:21:08,211 32k INFO ====> Epoch: 5
2023-02-14 13:22:39,553 32k INFO ====> Epoch: 6
2023-02-14 13:24:10,878 32k INFO ====> Epoch: 7
2023-02-14 13:24:54,687 32k INFO Train Epoch: 8 [32%]
2023-02-14 13:24:54,688 32k INFO [2.5303597450256348, 2.077411413192749, 12.605754852294922, 22.12200355529785, 1.3761812448501587, 600, 9.991253280566489e-05]
2023-02-14 13:25:42,491 32k INFO ====> Epoch: 8
2023-02-14 13:27:13,843 32k INFO ====> Epoch: 9
2023-02-14 13:28:28,606 32k INFO Train Epoch: 10 [76%]
2023-02-14 13:28:28,606 32k INFO [2.6250500679016113, 2.1927847862243652, 10.148731231689453, 20.529062271118164, 0.5864875316619873, 800, 9.98875562335968e-05]
2023-02-14 13:28:45,437 32k INFO ====> Epoch: 10
2023-02-14 13:30:16,681 32k INFO ====> Epoch: 11
2023-02-14 13:31:48,026 32k INFO ====> Epoch: 12
2023-02-14 13:32:23,413 32k INFO Train Epoch: 13 [20%]
2023-02-14 13:32:23,413 32k INFO [2.4075894355773926, 2.307851791381836, 11.19032096862793, 22.16382598876953, 1.286623239517212, 1000, 9.98501030820433e-05]
2023-02-14 13:32:27,543 32k INFO Saving model and optimizer state at iteration 13 to ./logs\32k\G_1000.pth
2023-02-14 13:32:44,941 32k INFO Saving model and optimizer state at iteration 13 to ./logs\32k\D_1000.pth
2023-02-14 13:33:44,326 32k INFO ====> Epoch: 13
2023-02-14 13:35:15,814 32k INFO ====> Epoch: 14
2023-02-14 13:36:22,132 32k INFO Train Epoch: 15 [63%]
2023-02-14 13:36:22,132 32k INFO [2.5968217849731445, 2.164472818374634, 8.871170043945312, 20.146108627319336, 0.8499955534934998, 1200, 9.982514211643064e-05]
2023-02-14 13:36:47,621 32k INFO ====> Epoch: 15
2023-02-14 13:38:19,098 32k INFO ====> Epoch: 16
2023-02-14 13:39:50,485 32k INFO ====> Epoch: 17
2023-02-14 13:40:17,300 32k INFO Train Epoch: 18 [7%]
2023-02-14 13:40:17,300 32k INFO [2.55147647857666, 2.1380293369293213, 11.658864974975586, 21.447202682495117, 1.0160374641418457, 1400, 9.978771236724554e-05]
2023-02-14 13:41:22,298 32k INFO ====> Epoch: 18
2023-02-14 13:42:53,875 32k INFO ====> Epoch: 19
2023-02-14 13:43:51,564 32k INFO Train Epoch: 20 [51%]
2023-02-14 13:43:51,565 32k INFO [2.5742850303649902, 2.244190216064453, 8.551454544067383, 19.180246353149414, 0.9120607376098633, 1600, 9.976276699833672e-05]
2023-02-14 13:44:25,617 32k INFO ====> Epoch: 20
2023-02-14 13:45:57,188 32k INFO ====> Epoch: 21
2023-02-14 13:47:25,925 32k INFO Train Epoch: 22 [95%]
2023-02-14 13:47:25,925 32k INFO [2.5543036460876465, 2.2138490676879883, 10.766397476196289, 21.196224212646484, 0.7341710329055786, 1800, 9.973782786538036e-05]
2023-02-14 13:47:29,068 32k INFO ====> Epoch: 22
2023-02-14 13:49:00,647 32k INFO ====> Epoch: 23
2023-02-14 13:50:32,139 32k INFO ====> Epoch: 24
2023-02-14 13:51:21,238 32k INFO Train Epoch: 25 [39%]
2023-02-14 13:51:21,238 32k INFO [2.556088447570801, 2.2134010791778564, 11.56871223449707, 19.313758850097656, 1.033575177192688, 2000, 9.970043085494672e-05]
2023-02-14 13:51:25,444 32k INFO Saving model and optimizer state at iteration 25 to ./logs\32k\G_2000.pth
2023-02-14 13:51:42,644 32k INFO Saving model and optimizer state at iteration 25 to ./logs\32k\D_2000.pth
2023-02-14 13:52:28,601 32k INFO ====> Epoch: 25
2023-02-14 13:54:00,018 32k INFO ====> Epoch: 26
2023-02-14 13:55:20,005 32k INFO Train Epoch: 27 [83%]
2023-02-14 13:55:20,005 32k INFO [2.6195037364959717, 2.2152504920959473, 9.765068054199219, 19.97799301147461, 0.9908173680305481, 2200, 9.967550730505221e-05]
2023-02-14 13:55:31,723 32k INFO ====> Epoch: 27
2023-02-14 13:57:03,227 32k INFO ====> Epoch: 28
2023-02-14 13:58:38,892 32k INFO ====> Epoch: 29
2023-02-14 13:59:19,484 32k INFO Train Epoch: 30 [27%]
2023-02-14 13:59:19,484 32k INFO [2.4715116024017334, 2.2915375232696533, 13.360817909240723, 22.131193161010742, 1.3168777227401733, 2400, 9.963813366190753e-05]
2023-02-14 14:00:10,655 32k INFO ====> Epoch: 30
2023-02-14 14:01:42,081 32k INFO ====> Epoch: 31
2023-02-14 14:02:53,596 32k INFO Train Epoch: 32 [71%]
2023-02-14 14:02:53,596 32k INFO [2.593963384628296, 2.0387449264526367, 9.328591346740723, 17.955137252807617, 0.30882203578948975, 2600, 9.961322568533789e-05]
2023-02-14 14:03:13,877 32k INFO ====> Epoch: 32
2023-02-14 14:04:45,281 32k INFO ====> Epoch: 33
2023-02-14 14:06:16,692 32k INFO ====> Epoch: 34
2023-02-14 14:06:48,668 32k INFO Train Epoch: 35 [15%]
2023-02-14 14:06:48,669 32k INFO [2.5350048542022705, 1.9605062007904053, 7.99984884262085, 16.31661033630371, 0.5040841698646545, 2800, 9.957587539488128e-05]
2023-02-14 14:07:48,449 32k INFO ====> Epoch: 35
2023-02-14 14:09:20,138 32k INFO ====> Epoch: 36
2023-02-14 14:10:23,083 32k INFO Train Epoch: 37 [59%]
2023-02-14 14:10:23,083 32k INFO [2.4650959968566895, 2.2761664390563965, 9.025921821594238, 19.93177604675293, 0.5862252712249756, 3000, 9.95509829819056e-05]
2023-02-14 14:10:27,302 32k INFO Saving model and optimizer state at iteration 37 to ./logs\32k\G_3000.pth
2023-02-14 14:10:44,327 32k INFO Saving model and optimizer state at iteration 37 to ./logs\32k\D_3000.pth
2023-02-14 14:11:16,616 32k INFO ====> Epoch: 37
2023-02-14 14:12:50,532 32k INFO ====> Epoch: 38
2023-02-14 14:14:23,408 32k INFO ====> Epoch: 39
2023-02-14 14:14:46,793 32k INFO Train Epoch: 40 [2%]
2023-02-14 14:14:46,794 32k INFO [2.3914408683776855, 2.3529629707336426, 12.639781951904297, 19.53929901123047, 0.5159912109375, 3200, 9.951365602954526e-05]
2023-02-14 14:15:55,371 32k INFO ====> Epoch: 40
2023-02-14 14:17:27,123 32k INFO ====> Epoch: 41
2023-02-14 14:18:21,616 32k INFO Train Epoch: 42 [46%]
2023-02-14 14:18:21,616 32k INFO [2.4428353309631348, 2.258873462677002, 10.040135383605957, 17.569446563720703, 0.9567443132400513, 3400, 9.948877917043875e-05]
2023-02-14 14:18:59,327 32k INFO ====> Epoch: 42
2023-02-14 14:20:31,127 32k INFO ====> Epoch: 43
2023-02-14 14:21:56,538 32k INFO Train Epoch: 44 [90%]
2023-02-14 14:21:56,539 32k INFO [2.3611392974853516, 2.405252456665039, 12.823965072631836, 20.826034545898438, 0.8344462513923645, 3600, 9.94639085301583e-05]
2023-02-14 14:22:03,119 32k INFO ====> Epoch: 44
2023-02-14 14:23:34,741 32k INFO ====> Epoch: 45
2023-02-14 14:25:06,470 32k INFO ====> Epoch: 46
2023-02-14 14:25:52,327 32k INFO Train Epoch: 47 [34%]
2023-02-14 14:25:52,327 32k INFO [2.4644553661346436, 2.2366631031036377, 11.37562370300293, 20.556499481201172, 0.9424434304237366, 3800, 9.942661422663591e-05]
2023-02-14 14:26:38,621 32k INFO ====> Epoch: 47
2023-02-14 14:28:10,337 32k INFO ====> Epoch: 48
2023-02-14 14:29:27,206 32k INFO Train Epoch: 49 [78%]
2023-02-14 14:29:27,206 32k INFO [2.5212016105651855, 2.3413655757904053, 10.579129219055176, 19.582210540771484, 0.94678795337677, 4000, 9.940175912662009e-05]
2023-02-14 14:29:31,315 32k INFO Saving model and optimizer state at iteration 49 to ./logs\32k\G_4000.pth
2023-02-14 14:29:48,727 32k INFO Saving model and optimizer state at iteration 49 to ./logs\32k\D_4000.pth
2023-02-14 14:30:07,524 32k INFO ====> Epoch: 49
2023-02-14 14:31:39,485 32k INFO ====> Epoch: 50
2023-02-14 14:33:11,385 32k INFO ====> Epoch: 51
2023-02-14 14:33:48,633 32k INFO Train Epoch: 52 [22%]
2023-02-14 14:33:48,634 32k INFO [2.2625677585601807, 2.5999932289123535, 16.192663192749023, 21.976665496826172, 0.7557628750801086, 4200, 9.936448812621091e-05]
2023-02-14 14:34:43,699 32k INFO ====> Epoch: 52
2023-02-14 14:36:15,604 32k INFO ====> Epoch: 53
2023-02-14 14:37:23,825 32k INFO Train Epoch: 54 [66%]
2023-02-14 14:37:23,825 32k INFO [2.500643730163574, 2.2777493000030518, 8.213461875915527, 17.501588821411133, 0.7716516256332397, 4400, 9.933964855674948e-05]
2023-02-14 14:37:47,647 32k INFO ====> Epoch: 54
2023-02-14 14:39:19,631 32k INFO ====> Epoch: 55
2023-02-14 14:40:51,967 32k INFO ====> Epoch: 56
2023-02-14 14:41:20,508 32k INFO Train Epoch: 57 [10%]
2023-02-14 14:41:20,508 32k INFO [2.4037282466888428, 2.369466543197632, 11.0797758102417, 18.995946884155273, 0.6406805515289307, 4600, 9.930240084489267e-05]
2023-02-14 14:42:23,986 32k INFO ====> Epoch: 57
2023-02-14 14:43:56,023 32k INFO ====> Epoch: 58
2023-02-14 14:44:55,964 32k INFO Train Epoch: 59 [54%]
2023-02-14 14:44:55,965 32k INFO [2.243375778198242, 2.4461309909820557, 15.596379280090332, 22.729717254638672, 0.9244585037231445, 4800, 9.927757679628145e-05]
2023-02-14 14:45:28,557 32k INFO ====> Epoch: 59
2023-02-14 14:47:00,367 32k INFO ====> Epoch: 60
2023-02-14 14:48:31,104 32k INFO Train Epoch: 61 [98%]
2023-02-14 14:48:31,105 32k INFO [2.5503604412078857, 2.111229658126831, 8.807084083557129, 16.10047721862793, 1.107606053352356, 5000, 9.92527589532945e-05]
2023-02-14 14:48:35,266 32k INFO Saving model and optimizer state at iteration 61 to ./logs\32k\G_5000.pth
2023-02-14 14:48:51,439 32k INFO Saving model and optimizer state at iteration 61 to ./logs\32k\D_5000.pth
2023-02-14 14:48:56,220 32k INFO ====> Epoch: 61
2023-02-14 14:50:27,858 32k INFO ====> Epoch: 62
2023-02-14 14:51:59,496 32k INFO ====> Epoch: 63
2023-02-14 14:52:50,498 32k INFO Train Epoch: 64 [41%]
2023-02-14 14:52:50,498 32k INFO [2.603325128555298, 2.3429884910583496, 11.47877025604248, 19.95724868774414, 0.4535157382488251, 5200, 9.921554382096622e-05]
2023-02-14 14:53:31,542 32k INFO ====> Epoch: 64
2023-02-14 14:55:03,278 32k INFO ====> Epoch: 65
2023-02-14 14:56:25,149 32k INFO Train Epoch: 66 [85%]
2023-02-14 14:56:25,149 32k INFO [2.548145055770874, 2.1794002056121826, 8.618596076965332, 18.201990127563477, 0.42253807187080383, 5400, 9.919074148525384e-05]
2023-02-14 14:56:35,169 32k INFO ====> Epoch: 66
2023-02-14 14:58:06,861 32k INFO ====> Epoch: 67
2023-02-14 14:59:38,893 32k INFO ====> Epoch: 68
2023-02-14 15:00:21,295 32k INFO Train Epoch: 69 [29%]
2023-02-14 15:00:21,295 32k INFO [2.462594985961914, 2.514474868774414, 8.234503746032715, 16.56818962097168, 0.3946729898452759, 5600, 9.915354960656915e-05]
2023-02-14 15:01:11,023 32k INFO ====> Epoch: 69
2023-02-14 15:02:42,743 32k INFO ====> Epoch: 70
2023-02-14 15:03:56,160 32k INFO Train Epoch: 71 [73%]
2023-02-14 15:03:56,161 32k INFO [2.3674912452697754, 2.400963306427002, 11.68331241607666, 21.614397048950195, 0.8642704486846924, 5800, 9.912876276844171e-05]
2023-02-14 15:04:14,926 32k INFO ====> Epoch: 71
2023-02-14 15:05:46,720 32k INFO ====> Epoch: 72
2023-02-14 15:07:18,452 32k INFO ====> Epoch: 73
2023-02-14 15:07:52,317 32k INFO Train Epoch: 74 [17%]
2023-02-14 15:07:52,318 32k INFO [2.3848366737365723, 2.3195393085479736, 11.794806480407715, 20.811321258544922, 0.9752936959266663, 6000, 9.909159412887068e-05]
2023-02-14 15:07:56,403 32k INFO Saving model and optimizer state at iteration 74 to ./logs\32k\G_6000.pth
2023-02-14 15:08:11,990 32k INFO Saving model and optimizer state at iteration 74 to ./logs\32k\D_6000.pth
2023-02-14 15:09:13,833 32k INFO ====> Epoch: 74
2023-02-14 15:10:45,810 32k INFO ====> Epoch: 75
2023-02-14 15:11:50,593 32k INFO Train Epoch: 76 [61%]
2023-02-14 15:11:50,594 32k INFO [2.413219451904297, 2.3621764183044434, 11.660679817199707, 19.284757614135742, 0.46086761355400085, 6200, 9.906682277864462e-05]
2023-02-14 15:12:17,911 32k INFO ====> Epoch: 76
2023-02-14 15:13:49,709 32k INFO ====> Epoch: 77
2023-02-14 15:15:21,342 32k INFO ====> Epoch: 78
2023-02-14 15:15:46,525 32k INFO Train Epoch: 79 [5%]
2023-02-14 15:15:46,526 32k INFO [2.4900527000427246, 2.1775360107421875, 11.207487106323242, 18.59693717956543, 1.0485306978225708, 6400, 9.902967736366644e-05]
2023-02-14 15:16:53,382 32k INFO ====> Epoch: 79
2023-02-14 15:18:25,180 32k INFO ====> Epoch: 80
2023-02-14 15:19:21,341 32k INFO Train Epoch: 81 [49%]
2023-02-14 15:19:21,342 32k INFO [2.4466681480407715, 2.321159839630127, 10.79179573059082, 18.92087173461914, 0.9803774356842041, 6600, 9.900492149166423e-05]
2023-02-14 15:19:57,171 32k INFO ====> Epoch: 81
2023-02-14 15:21:28,987 32k INFO ====> Epoch: 82
2023-02-14 15:22:56,286 32k INFO Train Epoch: 83 [93%]
2023-02-14 15:22:56,287 32k INFO [2.425461530685425, 2.4654641151428223, 11.531881332397461, 20.07356071472168, 1.0066664218902588, 6800, 9.89801718082432e-05]
2023-02-14 15:23:01,149 32k INFO ====> Epoch: 83
2023-02-14 15:24:32,889 32k INFO ====> Epoch: 84
2023-02-14 15:26:04,666 32k INFO ====> Epoch: 85
2023-02-14 15:26:52,217 32k INFO Train Epoch: 86 [37%]
2023-02-14 15:26:52,217 32k INFO [2.526332378387451, 2.203555107116699, 11.341078758239746, 20.046627044677734, 1.3592050075531006, 7000, 9.894305888331732e-05]
2023-02-14 15:26:56,417 32k INFO Saving model and optimizer state at iteration 86 to ./logs\32k\G_7000.pth
2023-02-14 15:27:14,398 32k INFO Saving model and optimizer state at iteration 86 to ./logs\32k\D_7000.pth
2023-02-14 15:28:02,287 32k INFO ====> Epoch: 86
2023-02-14 15:29:33,965 32k INFO ====> Epoch: 87
2023-02-14 15:30:52,509 32k INFO Train Epoch: 88 [80%]
2023-02-14 15:30:52,509 32k INFO [2.5021166801452637, 2.4259166717529297, 8.362788200378418, 17.521188735961914, 1.4112741947174072, 7200, 9.891832466458178e-05]
2023-02-14 15:31:05,995 32k INFO ====> Epoch: 88
2023-02-14 15:32:37,695 32k INFO ====> Epoch: 89
2023-02-14 15:34:09,432 32k INFO ====> Epoch: 90
2023-02-14 15:34:48,347 32k INFO Train Epoch: 91 [24%]
2023-02-14 15:34:48,347 32k INFO [2.2584304809570312, 2.37516188621521, 11.344868659973145, 20.501863479614258, 0.8927188515663147, 7400, 9.888123492943583e-05]
2023-02-14 15:35:41,516 32k INFO ====> Epoch: 91
2023-02-14 15:37:13,309 32k INFO ====> Epoch: 92
2023-02-14 15:38:23,255 32k INFO Train Epoch: 93 [68%]
2023-02-14 15:38:23,256 32k INFO [2.407334327697754, 2.4313995838165283, 5.9084062576293945, 14.895120620727539, 0.34809207916259766, 7600, 9.885651616572276e-05]
2023-02-14 15:38:45,350 32k INFO ====> Epoch: 93
2023-02-14 15:40:17,151 32k INFO ====> Epoch: 94
2023-02-14 15:41:48,881 32k INFO ====> Epoch: 95
2023-02-14 15:42:19,249 32k INFO Train Epoch: 96 [12%]
2023-02-14 15:42:19,250 32k INFO [2.475175142288208, 2.287485361099243, 12.157411575317383, 19.902236938476562, 0.8755276799201965, 7800, 9.881944960586671e-05]
2023-02-14 15:43:20,970 32k INFO ====> Epoch: 96
2023-02-14 15:44:52,717 32k INFO ====> Epoch: 97
2023-02-14 15:45:54,039 32k INFO Train Epoch: 98 [56%]
2023-02-14 15:45:54,040 32k INFO [2.4083688259124756, 2.3332595825195312, 8.003752708435059, 16.818313598632812, 0.21219749748706818, 8000, 9.879474628751914e-05]
2023-02-14 15:45:58,128 32k INFO Saving model and optimizer state at iteration 98 to ./logs\32k\G_8000.pth
2023-02-14 15:46:17,546 32k INFO Saving model and optimizer state at iteration 98 to ./logs\32k\D_8000.pth
2023-02-14 15:46:51,611 32k INFO ====> Epoch: 98
2023-02-14 15:48:23,605 32k INFO ====> Epoch: 99
2023-02-14 15:49:55,516 32k INFO ====> Epoch: 100
2023-02-14 15:50:17,192 32k INFO Train Epoch: 101 [0%]
2023-02-14 15:50:17,193 32k INFO [2.4577560424804688, 2.4049196243286133, 9.910334587097168, 17.469593048095703, 1.0077900886535645, 8200, 9.875770288847208e-05]
2023-02-14 15:51:27,581 32k INFO ====> Epoch: 101
2023-02-14 15:52:59,453 32k INFO ====> Epoch: 102
2023-02-14 15:53:52,351 32k INFO Train Epoch: 103 [44%]
2023-02-14 15:53:52,352 32k INFO [2.3302505016326904, 2.4835445880889893, 12.40600299835205, 19.35659408569336, 1.1815543174743652, 8400, 9.873301500583906e-05]
2023-02-14 15:54:31,690 32k INFO ====> Epoch: 103
2023-02-14 15:56:03,804 32k INFO ====> Epoch: 104
2023-02-14 15:57:27,545 32k INFO Train Epoch: 105 [88%]
2023-02-14 15:57:27,546 32k INFO [2.442326068878174, 2.3513882160186768, 8.61225700378418, 19.59931755065918, 0.6629721522331238, 8600, 9.870833329479095e-05]
2023-02-14 15:57:35,926 32k INFO ====> Epoch: 105
2023-02-14 15:59:07,717 32k INFO ====> Epoch: 106
2023-02-14 16:00:39,510 32k INFO ====> Epoch: 107
2023-02-14 16:01:23,648 32k INFO Train Epoch: 108 [32%]
2023-02-14 16:01:23,649 32k INFO [2.329326629638672, 2.2350986003875732, 12.052788734436035, 20.033588409423828, 0.4254380762577057, 8800, 9.867132229656573e-05]
2023-02-14 16:02:11,617 32k INFO ====> Epoch: 108
2023-02-14 16:03:43,324 32k INFO ====> Epoch: 109
2023-02-14 16:04:58,449 32k INFO Train Epoch: 110 [76%]
2023-02-14 16:04:58,449 32k INFO [2.2845022678375244, 2.4646148681640625, 13.254862785339355, 20.803882598876953, 0.39776870608329773, 9000, 9.864665600773098e-05]
2023-02-14 16:05:02,554 32k INFO Saving model and optimizer state at iteration 110 to ./logs\32k\G_9000.pth
2023-02-14 16:05:20,872 32k INFO Saving model and optimizer state at iteration 110 to ./logs\32k\D_9000.pth
2023-02-14 16:05:41,237 32k INFO ====> Epoch: 110
2023-02-14 16:07:12,826 32k INFO ====> Epoch: 111
2023-02-14 16:08:44,738 32k INFO ====> Epoch: 112
2023-02-14 16:09:20,227 32k INFO Train Epoch: 113 [20%]
2023-02-14 16:09:20,228 32k INFO [2.4082977771759033, 2.255082845687866, 10.537095069885254, 17.689083099365234, 0.7687245607376099, 9200, 9.86096681355974e-05]
2023-02-14 16:10:16,749 32k INFO ====> Epoch: 113
2023-02-14 16:11:48,707 32k INFO ====> Epoch: 114
2023-02-14 16:12:55,268 32k INFO Train Epoch: 115 [63%]
2023-02-14 16:12:55,268 32k INFO [2.531501293182373, 2.146554946899414, 8.033232688903809, 17.08489990234375, 0.7147048115730286, 9400, 9.858501725933955e-05]
2023-02-14 16:13:20,854 32k INFO ====> Epoch: 115
2023-02-14 16:14:52,750 32k INFO ====> Epoch: 116
2023-02-14 16:16:24,652 32k INFO ====> Epoch: 117
2023-02-14 16:16:51,576 32k INFO Train Epoch: 118 [7%]
2023-02-14 16:16:51,576 32k INFO [2.305955648422241, 2.5261385440826416, 11.671979904174805, 17.262502670288086, 0.9132139682769775, 9600, 9.854805249884741e-05]
2023-02-14 16:17:56,852 32k INFO ====> Epoch: 118
2023-02-14 16:19:28,743 32k INFO ====> Epoch: 119
2023-02-14 16:20:26,662 32k INFO Train Epoch: 120 [51%]
2023-02-14 16:20:26,663 32k INFO [2.406419038772583, 2.3848094940185547, 12.830516815185547, 19.702857971191406, 0.9984562397003174, 9800, 9.8523417025536e-05]
2023-02-14 16:21:00,932 32k INFO ====> Epoch: 120
2023-02-14 16:22:32,586 32k INFO ====> Epoch: 121
2023-02-14 16:24:01,646 32k INFO Train Epoch: 122 [95%]
2023-02-14 16:24:01,646 32k INFO [2.6088125705718994, 2.3717613220214844, 7.807750225067139, 17.539306640625, 0.6654758453369141, 10000, 9.8498787710708e-05]
2023-02-14 16:24:05,762 32k INFO Saving model and optimizer state at iteration 122 to ./logs\32k\G_10000.pth
2023-02-14 16:24:21,684 32k INFO Saving model and optimizer state at iteration 122 to ./logs\32k\D_10000.pth
2023-02-14 16:24:28,063 32k INFO ====> Epoch: 122
2023-02-14 16:26:00,976 32k INFO ====> Epoch: 123
2023-02-14 16:27:37,900 32k INFO ====> Epoch: 124
2023-02-14 16:28:33,348 32k INFO Train Epoch: 125 [39%]
2023-02-14 16:28:33,348 32k INFO [2.4001426696777344, 2.470517158508301, 13.341828346252441, 17.714656829833984, 0.679930567741394, 10200, 9.846185528225477e-05]
2023-02-14 16:29:19,086 32k INFO ====> Epoch: 125
2023-02-14 16:30:59,664 32k INFO ====> Epoch: 126
2023-02-14 16:32:28,289 32k INFO Train Epoch: 127 [83%]
2023-02-14 16:32:28,290 32k INFO [2.491032600402832, 2.2914695739746094, 10.223406791687012, 18.337860107421875, 0.9281787872314453, 10400, 9.84372413569007e-05]
2023-02-14 16:32:41,455 32k INFO ====> Epoch: 127
2023-02-14 16:34:22,334 32k INFO ====> Epoch: 128
2023-02-14 16:36:01,890 32k INFO ====> Epoch: 129
2023-02-14 16:36:43,266 32k INFO Train Epoch: 130 [27%]
2023-02-14 16:36:43,266 32k INFO [2.5348987579345703, 2.291205883026123, 14.648847579956055, 19.59044647216797, 0.8180601596832275, 10600, 9.840033200544528e-05]
2023-02-14 16:37:34,913 32k INFO ====> Epoch: 130
2023-02-14 16:39:06,291 32k INFO ====> Epoch: 131
2023-02-14 16:40:17,727 32k INFO Train Epoch: 132 [71%]
2023-02-14 16:40:17,727 32k INFO [2.404866933822632, 2.1770548820495605, 9.80937671661377, 16.411579132080078, 0.1555909514427185, 10800, 9.837573345994909e-05]
2023-02-14 16:40:37,992 32k INFO ====> Epoch: 132
2023-02-14 16:42:09,446 32k INFO ====> Epoch: 133
2023-02-14 16:43:42,676 32k INFO ====> Epoch: 134
2023-02-14 16:44:16,320 32k INFO Train Epoch: 135 [15%]
2023-02-14 16:44:16,320 32k INFO [2.379476547241211, 2.3253965377807617, 12.204051971435547, 18.108963012695312, 0.6560300588607788, 11000, 9.833884717107196e-05]
2023-02-14 16:44:20,463 32k INFO Saving model and optimizer state at iteration 135 to ./logs\32k\G_11000.pth
2023-02-14 16:44:40,760 32k INFO Saving model and optimizer state at iteration 135 to ./logs\32k\D_11000.pth
2023-02-14 16:45:43,602 32k INFO ====> Epoch: 135
2023-02-14 16:47:14,892 32k INFO ====> Epoch: 136
2023-02-14 16:48:17,804 32k INFO Train Epoch: 137 [59%]
2023-02-14 16:48:17,804 32k INFO [2.182915210723877, 2.490650177001953, 13.673564910888672, 19.964622497558594, 0.8504718542098999, 11200, 9.831426399582366e-05]
2023-02-14 16:48:46,586 32k INFO ====> Epoch: 137
2023-02-14 16:50:17,982 32k INFO ====> Epoch: 138
2023-02-14 16:51:49,652 32k INFO ====> Epoch: 139
2023-02-14 16:52:13,059 32k INFO Train Epoch: 140 [2%]
2023-02-14 16:52:13,059 32k INFO [2.4849462509155273, 2.2978439331054688, 10.085766792297363, 16.271583557128906, 0.9613367915153503, 11400, 9.827740075511432e-05]
2023-02-14 16:53:21,336 32k INFO ====> Epoch: 140
2023-02-14 16:54:52,874 32k INFO ====> Epoch: 141
2023-02-14 16:55:48,996 32k INFO Train Epoch: 142 [46%]
2023-02-14 16:55:48,996 32k INFO [2.419895887374878, 2.231900215148926, 9.550468444824219, 15.956775665283203, 0.6037944555282593, 11600, 9.825283294050992e-05]
2023-02-14 16:56:34,619 32k INFO ====> Epoch: 142
2023-02-14 16:58:12,965 32k INFO ====> Epoch: 143
2023-02-14 16:59:51,011 32k INFO Train Epoch: 144 [90%]
2023-02-14 16:59:51,012 32k INFO [2.526609182357788, 2.2438442707061768, 9.708596229553223, 18.94228744506836, 0.6018266081809998, 11800, 9.822827126747529e-05]
2023-02-14 16:59:58,459 32k INFO ====> Epoch: 144
2023-02-14 17:01:41,567 32k INFO ====> Epoch: 145
2023-02-14 17:03:19,851 32k INFO ====> Epoch: 146
2023-02-14 17:04:09,172 32k INFO Train Epoch: 147 [34%]
2023-02-14 17:04:09,173 32k INFO [2.1274771690368652, 2.403050661087036, 14.53994083404541, 20.740161895751953, 0.8522300720214844, 12000, 9.819144027000834e-05]
2023-02-14 17:04:13,341 32k INFO Saving model and optimizer state at iteration 147 to ./logs\32k\G_12000.pth
2023-02-14 17:04:30,263 32k INFO Saving model and optimizer state at iteration 147 to ./logs\32k\D_12000.pth
2023-02-14 17:05:36,434 32k INFO ====> Epoch: 147
|