File size: 31,581 Bytes
b5c4bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
2023-02-22 14:12:56,950	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'saika': 0}, 'model_dir': './logs\\32k'}
2023-02-22 14:12:56,950	32k	WARNING	K:\AI\so-vits-svc-32k is not a git repository, therefore hash value comparison will be ignored.
2023-02-22 14:13:01,617	32k	INFO	Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-22 14:13:02,013	32k	INFO	Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-22 14:13:28,354	32k	INFO	Train Epoch: 1 [0%]
2023-02-22 14:13:28,355	32k	INFO	[3.187079668045044, 3.543747663497925, 12.749074935913086, 35.17381286621094, 6.83956241607666, 0, 0.0001]
2023-02-22 14:13:34,228	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
2023-02-22 14:13:52,172	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
2023-02-22 14:15:03,077	32k	INFO	====> Epoch: 1
2023-02-22 14:16:31,043	32k	INFO	====> Epoch: 2
2023-02-22 14:17:26,851	32k	INFO	Train Epoch: 3 [50%]
2023-02-22 14:17:26,851	32k	INFO	[2.488687515258789, 2.5710129737854004, 14.215274810791016, 26.32855796813965, 1.4047647714614868, 200, 9.99750015625e-05]
2023-02-22 14:17:59,730	32k	INFO	====> Epoch: 3
2023-02-22 14:19:27,494	32k	INFO	====> Epoch: 4
2023-02-22 14:20:55,315	32k	INFO	====> Epoch: 5
2023-02-22 14:21:17,292	32k	INFO	Train Epoch: 6 [0%]
2023-02-22 14:21:17,292	32k	INFO	[2.2817749977111816, 2.477022171020508, 12.80789852142334, 22.15078353881836, 1.1265417337417603, 400, 9.993751562304699e-05]
2023-02-22 14:32:12,662	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 5, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'saika': 0}, 'model_dir': './logs\\32k'}
2023-02-22 14:32:12,663	32k	WARNING	K:\AI\so-vits-svc-32k is not a git repository, therefore hash value comparison will be ignored.
2023-02-22 14:32:17,462	32k	INFO	Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-22 14:32:17,863	32k	INFO	Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-22 14:32:43,402	32k	INFO	Train Epoch: 1 [0%]
2023-02-22 14:32:43,402	32k	INFO	[3.086385726928711, 3.1004512310028076, 11.565768241882324, 32.38859558105469, 5.992624759674072, 0, 0.0001]
2023-02-22 14:32:49,281	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
2023-02-22 14:33:08,839	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
2023-02-22 14:34:22,487	32k	INFO	====> Epoch: 1
2023-02-22 14:35:53,637	32k	INFO	====> Epoch: 2
2023-02-22 14:36:21,152	32k	INFO	Train Epoch: 3 [8%]
2023-02-22 14:36:21,152	32k	INFO	[2.3054869174957275, 2.327169418334961, 12.3760347366333, 22.735485076904297, 0.9988258481025696, 200, 9.99750015625e-05]
2023-02-22 14:37:24,967	32k	INFO	====> Epoch: 3
2023-02-22 14:38:56,168	32k	INFO	====> Epoch: 4
2023-02-22 14:39:29,664	32k	INFO	Train Epoch: 5 [17%]
2023-02-22 14:39:29,664	32k	INFO	[2.247507095336914, 2.4475936889648438, 12.479228019714355, 23.749866485595703, 1.3646601438522339, 400, 9.995000937421877e-05]
2023-02-22 14:40:27,690	32k	INFO	====> Epoch: 5
2023-02-22 14:41:58,975	32k	INFO	====> Epoch: 6
2023-02-22 14:42:38,309	32k	INFO	Train Epoch: 7 [25%]
2023-02-22 14:42:38,310	32k	INFO	[2.720693349838257, 2.3375821113586426, 9.826765060424805, 21.648380279541016, 0.9433642625808716, 600, 9.99250234335941e-05]
2023-02-22 14:43:30,606	32k	INFO	====> Epoch: 7
2023-02-22 14:45:01,819	32k	INFO	====> Epoch: 8
2023-02-22 14:45:47,085	32k	INFO	Train Epoch: 9 [33%]
2023-02-22 14:45:47,085	32k	INFO	[2.5194616317749023, 2.6869425773620605, 12.535841941833496, 22.44904327392578, 1.2266863584518433, 800, 9.990004373906418e-05]
2023-02-22 14:46:33,458	32k	INFO	====> Epoch: 9
2023-02-22 14:48:04,723	32k	INFO	====> Epoch: 10
2023-02-22 14:48:55,750	32k	INFO	Train Epoch: 11 [42%]
2023-02-22 14:48:55,750	32k	INFO	[2.049856424331665, 3.2148919105529785, 9.496326446533203, 15.099220275878906, 1.1717641353607178, 1000, 9.987507028906759e-05]
2023-02-22 14:49:00,183	32k	INFO	Saving model and optimizer state at iteration 11 to ./logs\32k\G_1000.pth
2023-02-22 14:49:19,296	32k	INFO	Saving model and optimizer state at iteration 11 to ./logs\32k\D_1000.pth
2023-02-22 14:50:03,757	32k	INFO	====> Epoch: 11
2023-02-22 14:51:35,495	32k	INFO	====> Epoch: 12
2023-02-22 14:52:32,553	32k	INFO	Train Epoch: 13 [50%]
2023-02-22 14:52:32,554	32k	INFO	[2.489741802215576, 2.4319345951080322, 11.793535232543945, 20.218076705932617, 0.7845316529273987, 1200, 9.98501030820433e-05]
2023-02-22 14:53:07,458	32k	INFO	====> Epoch: 13
2023-02-22 14:54:39,323	32k	INFO	====> Epoch: 14
2023-02-22 14:55:42,302	32k	INFO	Train Epoch: 15 [58%]
2023-02-22 14:55:42,302	32k	INFO	[2.609837055206299, 2.1415061950683594, 8.502999305725098, 19.083311080932617, 1.204352855682373, 1400, 9.982514211643064e-05]
2023-02-22 14:56:11,452	32k	INFO	====> Epoch: 15
2023-02-22 14:57:43,335	32k	INFO	====> Epoch: 16
2023-02-22 14:58:52,204	32k	INFO	Train Epoch: 17 [67%]
2023-02-22 14:58:52,205	32k	INFO	[2.5788638591766357, 2.1364264488220215, 7.731012344360352, 15.810824394226074, 1.110003113746643, 1600, 9.980018739066937e-05]
2023-02-22 14:59:15,498	32k	INFO	====> Epoch: 17
2023-02-22 15:00:47,193	32k	INFO	====> Epoch: 18
2023-02-22 15:02:01,857	32k	INFO	Train Epoch: 19 [75%]
2023-02-22 15:02:01,857	32k	INFO	[2.5087671279907227, 2.266523838043213, 9.564532279968262, 18.576448440551758, 0.7115161418914795, 1800, 9.977523890319963e-05]
2023-02-22 15:02:19,244	32k	INFO	====> Epoch: 19
2023-02-22 15:03:51,055	32k	INFO	====> Epoch: 20
2023-02-22 15:05:11,654	32k	INFO	Train Epoch: 21 [83%]
2023-02-22 15:05:11,655	32k	INFO	[2.3199269771575928, 2.477095603942871, 11.856741905212402, 20.60849952697754, 0.9765581488609314, 2000, 9.975029665246193e-05]
2023-02-22 15:05:16,169	32k	INFO	Saving model and optimizer state at iteration 21 to ./logs\32k\G_2000.pth
2023-02-22 15:05:35,247	32k	INFO	Saving model and optimizer state at iteration 21 to ./logs\32k\D_2000.pth
2023-02-22 15:05:50,320	32k	INFO	====> Epoch: 21
2023-02-22 15:07:22,122	32k	INFO	====> Epoch: 22
2023-02-22 15:08:48,724	32k	INFO	Train Epoch: 23 [92%]
2023-02-22 15:08:48,724	32k	INFO	[2.5126163959503174, 2.3070528507232666, 11.5335693359375, 21.152307510375977, 1.1387696266174316, 2200, 9.972536063689719e-05]
2023-02-22 15:08:54,325	32k	INFO	====> Epoch: 23
2023-02-22 15:10:26,193	32k	INFO	====> Epoch: 24
2023-02-22 15:11:58,042	32k	INFO	====> Epoch: 25
2023-02-22 15:12:19,978	32k	INFO	Train Epoch: 26 [0%]
2023-02-22 15:12:19,978	32k	INFO	[2.566260814666748, 2.118185520172119, 8.801782608032227, 16.81813621520996, 0.8712365627288818, 2400, 9.968796830108985e-05]
2023-02-22 15:13:30,299	32k	INFO	====> Epoch: 26
2023-02-22 15:15:02,065	32k	INFO	====> Epoch: 27
2023-02-22 15:15:29,847	32k	INFO	Train Epoch: 28 [8%]
2023-02-22 15:15:29,847	32k	INFO	[2.5252060890197754, 2.0401153564453125, 10.247071266174316, 18.943756103515625, 1.3569800853729248, 2600, 9.966304786663908e-05]
2023-02-22 15:16:34,164	32k	INFO	====> Epoch: 28
2023-02-22 15:18:06,132	32k	INFO	====> Epoch: 29
2023-02-22 15:18:39,775	32k	INFO	Train Epoch: 30 [17%]
2023-02-22 15:18:39,775	32k	INFO	[2.5057239532470703, 2.326035976409912, 11.950654983520508, 22.501440048217773, 1.2382237911224365, 2800, 9.963813366190753e-05]
2023-02-22 15:19:38,222	32k	INFO	====> Epoch: 30
2023-02-22 15:21:10,107	32k	INFO	====> Epoch: 31
2023-02-22 15:21:49,589	32k	INFO	Train Epoch: 32 [25%]
2023-02-22 15:21:49,590	32k	INFO	[2.2636756896972656, 2.373335123062134, 11.810818672180176, 19.981029510498047, 0.858932614326477, 3000, 9.961322568533789e-05]
2023-02-22 15:21:54,053	32k	INFO	Saving model and optimizer state at iteration 32 to ./logs\32k\G_3000.pth
2023-02-22 15:22:11,823	32k	INFO	Saving model and optimizer state at iteration 32 to ./logs\32k\D_3000.pth
2023-02-22 15:23:07,665	32k	INFO	====> Epoch: 32
2023-02-22 15:24:39,609	32k	INFO	====> Epoch: 33
2023-02-22 15:25:25,049	32k	INFO	Train Epoch: 34 [33%]
2023-02-22 15:25:25,050	32k	INFO	[2.5494279861450195, 2.0830795764923096, 6.602403163909912, 10.558989524841309, 1.0258899927139282, 3200, 9.95883239353732e-05]
2023-02-22 15:26:11,828	32k	INFO	====> Epoch: 34
2023-02-22 15:27:43,763	32k	INFO	====> Epoch: 35
2023-02-22 15:28:35,139	32k	INFO	Train Epoch: 36 [42%]
2023-02-22 15:28:35,139	32k	INFO	[2.4735586643218994, 2.1442575454711914, 10.77430248260498, 18.345321655273438, 0.9167714715003967, 3400, 9.956342841045691e-05]
2023-02-22 15:29:16,168	32k	INFO	====> Epoch: 36
2023-02-22 15:30:48,154	32k	INFO	====> Epoch: 37
2023-02-22 15:31:45,388	32k	INFO	Train Epoch: 38 [50%]
2023-02-22 15:31:45,388	32k	INFO	[2.1438865661621094, 2.6590867042541504, 13.766039848327637, 20.467525482177734, 1.1156392097473145, 3600, 9.953853910903285e-05]
2023-02-22 15:32:20,434	32k	INFO	====> Epoch: 38
2023-02-22 15:33:52,419	32k	INFO	====> Epoch: 39
2023-02-22 15:34:55,633	32k	INFO	Train Epoch: 40 [58%]
2023-02-22 15:34:55,634	32k	INFO	[2.2264719009399414, 2.578108549118042, 13.543416023254395, 20.043352127075195, 1.2697389125823975, 3800, 9.951365602954526e-05]
2023-02-22 15:35:24,767	32k	INFO	====> Epoch: 40
2023-02-22 15:36:56,696	32k	INFO	====> Epoch: 41
2023-02-22 15:38:05,727	32k	INFO	Train Epoch: 42 [67%]
2023-02-22 15:38:05,727	32k	INFO	[2.699327230453491, 2.1295037269592285, 6.064660549163818, 14.428650856018066, 1.158591628074646, 4000, 9.948877917043875e-05]
2023-02-22 15:38:10,077	32k	INFO	Saving model and optimizer state at iteration 42 to ./logs\32k\G_4000.pth
2023-02-22 15:38:26,694	32k	INFO	Saving model and optimizer state at iteration 42 to ./logs\32k\D_4000.pth
2023-02-22 15:38:53,288	32k	INFO	====> Epoch: 42
2023-02-22 15:40:25,213	32k	INFO	====> Epoch: 43
2023-02-22 15:41:40,124	32k	INFO	Train Epoch: 44 [75%]
2023-02-22 15:41:40,125	32k	INFO	[2.5202181339263916, 2.263179063796997, 8.506352424621582, 14.219698905944824, 1.1474385261535645, 4200, 9.94639085301583e-05]
2023-02-22 15:41:57,522	32k	INFO	====> Epoch: 44
2023-02-22 15:43:29,518	32k	INFO	====> Epoch: 45
2023-02-22 15:44:50,330	32k	INFO	Train Epoch: 46 [83%]
2023-02-22 15:44:50,331	32k	INFO	[2.5390665531158447, 2.3581087589263916, 10.267776489257812, 18.579225540161133, 0.5731378197669983, 4400, 9.943904410714931e-05]
2023-02-22 15:45:01,966	32k	INFO	====> Epoch: 46
2023-02-22 15:46:34,021	32k	INFO	====> Epoch: 47
2023-02-22 15:48:00,727	32k	INFO	Train Epoch: 48 [92%]
2023-02-22 15:48:00,727	32k	INFO	[2.515454053878784, 2.529177188873291, 9.766312599182129, 17.621761322021484, 0.8474573493003845, 4600, 9.941418589985758e-05]
2023-02-22 15:48:06,337	32k	INFO	====> Epoch: 48
2023-02-22 15:49:38,320	32k	INFO	====> Epoch: 49
2023-02-22 15:51:10,201	32k	INFO	====> Epoch: 50
2023-02-22 15:51:32,250	32k	INFO	Train Epoch: 51 [0%]
2023-02-22 15:51:32,251	32k	INFO	[2.3931424617767334, 2.356489419937134, 9.818400382995605, 17.91476821899414, 0.9206458926200867, 4800, 9.937691023999092e-05]
2023-02-22 15:52:42,572	32k	INFO	====> Epoch: 51
2023-02-22 15:54:14,584	32k	INFO	====> Epoch: 52
2023-02-22 15:54:42,402	32k	INFO	Train Epoch: 53 [8%]
2023-02-22 15:54:42,403	32k	INFO	[2.62162184715271, 2.1928069591522217, 7.006716251373291, 12.615202903747559, 1.3347645998001099, 5000, 9.935206756519513e-05]
2023-02-22 15:54:46,954	32k	INFO	Saving model and optimizer state at iteration 53 to ./logs\32k\G_5000.pth
2023-02-22 15:55:04,806	32k	INFO	Saving model and optimizer state at iteration 53 to ./logs\32k\D_5000.pth
2023-02-22 15:56:12,484	32k	INFO	====> Epoch: 53
2023-02-22 15:57:44,459	32k	INFO	====> Epoch: 54
2023-02-22 15:58:18,146	32k	INFO	Train Epoch: 55 [17%]
2023-02-22 15:58:18,146	32k	INFO	[2.3371574878692627, 2.5377357006073, 12.064924240112305, 20.312028884887695, 0.8844712376594543, 5200, 9.932723110067987e-05]
2023-02-22 15:59:16,702	32k	INFO	====> Epoch: 55
2023-02-22 16:00:48,683	32k	INFO	====> Epoch: 56
2023-02-22 16:01:28,287	32k	INFO	Train Epoch: 57 [25%]
2023-02-22 16:01:28,287	32k	INFO	[2.4237263202667236, 2.382598876953125, 9.18662166595459, 19.957326889038086, 0.973038375377655, 5400, 9.930240084489267e-05]
2023-02-22 16:02:21,032	32k	INFO	====> Epoch: 57
2023-02-22 16:03:53,053	32k	INFO	====> Epoch: 58
2023-02-22 16:04:38,512	32k	INFO	Train Epoch: 59 [33%]
2023-02-22 16:04:38,513	32k	INFO	[2.5449366569519043, 2.398916006088257, 6.566847801208496, 14.815089225769043, 0.9515616297721863, 5600, 9.927757679628145e-05]
2023-02-22 16:05:25,239	32k	INFO	====> Epoch: 59
2023-02-22 16:06:57,184	32k	INFO	====> Epoch: 60
2023-02-22 16:07:48,540	32k	INFO	Train Epoch: 61 [42%]
2023-02-22 16:07:48,541	32k	INFO	[2.401327610015869, 2.294501781463623, 10.175949096679688, 17.809703826904297, 0.2573431134223938, 5800, 9.92527589532945e-05]
2023-02-22 16:08:29,513	32k	INFO	====> Epoch: 61
2023-02-22 16:10:01,428	32k	INFO	====> Epoch: 62
2023-02-22 16:10:58,728	32k	INFO	Train Epoch: 63 [50%]
2023-02-22 16:10:58,728	32k	INFO	[2.3318843841552734, 2.3909454345703125, 14.289694786071777, 23.690601348876953, 0.8774771094322205, 6000, 9.922794731438052e-05]
2023-02-22 16:11:03,111	32k	INFO	Saving model and optimizer state at iteration 63 to ./logs\32k\G_6000.pth
2023-02-22 16:11:21,087	32k	INFO	Saving model and optimizer state at iteration 63 to ./logs\32k\D_6000.pth
2023-02-22 16:11:59,465	32k	INFO	====> Epoch: 63
2023-02-22 16:13:31,525	32k	INFO	====> Epoch: 64
2023-02-22 16:14:34,657	32k	INFO	Train Epoch: 65 [58%]
2023-02-22 16:14:34,658	32k	INFO	[2.5927109718322754, 1.9995574951171875, 10.218186378479004, 17.972421646118164, 0.97355717420578, 6200, 9.92031418779886e-05]
2023-02-22 16:15:03,864	32k	INFO	====> Epoch: 65
2023-02-22 16:16:35,954	32k	INFO	====> Epoch: 66
2023-02-22 16:17:44,886	32k	INFO	Train Epoch: 67 [67%]
2023-02-22 16:17:44,886	32k	INFO	[2.424114942550659, 2.504781484603882, 8.676969528198242, 19.212587356567383, 0.6396912336349487, 6400, 9.917834264256819e-05]
2023-02-22 16:18:08,323	32k	INFO	====> Epoch: 67
2023-02-22 16:19:40,252	32k	INFO	====> Epoch: 68
2023-02-22 16:20:55,170	32k	INFO	Train Epoch: 69 [75%]
2023-02-22 16:20:55,170	32k	INFO	[2.1533024311065674, 3.0644826889038086, 7.629947662353516, 12.209115982055664, 0.5737940669059753, 6600, 9.915354960656915e-05]
2023-02-22 16:21:12,576	32k	INFO	====> Epoch: 69
2023-02-22 16:22:44,491	32k	INFO	====> Epoch: 70
2023-02-22 16:24:05,302	32k	INFO	Train Epoch: 71 [83%]
2023-02-22 16:24:05,303	32k	INFO	[2.5728468894958496, 2.255802631378174, 12.372926712036133, 19.72517204284668, 0.4394569396972656, 6800, 9.912876276844171e-05]
2023-02-22 16:24:16,802	32k	INFO	====> Epoch: 71
2023-02-22 16:25:48,812	32k	INFO	====> Epoch: 72
2023-02-22 16:27:15,565	32k	INFO	Train Epoch: 73 [92%]
2023-02-22 16:27:15,566	32k	INFO	[2.4174983501434326, 2.583244800567627, 12.01104736328125, 20.709869384765625, 0.8593897223472595, 7000, 9.910398212663652e-05]
2023-02-22 16:27:19,933	32k	INFO	Saving model and optimizer state at iteration 73 to ./logs\32k\G_7000.pth
2023-02-22 16:27:36,201	32k	INFO	Saving model and optimizer state at iteration 73 to ./logs\32k\D_7000.pth
2023-02-22 16:27:45,345	32k	INFO	====> Epoch: 73
2023-02-22 16:29:17,311	32k	INFO	====> Epoch: 74
2023-02-22 16:30:49,193	32k	INFO	====> Epoch: 75
2023-02-22 16:31:11,286	32k	INFO	Train Epoch: 76 [0%]
2023-02-22 16:31:11,286	32k	INFO	[2.4050168991088867, 2.314572334289551, 10.949235916137695, 17.868207931518555, 0.8503013849258423, 7200, 9.906682277864462e-05]
2023-02-22 16:32:21,498	32k	INFO	====> Epoch: 76
2023-02-22 16:33:53,639	32k	INFO	====> Epoch: 77
2023-02-22 16:34:21,492	32k	INFO	Train Epoch: 78 [8%]
2023-02-22 16:34:21,492	32k	INFO	[2.33305025100708, 2.5026371479034424, 10.88790225982666, 19.406280517578125, 0.8907907605171204, 7400, 9.904205762086905e-05]
2023-02-22 16:35:25,844	32k	INFO	====> Epoch: 78
2023-02-22 16:36:57,756	32k	INFO	====> Epoch: 79
2023-02-22 16:37:33,287	32k	INFO	Train Epoch: 80 [17%]
2023-02-22 16:37:33,287	32k	INFO	[2.3774352073669434, 2.40655517578125, 11.575504302978516, 19.511062622070312, 0.7897243499755859, 7600, 9.901729865399597e-05]
2023-02-22 16:38:33,509	32k	INFO	====> Epoch: 80
2023-02-22 16:40:21,757	32k	INFO	====> Epoch: 81
2023-02-22 16:41:05,284	32k	INFO	Train Epoch: 82 [25%]
2023-02-22 16:41:05,285	32k	INFO	[2.507054090499878, 2.5407822132110596, 10.627754211425781, 19.242189407348633, 1.1186254024505615, 7800, 9.899254587647776e-05]
2023-02-22 16:42:05,985	32k	INFO	====> Epoch: 82
2023-02-22 16:43:40,273	32k	INFO	====> Epoch: 83
2023-02-22 16:44:26,718	32k	INFO	Train Epoch: 84 [33%]
2023-02-22 16:44:26,718	32k	INFO	[2.372248649597168, 2.335797071456909, 10.346333503723145, 19.8045597076416, 0.8870834708213806, 8000, 9.896779928676716e-05]
2023-02-22 16:44:31,079	32k	INFO	Saving model and optimizer state at iteration 84 to ./logs\32k\G_8000.pth
2023-02-22 16:44:47,704	32k	INFO	Saving model and optimizer state at iteration 84 to ./logs\32k\D_8000.pth
2023-02-22 16:45:39,633	32k	INFO	====> Epoch: 84
2023-02-22 16:47:14,215	32k	INFO	====> Epoch: 85
2023-02-22 16:48:06,579	32k	INFO	Train Epoch: 86 [42%]
2023-02-22 16:48:06,580	32k	INFO	[2.71091628074646, 1.917865514755249, 6.362136363983154, 12.128801345825195, 0.7704624533653259, 8200, 9.894305888331732e-05]
2023-02-22 16:48:48,895	32k	INFO	====> Epoch: 86
2023-02-22 16:50:23,435	32k	INFO	====> Epoch: 87
2023-02-22 16:51:21,956	32k	INFO	Train Epoch: 88 [50%]
2023-02-22 16:51:21,956	32k	INFO	[2.347158193588257, 2.519123077392578, 13.479973793029785, 21.263261795043945, 1.0561842918395996, 8400, 9.891832466458178e-05]
2023-02-22 16:51:58,188	32k	INFO	====> Epoch: 88
2023-02-22 16:53:32,713	32k	INFO	====> Epoch: 89
2023-02-22 16:54:37,198	32k	INFO	Train Epoch: 90 [58%]
2023-02-22 16:54:37,198	32k	INFO	[2.253192901611328, 2.7299721240997314, 10.998817443847656, 17.6474552154541, 0.6397795081138611, 8600, 9.889359662901445e-05]
2023-02-22 16:55:07,253	32k	INFO	====> Epoch: 90
2023-02-22 16:56:41,772	32k	INFO	====> Epoch: 91
2023-02-22 16:57:52,446	32k	INFO	Train Epoch: 92 [67%]
2023-02-22 16:57:52,446	32k	INFO	[2.1650004386901855, 2.9927978515625, 12.249756813049316, 19.009756088256836, 0.5815404653549194, 8800, 9.886887477506964e-05]
2023-02-22 16:58:16,630	32k	INFO	====> Epoch: 92
2023-02-22 16:59:51,089	32k	INFO	====> Epoch: 93
2023-02-22 17:01:07,832	32k	INFO	Train Epoch: 94 [75%]
2023-02-22 17:01:07,832	32k	INFO	[2.2091586589813232, 2.7259390354156494, 8.377230644226074, 15.831489562988281, 1.1868693828582764, 9000, 9.884415910120204e-05]
2023-02-22 17:01:12,237	32k	INFO	Saving model and optimizer state at iteration 94 to ./logs\32k\G_9000.pth
2023-02-22 17:01:29,650	32k	INFO	Saving model and optimizer state at iteration 94 to ./logs\32k\D_9000.pth
2023-02-22 17:01:51,234	32k	INFO	====> Epoch: 94
2023-02-22 17:03:26,924	32k	INFO	====> Epoch: 95
2023-02-22 17:04:49,734	32k	INFO	Train Epoch: 96 [83%]
2023-02-22 17:04:49,734	32k	INFO	[2.2579903602600098, 2.5196046829223633, 11.29547119140625, 19.78851318359375, 0.7442747950553894, 9200, 9.881944960586671e-05]
2023-02-22 17:05:01,727	32k	INFO	====> Epoch: 96
2023-02-22 17:06:36,234	32k	INFO	====> Epoch: 97
2023-02-22 17:08:05,105	32k	INFO	Train Epoch: 98 [92%]
2023-02-22 17:08:05,106	32k	INFO	[2.2475061416625977, 2.572089195251465, 12.223832130432129, 19.65192413330078, 1.1417388916015625, 9400, 9.879474628751914e-05]
2023-02-22 17:08:10,877	32k	INFO	====> Epoch: 98
2023-02-22 17:09:45,334	32k	INFO	====> Epoch: 99
2023-02-22 17:11:19,697	32k	INFO	====> Epoch: 100
2023-02-22 17:11:41,688	32k	INFO	Train Epoch: 101 [0%]
2023-02-22 17:11:41,688	32k	INFO	[2.349648952484131, 2.544644594192505, 11.396925926208496, 19.187210083007812, 1.01069974899292, 9600, 9.875770288847208e-05]
2023-02-22 17:12:54,275	32k	INFO	====> Epoch: 101
2023-02-22 17:14:28,617	32k	INFO	====> Epoch: 102
2023-02-22 17:14:56,638	32k	INFO	Train Epoch: 103 [8%]
2023-02-22 17:14:56,639	32k	INFO	[2.373283863067627, 2.405756711959839, 11.242820739746094, 19.008630752563477, 0.8255038857460022, 9800, 9.873301500583906e-05]
2023-02-22 17:16:03,251	32k	INFO	====> Epoch: 103
2023-02-22 17:17:37,617	32k	INFO	====> Epoch: 104
2023-02-22 17:18:11,823	32k	INFO	Train Epoch: 105 [17%]
2023-02-22 17:18:11,823	32k	INFO	[2.284367084503174, 2.3137102127075195, 11.732841491699219, 19.72892951965332, 0.8187623620033264, 10000, 9.870833329479095e-05]
2023-02-22 17:18:16,173	32k	INFO	Saving model and optimizer state at iteration 105 to ./logs\32k\G_10000.pth
2023-02-22 17:18:35,785	32k	INFO	Saving model and optimizer state at iteration 105 to ./logs\32k\D_10000.pth
2023-02-22 17:19:39,979	32k	INFO	====> Epoch: 105
2023-02-22 17:21:14,353	32k	INFO	====> Epoch: 106
2023-02-22 17:21:54,670	32k	INFO	Train Epoch: 107 [25%]
2023-02-22 17:21:54,670	32k	INFO	[2.573239326477051, 2.3250515460968018, 10.18419361114502, 19.073320388793945, 1.2266535758972168, 10200, 9.868365775378495e-05]
2023-02-22 17:22:49,113	32k	INFO	====> Epoch: 107
2023-02-22 17:24:23,459	32k	INFO	====> Epoch: 108
2023-02-22 17:25:09,774	32k	INFO	Train Epoch: 109 [33%]
2023-02-22 17:25:09,775	32k	INFO	[2.383540153503418, 2.1890156269073486, 9.045347213745117, 16.33897590637207, 1.013568639755249, 10400, 9.865898838127865e-05]
2023-02-22 17:25:58,126	32k	INFO	====> Epoch: 109
2023-02-22 17:27:32,628	32k	INFO	====> Epoch: 110
2023-02-22 17:28:24,990	32k	INFO	Train Epoch: 111 [42%]
2023-02-22 17:28:24,990	32k	INFO	[2.5534281730651855, 2.1356728076934814, 6.74716854095459, 11.141881942749023, 0.9786153435707092, 10600, 9.863432517573002e-05]
2023-02-22 17:29:07,375	32k	INFO	====> Epoch: 111
2023-02-22 17:30:41,812	32k	INFO	====> Epoch: 112
2023-02-22 17:31:40,243	32k	INFO	Train Epoch: 113 [50%]
2023-02-22 17:31:40,243	32k	INFO	[2.333615779876709, 2.469421863555908, 11.403718948364258, 18.24078941345215, 0.8930609822273254, 10800, 9.86096681355974e-05]
2023-02-22 17:32:16,374	32k	INFO	====> Epoch: 113
2023-02-22 17:33:50,757	32k	INFO	====> Epoch: 114
2023-02-22 17:34:55,259	32k	INFO	Train Epoch: 115 [58%]
2023-02-22 17:34:55,260	32k	INFO	[2.597790241241455, 2.1551156044006348, 10.270503997802734, 16.67560577392578, 1.3888392448425293, 11000, 9.858501725933955e-05]
2023-02-22 17:34:59,644	32k	INFO	Saving model and optimizer state at iteration 115 to ./logs\32k\G_11000.pth
2023-02-22 17:35:17,175	32k	INFO	Saving model and optimizer state at iteration 115 to ./logs\32k\D_11000.pth
2023-02-22 17:35:54,062	32k	INFO	====> Epoch: 115
2023-02-22 20:31:20,713	32k	INFO	====> Epoch: 116
2023-02-22 20:32:30,093	32k	INFO	Train Epoch: 117 [67%]
2023-02-22 20:32:30,094	32k	INFO	[2.4348371028900146, 2.0384914875030518, 10.057577133178711, 16.99835205078125, 0.528782844543457, 11200, 9.85603725454156e-05]
2023-02-22 20:32:53,867	32k	INFO	====> Epoch: 117
2023-02-22 20:34:28,874	32k	INFO	====> Epoch: 118
2023-02-22 20:35:45,963	32k	INFO	Train Epoch: 119 [75%]
2023-02-22 20:35:45,963	32k	INFO	[2.6818912029266357, 2.2558794021606445, 8.338019371032715, 15.641912460327148, 0.7577197551727295, 11400, 9.853573399228505e-05]
2023-02-22 20:36:03,813	32k	INFO	====> Epoch: 119
2023-02-22 20:37:37,151	32k	INFO	====> Epoch: 120
2023-02-22 20:39:00,221	32k	INFO	Train Epoch: 121 [83%]
2023-02-22 20:39:00,221	32k	INFO	[2.2360901832580566, 2.620755910873413, 12.849711418151855, 21.679330825805664, 0.5196329355239868, 11600, 9.851110159840781e-05]
2023-02-22 20:39:12,031	32k	INFO	====> Epoch: 121
2023-02-22 20:40:47,542	32k	INFO	====> Epoch: 122
2023-02-22 20:42:17,956	32k	INFO	Train Epoch: 123 [92%]
2023-02-22 20:42:17,956	32k	INFO	[2.399332046508789, 2.413424253463745, 10.66106128692627, 20.046344757080078, 0.6961185336112976, 11800, 9.848647536224416e-05]
2023-02-22 20:42:23,805	32k	INFO	====> Epoch: 123
2023-02-22 20:44:01,725	32k	INFO	====> Epoch: 124
2023-02-22 20:45:38,751	32k	INFO	====> Epoch: 125
2023-02-22 20:46:00,717	32k	INFO	Train Epoch: 126 [0%]
2023-02-22 20:46:00,717	32k	INFO	[2.8306925296783447, 2.608029842376709, 6.2529497146606445, 12.364657402038574, 0.8958999514579773, 12000, 9.84495475503445e-05]
2023-02-22 20:46:05,062	32k	INFO	Saving model and optimizer state at iteration 126 to ./logs\32k\G_12000.pth
2023-02-22 20:46:22,876	32k	INFO	Saving model and optimizer state at iteration 126 to ./logs\32k\D_12000.pth
2023-02-22 20:47:49,445	32k	INFO	====> Epoch: 126
2023-02-22 20:49:39,187	32k	INFO	====> Epoch: 127
2023-02-22 20:50:07,537	32k	INFO	Train Epoch: 128 [8%]
2023-02-22 20:50:07,538	32k	INFO	[2.4325919151306152, 2.298684597015381, 8.939014434814453, 12.424883842468262, 0.7497723698616028, 12200, 9.842493670173108e-05]
2023-02-22 20:51:19,370	32k	INFO	====> Epoch: 128
2023-02-22 20:52:52,991	32k	INFO	====> Epoch: 129
2023-02-22 20:53:26,740	32k	INFO	Train Epoch: 130 [17%]
2023-02-22 20:53:26,740	32k	INFO	[2.4256911277770996, 2.498311996459961, 11.079325675964355, 18.753610610961914, 0.739328145980835, 12400, 9.840033200544528e-05]
2023-02-22 20:54:26,818	32k	INFO	====> Epoch: 130
2023-02-22 20:56:01,178	32k	INFO	====> Epoch: 131
2023-02-22 20:56:41,144	32k	INFO	Train Epoch: 132 [25%]
2023-02-22 20:56:41,145	32k	INFO	[2.4430596828460693, 2.443613052368164, 9.05742359161377, 17.19443702697754, 0.7620078921318054, 12600, 9.837573345994909e-05]
2023-02-22 20:57:35,413	32k	INFO	====> Epoch: 132
2023-02-22 20:59:09,120	32k	INFO	====> Epoch: 133
2023-02-22 20:59:55,044	32k	INFO	Train Epoch: 134 [33%]
2023-02-22 20:59:55,045	32k	INFO	[2.505936622619629, 2.3898284435272217, 7.810985088348389, 13.378456115722656, 1.2783924341201782, 12800, 9.835114106370493e-05]
2023-02-22 21:00:43,179	32k	INFO	====> Epoch: 134
2023-02-22 21:02:16,908	32k	INFO	====> Epoch: 135
2023-02-22 21:03:08,902	32k	INFO	Train Epoch: 136 [42%]
2023-02-22 21:03:08,902	32k	INFO	[2.4402434825897217, 2.1326770782470703, 10.419414520263672, 17.756248474121094, 0.7173585295677185, 13000, 9.832655481517557e-05]
2023-02-22 21:03:13,205	32k	INFO	Saving model and optimizer state at iteration 136 to ./logs\32k\G_13000.pth
2023-02-22 21:03:30,811	32k	INFO	Saving model and optimizer state at iteration 136 to ./logs\32k\D_13000.pth
2023-02-22 21:04:16,487	32k	INFO	====> Epoch: 136
2023-02-22 21:05:50,181	32k	INFO	====> Epoch: 137
2023-02-22 21:06:48,153	32k	INFO	Train Epoch: 138 [50%]
2023-02-22 21:06:48,153	32k	INFO	[2.360225200653076, 2.247342109680176, 11.932147026062012, 19.808679580688477, 0.7805557250976562, 13200, 9.830197471282419e-05]
2023-02-22 21:07:24,075	32k	INFO	====> Epoch: 138
2023-02-22 21:08:57,845	32k	INFO	====> Epoch: 139
2023-02-22 21:10:01,976	32k	INFO	Train Epoch: 140 [58%]
2023-02-22 21:10:01,977	32k	INFO	[2.3206355571746826, 2.3782708644866943, 10.206865310668945, 16.233327865600586, 1.0171841382980347, 13400, 9.827740075511432e-05]
2023-02-22 21:10:31,906	32k	INFO	====> Epoch: 140
2023-02-22 21:12:05,629	32k	INFO	====> Epoch: 141
2023-02-22 21:13:15,714	32k	INFO	Train Epoch: 142 [67%]
2023-02-22 21:13:15,714	32k	INFO	[2.479469060897827, 2.4788477420806885, 9.181254386901855, 18.939329147338867, 0.5550024509429932, 13600, 9.825283294050992e-05]
2023-02-22 21:13:39,694	32k	INFO	====> Epoch: 142
2023-02-22 21:15:13,374	32k	INFO	====> Epoch: 143
2023-02-22 21:16:29,548	32k	INFO	Train Epoch: 144 [75%]
2023-02-22 21:16:29,548	32k	INFO	[2.6104512214660645, 2.257268190383911, 8.792437553405762, 15.681217193603516, 0.7313880324363708, 13800, 9.822827126747529e-05]
2023-02-22 21:16:47,390	32k	INFO	====> Epoch: 144
2023-02-22 21:18:20,999	32k	INFO	====> Epoch: 145
2023-02-22 21:19:43,366	32k	INFO	Train Epoch: 146 [83%]
2023-02-22 21:19:43,366	32k	INFO	[2.349297523498535, 2.540470600128174, 9.31801700592041, 17.564865112304688, 0.844805121421814, 14000, 9.820371573447515e-05]
2023-02-22 21:19:47,730	32k	INFO	Saving model and optimizer state at iteration 146 to ./logs\32k\G_14000.pth
2023-02-22 21:20:06,766	32k	INFO	Saving model and optimizer state at iteration 146 to ./logs\32k\D_14000.pth
2023-02-22 21:20:22,632	32k	INFO	====> Epoch: 146
2023-02-22 21:21:56,366	32k	INFO	====> Epoch: 147
2023-02-22 21:23:24,644	32k	INFO	Train Epoch: 148 [92%]
2023-02-22 21:23:24,644	32k	INFO	[2.459839344024658, 2.3918144702911377, 10.237080574035645, 19.57539176940918, 0.8234599232673645, 14200, 9.817916633997459e-05]
2023-02-22 21:23:30,381	32k	INFO	====> Epoch: 148
2023-02-22 21:25:04,056	32k	INFO	====> Epoch: 149
2023-02-22 21:26:43,871	32k	INFO	====> Epoch: 150
2023-02-22 21:27:05,974	32k	INFO	Train Epoch: 151 [0%]
2023-02-22 21:27:05,974	32k	INFO	[2.3207051753997803, 2.562465190887451, 11.952434539794922, 18.7629337310791, 0.7440965175628662, 14400, 9.814235375455375e-05]
2023-02-22 21:28:21,242	32k	INFO	====> Epoch: 151
2023-02-22 21:29:56,786	32k	INFO	====> Epoch: 152
2023-02-22 21:30:24,915	32k	INFO	Train Epoch: 153 [8%]
2023-02-22 21:30:24,915	32k	INFO	[2.3596057891845703, 2.2290072441101074, 12.462300300598145, 16.245037078857422, 0.7593880891799927, 14600, 9.811781969958938e-05]
2023-02-22 21:31:32,555	32k	INFO	====> Epoch: 153
2023-02-22 21:33:08,028	32k	INFO	====> Epoch: 154
2023-02-22 21:33:42,295	32k	INFO	Train Epoch: 155 [17%]
2023-02-22 21:33:42,295	32k	INFO	[2.2800114154815674, 2.362840175628662, 14.557291030883789, 21.61530876159668, 0.5335739254951477, 14800, 9.809329177775541e-05]
2023-02-22 21:34:43,650	32k	INFO	====> Epoch: 155
2023-02-22 21:36:27,381	32k	INFO	====> Epoch: 156
2023-02-22 21:37:10,436	32k	INFO	Train Epoch: 157 [25%]
2023-02-22 21:37:10,436	32k	INFO	[2.6323020458221436, 2.181378126144409, 8.393657684326172, 14.980151176452637, 0.9145171046257019, 15000, 9.806876998751865e-05]
2023-02-22 21:37:14,832	32k	INFO	Saving model and optimizer state at iteration 157 to ./logs\32k\G_15000.pth
2023-02-22 21:37:33,451	32k	INFO	Saving model and optimizer state at iteration 157 to ./logs\32k\D_15000.pth
2023-02-22 21:38:35,506	32k	INFO	====> Epoch: 157