--- library_name: transformers tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: vit-finetune-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_SEC results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9533333333333334 - name: Precision type: precision value: 0.9601344218764242 - name: Recall type: recall value: 0.9533333333333334 - name: F1 type: f1 value: 0.953396953389295 --- # vit-finetune-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_SEC This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1649 - Accuracy: 0.9533 - Precision: 0.9601 - Recall: 0.9533 - F1: 0.9534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0293 | 0.6667 | 100 | 0.1649 | 0.9533 | 0.9601 | 0.9533 | 0.9534 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.2.0 - Tokenizers 0.21.0