--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: distilbert-base-uncased_fine_tuned_body_text results: [] --- # distilbert-base-uncased_fine_tuned_body_text This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2153 - Accuracy: {'accuracy': 0.8827265261428963} - Recall: {'recall': 0.8641975308641975} - Precision: {'precision': 0.8900034993584509} - F1: {'f1': 0.8769106999195494} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------------------------------:|:------------------------------:|:---------------------------------:|:--------------------------:| | 0.3056 | 1.0 | 2284 | 0.3040 | {'accuracy': 0.8874897344648235} | {'recall': 0.8466417487824216} | {'precision': 0.914261252446184} | {'f1': 0.8791531902381653} | | 0.2279 | 2.0 | 4568 | 0.2891 | {'accuracy': 0.8908294552422666} | {'recall': 0.8606863744478424} | {'precision': 0.9086452230060983} | {'f1': 0.8840158213122382} | | 0.1467 | 3.0 | 6852 | 0.3580 | {'accuracy': 0.8882562277580072} | {'recall': 0.8452825914599615} | {'precision': 0.9170557876628164} | {'f1': 0.8797076678257796} | | 0.0921 | 4.0 | 9136 | 0.4560 | {'accuracy': 0.8754448398576512} | {'recall': 0.8948918337297542} | {'precision': 0.8543468858131488} | {'f1': 0.8741494717043756} | | 0.0587 | 5.0 | 11420 | 0.5701 | {'accuracy': 0.8768135778811935} | {'recall': 0.8139087099331748} | {'precision': 0.9221095855254716} | {'f1': 0.8646372277704246} | | 0.0448 | 6.0 | 13704 | 0.6738 | {'accuracy': 0.8767040788393101} | {'recall': 0.8794880507418734} | {'precision': 0.8673070479168994} | {'f1': 0.873355078168935} | | 0.0289 | 7.0 | 15988 | 0.7965 | {'accuracy': 0.8798248015329866} | {'recall': 0.8491335372069317} | {'precision': 0.8967703349282297} | {'f1': 0.8723020536389552} | | 0.0214 | 8.0 | 18272 | 0.8244 | {'accuracy': 0.8811387900355871} | {'recall': 0.8576282704723072} | {'precision': 0.8922931887815225} | {'f1': 0.8746173837712965} | | 0.0147 | 9.0 | 20556 | 0.8740 | {'accuracy': 0.8806460443471119} | {'recall': 0.8669158455091177} | {'precision': 0.8839357893521191} | {'f1': 0.8753430924062213} | | 0.0099 | 10.0 | 22840 | 0.9716 | {'accuracy': 0.8788940596769779} | {'recall': 0.8694076339336279} | {'precision': 0.8787635947338294} | {'f1': 0.8740605784559327} | | 0.0092 | 11.0 | 25124 | 1.0296 | {'accuracy': 0.8822885299753627} | {'recall': 0.8669158455091177} | {'precision': 0.8870089233978444} | {'f1': 0.876847290640394} | | 0.0039 | 12.0 | 27408 | 1.0974 | {'accuracy': 0.8787845606350945} | {'recall': 0.8628383735417374} | {'precision': 0.8836561883772184} | {'f1': 0.8731232091690544} | | 0.0053 | 13.0 | 29692 | 1.0833 | {'accuracy': 0.8799890500958116} | {'recall': 0.8503794314191868} | {'precision': 0.8960496479293472} | {'f1': 0.8726173872617387} | | 0.0032 | 14.0 | 31976 | 1.1731 | {'accuracy': 0.8813030385984123} | {'recall': 0.8705402650356778} | {'precision': 0.8823326828148318} | {'f1': 0.8763968072976055} | | 0.0017 | 15.0 | 34260 | 1.2153 | {'accuracy': 0.8827265261428963} | {'recall': 0.8641975308641975} | {'precision': 0.8900034993584509} | {'f1': 0.8769106999195494} | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1