File size: 2,441 Bytes
a22b6f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
license: apache-2.0
base_model: Alibaba-NLP/gte-large-en-v1.5
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-17
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-17

This model is a fine-tuned version of [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7014
- F1: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1     |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.452         | 0.2527 | 100  | 0.2348          | 0.9039 |
| 0.2009        | 0.5054 | 200  | 0.1794          | 0.9343 |
| 0.1595        | 0.7581 | 300  | 0.1470          | 0.9452 |
| 0.1523        | 1.0107 | 400  | 0.1182          | 0.9566 |
| 0.1072        | 1.2634 | 500  | 0.1256          | 0.9545 |
| 0.1113        | 1.5161 | 600  | 0.1319          | 0.9531 |
| 0.1168        | 1.7688 | 700  | 0.1450          | 0.9438 |
| 0.1129        | 2.0215 | 800  | 0.1331          | 0.9564 |
| 0.2379        | 2.2742 | 900  | 0.6936          | 0.7087 |
| 0.7027        | 2.5268 | 1000 | 0.6899          | 0.7087 |
| 0.6948        | 2.7795 | 1100 | 0.6918          | 0.7087 |
| 0.675         | 3.0322 | 1200 | 0.7413          | 0.0    |
| 0.6709        | 3.2849 | 1300 | 0.6972          | 0.0    |
| 0.6698        | 3.5376 | 1400 | 0.7014          | 0.0    |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3