--- library_name: transformers license: apache-2.0 base_model: Alibaba-NLP/gte-large-en-v1.5 tags: - generated_from_trainer metrics: - f1 model-index: - name: gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-17 results: [] --- # gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-17 This model is a fine-tuned version of [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7014 - F1: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.452 | 0.2527 | 100 | 0.2348 | 0.9039 | | 0.2009 | 0.5054 | 200 | 0.1794 | 0.9343 | | 0.1595 | 0.7581 | 300 | 0.1470 | 0.9452 | | 0.1523 | 1.0107 | 400 | 0.1182 | 0.9566 | | 0.1072 | 1.2634 | 500 | 0.1256 | 0.9545 | | 0.1113 | 1.5161 | 600 | 0.1319 | 0.9531 | | 0.1168 | 1.7688 | 700 | 0.1450 | 0.9438 | | 0.1129 | 2.0215 | 800 | 0.1331 | 0.9564 | | 0.2379 | 2.2742 | 900 | 0.6936 | 0.7087 | | 0.7027 | 2.5268 | 1000 | 0.6899 | 0.7087 | | 0.6948 | 2.7795 | 1100 | 0.6918 | 0.7087 | | 0.675 | 3.0322 | 1200 | 0.7413 | 0.0 | | 0.6709 | 3.2849 | 1300 | 0.6972 | 0.0 | | 0.6698 | 3.5376 | 1400 | 0.7014 | 0.0 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3