--- library_name: transformers license: apache-2.0 base_model: Alibaba-NLP/gte-large-en-v1.5 tags: - generated_from_trainer metrics: - f1 model-index: - name: gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-41 results: [] --- # gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-41 This model is a fine-tuned version of [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1900 - F1: 0.9527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.4552 | 0.2527 | 100 | 0.2210 | 0.9100 | | 0.1965 | 0.5054 | 200 | 0.1912 | 0.9298 | | 0.1597 | 0.7581 | 300 | 0.1320 | 0.9520 | | 0.1509 | 1.0107 | 400 | 0.1212 | 0.9574 | | 0.1062 | 1.2634 | 500 | 0.1348 | 0.9500 | | 0.1109 | 1.5161 | 600 | 0.1812 | 0.9462 | | 0.1172 | 1.7688 | 700 | 0.1335 | 0.9530 | | 0.1127 | 2.0215 | 800 | 0.1414 | 0.9564 | | 0.0754 | 2.2742 | 900 | 0.1359 | 0.9553 | | 0.0837 | 2.5268 | 1000 | 0.1182 | 0.9603 | | 0.093 | 2.7795 | 1100 | 0.1459 | 0.9511 | | 0.0926 | 3.0322 | 1200 | 0.1386 | 0.9564 | | 0.0669 | 3.2849 | 1300 | 0.1504 | 0.9584 | | 0.0683 | 3.5376 | 1400 | 0.1682 | 0.9487 | | 0.07 | 3.7903 | 1500 | 0.1494 | 0.9498 | | 0.0663 | 4.0430 | 1600 | 0.1934 | 0.9497 | | 0.0471 | 4.2956 | 1700 | 0.2087 | 0.9500 | | 0.0546 | 4.5483 | 1800 | 0.1867 | 0.9477 | | 0.1081 | 4.8010 | 1900 | 0.1720 | 0.9579 | | 0.0505 | 5.0537 | 2000 | 0.1900 | 0.9527 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3