--- library_name: transformers license: apache-2.0 base_model: Alibaba-NLP/gte-large-en-v1.5 tags: - generated_from_trainer metrics: - f1 model-index: - name: gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-44 results: [] --- # gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-44 This model is a fine-tuned version of [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2193 - F1: 0.9463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.4603 | 0.2527 | 100 | 0.2243 | 0.9083 | | 0.2014 | 0.5054 | 200 | 0.1719 | 0.9377 | | 0.1679 | 0.7581 | 300 | 0.1354 | 0.9486 | | 0.1497 | 1.0107 | 400 | 0.1174 | 0.9543 | | 0.1062 | 1.2634 | 500 | 0.1451 | 0.9490 | | 0.1117 | 1.5161 | 600 | 0.1379 | 0.9504 | | 0.1156 | 1.7688 | 700 | 0.1235 | 0.9533 | | 0.1155 | 2.0215 | 800 | 0.1305 | 0.9562 | | 0.0784 | 2.2742 | 900 | 0.1372 | 0.9530 | | 0.0898 | 2.5268 | 1000 | 0.1204 | 0.9585 | | 0.0904 | 2.7795 | 1100 | 0.1864 | 0.9294 | | 0.0936 | 3.0322 | 1200 | 0.1731 | 0.9543 | | 0.0644 | 3.2849 | 1300 | 0.1482 | 0.95 | | 0.0668 | 3.5376 | 1400 | 0.1713 | 0.9455 | | 0.0648 | 3.7903 | 1500 | 0.1499 | 0.9551 | | 0.0605 | 4.0430 | 1600 | 0.2150 | 0.9506 | | 0.0468 | 4.2956 | 1700 | 0.1913 | 0.9453 | | 0.0531 | 4.5483 | 1800 | 0.2022 | 0.9421 | | 0.0564 | 4.8010 | 1900 | 0.1694 | 0.9544 | | 0.0568 | 5.0537 | 2000 | 0.2193 | 0.9463 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3