--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-v3-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan-v3-finetuned-gtzan This model is a fine-tuned version of [MariaK/distilhubert-finetuned-gtzan-v3](https://huggingface.co/MariaK/distilhubert-finetuned-gtzan-v3) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4764 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0791 | 0.99 | 56 | 0.5451 | 0.82 | | 0.0677 | 2.0 | 113 | 0.4793 | 0.88 | | 0.0329 | 2.97 | 168 | 0.4764 | 0.88 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3