Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# wavlm-large_finetuned_RAVDESS
|
2 |
+
|
3 |
+
This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS).
|
4 |
+
It achieves the following results on the evaluation set:
|
5 |
+
- Loss: 0.3534
|
6 |
+
- Accuracy: 0.9028
|
7 |
+
|
8 |
+
## Model description
|
9 |
+
|
10 |
+
More information needed
|
11 |
+
|
12 |
+
## Intended uses & limitations
|
13 |
+
|
14 |
+
More information needed
|
15 |
+
|
16 |
+
## Training and evaluation data
|
17 |
+
|
18 |
+
More information needed
|
19 |
+
|
20 |
+
## Training procedure
|
21 |
+
|
22 |
+
### Training hyperparameters
|
23 |
+
|
24 |
+
The following hyperparameters were used during training:
|
25 |
+
- learning_rate: 0.0003
|
26 |
+
- train_batch_size: 32
|
27 |
+
- eval_batch_size: 32
|
28 |
+
- seed: 42
|
29 |
+
- gradient_accumulation_steps: 4
|
30 |
+
- total_train_batch_size: 128
|
31 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
32 |
+
- lr_scheduler_type: linear
|
33 |
+
- lr_scheduler_warmup_ratio: 0.1
|
34 |
+
- num_epochs: 20
|
35 |
+
|
36 |
+
### Training results
|
37 |
+
|
38 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
39 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
40 |
+
| No log | 1.0 | 9 | 2.0485 | 0.2326 |
|
41 |
+
| 2.0712 | 2.0 | 18 | 1.8028 | 0.2917 |
|
42 |
+
| 1.9355 | 3.0 | 27 | 1.7300 | 0.3229 |
|
43 |
+
| 1.7116 | 4.0 | 36 | 1.3749 | 0.4722 |
|
44 |
+
| 1.4907 | 5.0 | 45 | 1.0586 | 0.6493 |
|
45 |
+
| 1.1558 | 6.0 | 54 | 0.8834 | 0.6771 |
|
46 |
+
| 0.8621 | 7.0 | 63 | 0.9206 | 0.6944 |
|
47 |
+
| 0.6437 | 8.0 | 72 | 0.5895 | 0.8194 |
|
48 |
+
| 0.4634 | 9.0 | 81 | 0.7389 | 0.7743 |
|
49 |
+
| 0.3974 | 10.0 | 90 | 0.4569 | 0.8542 |
|
50 |
+
| 0.3974 | 11.0 | 99 | 0.5140 | 0.8438 |
|
51 |
+
| 0.3105 | 12.0 | 108 | 0.4273 | 0.8611 |
|
52 |
+
| 0.2094 | 13.0 | 117 | 0.3608 | 0.8993 |
|
53 |
+
| 0.1401 | 14.0 | 126 | 0.5715 | 0.8194 |
|
54 |
+
| 0.1249 | 15.0 | 135 | 0.3715 | 0.8854 |
|
55 |
+
| 0.0953 | 16.0 | 144 | 0.4112 | 0.8785 |
|
56 |
+
| 0.0955 | 17.0 | 153 | 0.3692 | 0.9062 |
|
57 |
+
| 0.0807 | 18.0 | 162 | 0.4395 | 0.8646 |
|
58 |
+
| 0.1077 | 19.0 | 171 | 0.3413 | 0.9201 |
|
59 |
+
| 0.0578 | 20.0 | 180 | 0.3534 | 0.9028 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- Transformers 4.45.2
|
65 |
+
- Pytorch 2.5.0+cu118
|
66 |
+
- Datasets 3.0.1
|
67 |
+
- Tokenizers 0.20.1
|