JEdward7777 commited on
Commit
096f619
1 Parent(s): 223c682

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -14
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.8
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 1.0377
35
- - Accuracy: 0.8
36
 
37
  ## Model description
38
 
@@ -60,22 +60,52 @@ The following hyperparameters were used during training:
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 10
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | No log | 1.0 | 1 | 1.6117 | 0.6 |
70
- | No log | 2.0 | 2 | 1.5290 | 0.6 |
71
- | No log | 3.0 | 3 | 1.4318 | 0.8 |
72
- | No log | 4.0 | 4 | 1.3328 | 0.8 |
73
- | No log | 5.0 | 5 | 1.2356 | 0.8 |
74
- | No log | 6.0 | 6 | 1.1691 | 0.8 |
75
- | No log | 7.0 | 7 | 1.1160 | 0.8 |
76
- | No log | 8.0 | 8 | 1.0754 | 0.8 |
77
- | No log | 9.0 | 9 | 1.0506 | 0.8 |
78
- | No log | 10.0 | 10 | 1.0377 | 0.8 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
 
81
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 1.0
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.0600
35
+ - Accuracy: 1.0
36
 
37
  ## Model description
38
 
 
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 40
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | No log | 1.0 | 1 | 1.4318 | 0.8 |
70
+ | No log | 2.0 | 2 | 1.3863 | 0.8 |
71
+ | No log | 3.0 | 3 | 1.2880 | 0.8 |
72
+ | No log | 4.0 | 4 | 1.1589 | 0.8 |
73
+ | No log | 5.0 | 5 | 0.9954 | 0.8 |
74
+ | No log | 6.0 | 6 | 0.8942 | 0.8 |
75
+ | No log | 7.0 | 7 | 0.8269 | 0.8 |
76
+ | No log | 8.0 | 8 | 0.7702 | 0.8 |
77
+ | No log | 9.0 | 9 | 0.7138 | 1.0 |
78
+ | No log | 10.0 | 10 | 0.6602 | 1.0 |
79
+ | No log | 11.0 | 11 | 0.6255 | 1.0 |
80
+ | No log | 12.0 | 12 | 0.5900 | 1.0 |
81
+ | No log | 13.0 | 13 | 0.5367 | 1.0 |
82
+ | No log | 14.0 | 14 | 0.4790 | 1.0 |
83
+ | No log | 15.0 | 15 | 0.4158 | 1.0 |
84
+ | No log | 16.0 | 16 | 0.3573 | 1.0 |
85
+ | No log | 17.0 | 17 | 0.2964 | 1.0 |
86
+ | No log | 18.0 | 18 | 0.2439 | 1.0 |
87
+ | No log | 19.0 | 19 | 0.2028 | 1.0 |
88
+ | 0.5248 | 20.0 | 20 | 0.1671 | 1.0 |
89
+ | 0.5248 | 21.0 | 21 | 0.1399 | 1.0 |
90
+ | 0.5248 | 22.0 | 22 | 0.1182 | 1.0 |
91
+ | 0.5248 | 23.0 | 23 | 0.1013 | 1.0 |
92
+ | 0.5248 | 24.0 | 24 | 0.0897 | 1.0 |
93
+ | 0.5248 | 25.0 | 25 | 0.0824 | 1.0 |
94
+ | 0.5248 | 26.0 | 26 | 0.0769 | 1.0 |
95
+ | 0.5248 | 27.0 | 27 | 0.0721 | 1.0 |
96
+ | 0.5248 | 28.0 | 28 | 0.0701 | 1.0 |
97
+ | 0.5248 | 29.0 | 29 | 0.0697 | 1.0 |
98
+ | 0.5248 | 30.0 | 30 | 0.0693 | 1.0 |
99
+ | 0.5248 | 31.0 | 31 | 0.0672 | 1.0 |
100
+ | 0.5248 | 32.0 | 32 | 0.0646 | 1.0 |
101
+ | 0.5248 | 33.0 | 33 | 0.0633 | 1.0 |
102
+ | 0.5248 | 34.0 | 34 | 0.0628 | 1.0 |
103
+ | 0.5248 | 35.0 | 35 | 0.0626 | 1.0 |
104
+ | 0.5248 | 36.0 | 36 | 0.0626 | 1.0 |
105
+ | 0.5248 | 37.0 | 37 | 0.0617 | 1.0 |
106
+ | 0.5248 | 38.0 | 38 | 0.0608 | 1.0 |
107
+ | 0.5248 | 39.0 | 39 | 0.0603 | 1.0 |
108
+ | 0.2241 | 40.0 | 40 | 0.0600 | 1.0 |
109
 
110
 
111
  ### Framework versions