JEdward7777 commited on
Commit
1301041
·
1 Parent(s): b557b24

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -43
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.8571428571428571
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.7036
35
- - Accuracy: 0.8571
36
 
37
  ## Model description
38
 
@@ -66,46 +66,46 @@ The following hyperparameters were used during training:
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | No log | 1.0 | 1 | 1.9875 | 0.1429 |
70
- | No log | 2.0 | 2 | 1.9132 | 0.1429 |
71
- | No log | 3.0 | 3 | 1.7585 | 0.4286 |
72
- | No log | 4.0 | 4 | 1.5935 | 0.4286 |
73
- | No log | 5.0 | 5 | 1.5026 | 0.4286 |
74
- | No log | 6.0 | 6 | 1.4699 | 0.4286 |
75
- | No log | 7.0 | 7 | 1.4361 | 0.4286 |
76
- | No log | 8.0 | 8 | 1.3962 | 0.4286 |
77
- | No log | 9.0 | 9 | 1.3457 | 0.4286 |
78
- | No log | 10.0 | 10 | 1.2874 | 0.4286 |
79
- | No log | 11.0 | 11 | 1.2240 | 0.4286 |
80
- | No log | 12.0 | 12 | 1.1643 | 0.4286 |
81
- | No log | 13.0 | 13 | 1.1016 | 0.5714 |
82
- | No log | 14.0 | 14 | 1.0356 | 0.5714 |
83
- | No log | 15.0 | 15 | 0.9719 | 0.7143 |
84
- | No log | 16.0 | 16 | 0.9120 | 0.7143 |
85
- | No log | 17.0 | 17 | 0.8606 | 0.7143 |
86
- | No log | 18.0 | 18 | 0.8117 | 0.7143 |
87
- | No log | 19.0 | 19 | 0.7707 | 0.7143 |
88
- | 0.5111 | 20.0 | 20 | 0.7367 | 0.7143 |
89
- | 0.5111 | 21.0 | 21 | 0.7157 | 0.7143 |
90
- | 0.5111 | 22.0 | 22 | 0.7067 | 0.7143 |
91
- | 0.5111 | 23.0 | 23 | 0.7012 | 0.7143 |
92
- | 0.5111 | 24.0 | 24 | 0.6977 | 0.7143 |
93
- | 0.5111 | 25.0 | 25 | 0.6974 | 0.7143 |
94
- | 0.5111 | 26.0 | 26 | 0.6977 | 0.7143 |
95
- | 0.5111 | 27.0 | 27 | 0.7036 | 0.8571 |
96
- | 0.5111 | 28.0 | 28 | 0.7074 | 0.8571 |
97
- | 0.5111 | 29.0 | 29 | 0.7062 | 0.8571 |
98
- | 0.5111 | 30.0 | 30 | 0.7056 | 0.8571 |
99
- | 0.5111 | 31.0 | 31 | 0.7050 | 0.8571 |
100
- | 0.5111 | 32.0 | 32 | 0.7050 | 0.8571 |
101
- | 0.5111 | 33.0 | 33 | 0.7031 | 0.8571 |
102
- | 0.5111 | 34.0 | 34 | 0.7016 | 0.8571 |
103
- | 0.5111 | 35.0 | 35 | 0.6996 | 0.8571 |
104
- | 0.5111 | 36.0 | 36 | 0.6971 | 0.8571 |
105
- | 0.5111 | 37.0 | 37 | 0.6953 | 0.8571 |
106
- | 0.5111 | 38.0 | 38 | 0.6939 | 0.8571 |
107
- | 0.5111 | 39.0 | 39 | 0.6938 | 0.8571 |
108
- | 0.1719 | 40.0 | 40 | 0.6936 | 0.8571 |
109
 
110
 
111
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 1.0
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.0240
35
+ - Accuracy: 1.0
36
 
37
  ## Model description
38
 
 
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | No log | 1.0 | 1 | 1.6169 | 0.4286 |
70
+ | No log | 2.0 | 2 | 1.5622 | 0.5 |
71
+ | No log | 3.0 | 3 | 1.4656 | 0.5714 |
72
+ | No log | 4.0 | 4 | 1.3434 | 0.7143 |
73
+ | No log | 5.0 | 5 | 1.1958 | 0.8571 |
74
+ | No log | 6.0 | 6 | 1.0398 | 0.8571 |
75
+ | No log | 7.0 | 7 | 0.8839 | 0.8571 |
76
+ | No log | 8.0 | 8 | 0.7458 | 0.8571 |
77
+ | No log | 9.0 | 9 | 0.6267 | 0.8571 |
78
+ | No log | 10.0 | 10 | 0.5253 | 0.8571 |
79
+ | No log | 11.0 | 11 | 0.4414 | 0.8571 |
80
+ | No log | 12.0 | 12 | 0.3764 | 0.8571 |
81
+ | No log | 13.0 | 13 | 0.3250 | 0.8571 |
82
+ | No log | 14.0 | 14 | 0.2810 | 0.8571 |
83
+ | No log | 15.0 | 15 | 0.2406 | 0.9286 |
84
+ | No log | 16.0 | 16 | 0.2027 | 1.0 |
85
+ | No log | 17.0 | 17 | 0.1679 | 1.0 |
86
+ | No log | 18.0 | 18 | 0.1376 | 1.0 |
87
+ | No log | 19.0 | 19 | 0.1119 | 1.0 |
88
+ | 1.0444 | 20.0 | 20 | 0.0910 | 1.0 |
89
+ | 1.0444 | 21.0 | 21 | 0.0734 | 1.0 |
90
+ | 1.0444 | 22.0 | 22 | 0.0616 | 1.0 |
91
+ | 1.0444 | 23.0 | 23 | 0.0536 | 1.0 |
92
+ | 1.0444 | 24.0 | 24 | 0.0478 | 1.0 |
93
+ | 1.0444 | 25.0 | 25 | 0.0437 | 1.0 |
94
+ | 1.0444 | 26.0 | 26 | 0.0414 | 1.0 |
95
+ | 1.0444 | 27.0 | 27 | 0.0376 | 1.0 |
96
+ | 1.0444 | 28.0 | 28 | 0.0342 | 1.0 |
97
+ | 1.0444 | 29.0 | 29 | 0.0313 | 1.0 |
98
+ | 1.0444 | 30.0 | 30 | 0.0287 | 1.0 |
99
+ | 1.0444 | 31.0 | 31 | 0.0274 | 1.0 |
100
+ | 1.0444 | 32.0 | 32 | 0.0267 | 1.0 |
101
+ | 1.0444 | 33.0 | 33 | 0.0263 | 1.0 |
102
+ | 1.0444 | 34.0 | 34 | 0.0260 | 1.0 |
103
+ | 1.0444 | 35.0 | 35 | 0.0258 | 1.0 |
104
+ | 1.0444 | 36.0 | 36 | 0.0255 | 1.0 |
105
+ | 1.0444 | 37.0 | 37 | 0.0249 | 1.0 |
106
+ | 1.0444 | 38.0 | 38 | 0.0246 | 1.0 |
107
+ | 1.0444 | 39.0 | 39 | 0.0243 | 1.0 |
108
+ | 0.3497 | 40.0 | 40 | 0.0240 | 1.0 |
109
 
110
 
111
  ### Framework versions