JEdward7777 commited on
Commit
7452863
1 Parent(s): 8cc30b1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -67
README.md CHANGED
@@ -4,24 +4,9 @@ tags:
4
  - generated_from_trainer
5
  datasets:
6
  - imagefolder
7
- metrics:
8
- - accuracy
9
  model-index:
10
  - name: delivery_truck_classification
11
- results:
12
- - task:
13
- name: Image Classification
14
- type: image-classification
15
- dataset:
16
- name: imagefolder
17
- type: imagefolder
18
- config: default
19
- split: train
20
- args: default
21
- metrics:
22
- - name: Accuracy
23
- type: accuracy
24
- value: 0.9259259259259259
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +16,13 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.2419
35
- - Accuracy: 0.9259
 
 
 
 
 
36
 
37
  ## Model description
38
 
@@ -62,55 +52,9 @@ The following hyperparameters were used during training:
62
  - lr_scheduler_warmup_ratio: 0.1
63
  - num_epochs: 40
64
 
65
- ### Training results
66
-
67
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | No log | 0.8 | 3 | 1.8673 | 0.2222 |
70
- | No log | 1.8 | 6 | 1.7421 | 0.2593 |
71
- | No log | 2.8 | 9 | 1.5910 | 0.4259 |
72
- | No log | 3.8 | 12 | 1.4371 | 0.5 |
73
- | No log | 4.8 | 15 | 1.2871 | 0.5741 |
74
- | No log | 5.8 | 18 | 1.1511 | 0.5741 |
75
- | 1.8164 | 6.8 | 21 | 0.9363 | 0.7222 |
76
- | 1.8164 | 7.8 | 24 | 0.7903 | 0.7778 |
77
- | 1.8164 | 8.8 | 27 | 0.6839 | 0.7593 |
78
- | 1.8164 | 9.8 | 30 | 0.5661 | 0.7778 |
79
- | 1.8164 | 10.8 | 33 | 0.4638 | 0.8519 |
80
- | 1.8164 | 11.8 | 36 | 0.4015 | 0.8704 |
81
- | 1.8164 | 12.8 | 39 | 0.3809 | 0.8704 |
82
- | 0.8525 | 13.8 | 42 | 0.3214 | 0.9074 |
83
- | 0.8525 | 14.8 | 45 | 0.3114 | 0.8704 |
84
- | 0.8525 | 15.8 | 48 | 0.3026 | 0.8889 |
85
- | 0.8525 | 16.8 | 51 | 0.2970 | 0.8889 |
86
- | 0.8525 | 17.8 | 54 | 0.2597 | 0.8889 |
87
- | 0.8525 | 18.8 | 57 | 0.2792 | 0.8889 |
88
- | 0.4831 | 19.8 | 60 | 0.3209 | 0.8704 |
89
- | 0.4831 | 20.8 | 63 | 0.2929 | 0.9074 |
90
- | 0.4831 | 21.8 | 66 | 0.2419 | 0.9259 |
91
- | 0.4831 | 22.8 | 69 | 0.2496 | 0.9074 |
92
- | 0.4831 | 23.8 | 72 | 0.2953 | 0.9074 |
93
- | 0.4831 | 24.8 | 75 | 0.3094 | 0.8889 |
94
- | 0.4831 | 25.8 | 78 | 0.2792 | 0.9259 |
95
- | 0.3889 | 26.8 | 81 | 0.2522 | 0.9259 |
96
- | 0.3889 | 27.8 | 84 | 0.2451 | 0.9259 |
97
- | 0.3889 | 28.8 | 87 | 0.2541 | 0.9074 |
98
- | 0.3889 | 29.8 | 90 | 0.2718 | 0.9074 |
99
- | 0.3889 | 30.8 | 93 | 0.2738 | 0.9074 |
100
- | 0.3889 | 31.8 | 96 | 0.2639 | 0.9259 |
101
- | 0.3889 | 32.8 | 99 | 0.2561 | 0.9259 |
102
- | 0.3407 | 33.8 | 102 | 0.2497 | 0.9259 |
103
- | 0.3407 | 34.8 | 105 | 0.2501 | 0.9259 |
104
- | 0.3407 | 35.8 | 108 | 0.2455 | 0.9259 |
105
- | 0.3407 | 36.8 | 111 | 0.2381 | 0.9259 |
106
- | 0.3407 | 37.8 | 114 | 0.2340 | 0.9259 |
107
- | 0.3407 | 38.8 | 117 | 0.2321 | 0.9259 |
108
- | 0.3112 | 39.8 | 120 | 0.2315 | 0.9259 |
109
-
110
-
111
  ### Framework versions
112
 
113
- - Transformers 4.24.0
114
- - Pytorch 1.12.1+cu113
115
- - Datasets 2.7.1
116
  - Tokenizers 0.13.2
 
4
  - generated_from_trainer
5
  datasets:
6
  - imagefolder
 
 
7
  model-index:
8
  - name: delivery_truck_classification
9
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
18
  It achieves the following results on the evaluation set:
19
+ - eval_loss: 0.1655
20
+ - eval_accuracy: 0.9492
21
+ - eval_runtime: 3.0476
22
+ - eval_samples_per_second: 19.36
23
+ - eval_steps_per_second: 0.656
24
+ - epoch: 0.94
25
+ - step: 4
26
 
27
  ## Model description
28
 
 
52
  - lr_scheduler_warmup_ratio: 0.1
53
  - num_epochs: 40
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  ### Framework versions
56
 
57
+ - Transformers 4.25.1
58
+ - Pytorch 1.13.1+cu117
59
+ - Datasets 2.8.0
60
  - Tokenizers 0.13.2