JEdward7777
commited on
Commit
•
fff5a62
1
Parent(s):
8a15db6
update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -60,52 +60,72 @@ The following hyperparameters were used during training:
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
-
- num_epochs:
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| No log | 0.94 | 4 | 1.
|
70 |
-
| No log | 1.94 | 8 | 1.
|
71 |
-
| No log | 2.94 | 12 | 1.
|
72 |
-
| No log | 3.94 | 16 | 1.
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
| 1.
|
76 |
-
| 1.
|
77 |
-
| 1.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
|
111 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.9830508474576272
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0375
|
35 |
+
- Accuracy: 0.9831
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 60
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| No log | 0.94 | 4 | 1.9124 | 0.1864 |
|
70 |
+
| No log | 1.94 | 8 | 1.8095 | 0.2373 |
|
71 |
+
| No log | 2.94 | 12 | 1.6757 | 0.3898 |
|
72 |
+
| No log | 3.94 | 16 | 1.4906 | 0.5254 |
|
73 |
+
| 1.8286 | 4.94 | 20 | 1.2704 | 0.6441 |
|
74 |
+
| 1.8286 | 5.94 | 24 | 1.0685 | 0.6780 |
|
75 |
+
| 1.8286 | 6.94 | 28 | 0.8032 | 0.7458 |
|
76 |
+
| 1.8286 | 7.94 | 32 | 0.6309 | 0.7627 |
|
77 |
+
| 1.8286 | 8.94 | 36 | 0.4989 | 0.8475 |
|
78 |
+
| 0.9342 | 9.94 | 40 | 0.4063 | 0.8475 |
|
79 |
+
| 0.9342 | 10.94 | 44 | 0.2692 | 0.9153 |
|
80 |
+
| 0.9342 | 11.94 | 48 | 0.2736 | 0.8983 |
|
81 |
+
| 0.9342 | 12.94 | 52 | 0.2116 | 0.9322 |
|
82 |
+
| 0.9342 | 13.94 | 56 | 0.1498 | 0.9831 |
|
83 |
+
| 0.5151 | 14.94 | 60 | 0.1906 | 0.9153 |
|
84 |
+
| 0.5151 | 15.94 | 64 | 0.1698 | 0.9492 |
|
85 |
+
| 0.5151 | 16.94 | 68 | 0.1432 | 0.9492 |
|
86 |
+
| 0.5151 | 17.94 | 72 | 0.1682 | 0.9322 |
|
87 |
+
| 0.5151 | 18.94 | 76 | 0.1069 | 0.9831 |
|
88 |
+
| 0.4009 | 19.94 | 80 | 0.0821 | 0.9831 |
|
89 |
+
| 0.4009 | 20.94 | 84 | 0.0903 | 0.9831 |
|
90 |
+
| 0.4009 | 21.94 | 88 | 0.1281 | 0.9661 |
|
91 |
+
| 0.4009 | 22.94 | 92 | 0.0936 | 0.9831 |
|
92 |
+
| 0.4009 | 23.94 | 96 | 0.1059 | 0.9661 |
|
93 |
+
| 0.3482 | 24.94 | 100 | 0.1431 | 0.9492 |
|
94 |
+
| 0.3482 | 25.94 | 104 | 0.0899 | 0.9661 |
|
95 |
+
| 0.3482 | 26.94 | 108 | 0.0689 | 0.9661 |
|
96 |
+
| 0.3482 | 27.94 | 112 | 0.0751 | 0.9661 |
|
97 |
+
| 0.3482 | 28.94 | 116 | 0.0891 | 0.9661 |
|
98 |
+
| 0.3306 | 29.94 | 120 | 0.0523 | 0.9831 |
|
99 |
+
| 0.3306 | 30.94 | 124 | 0.0734 | 0.9831 |
|
100 |
+
| 0.3306 | 31.94 | 128 | 0.0746 | 0.9831 |
|
101 |
+
| 0.3306 | 32.94 | 132 | 0.0474 | 0.9661 |
|
102 |
+
| 0.3306 | 33.94 | 136 | 0.0443 | 0.9831 |
|
103 |
+
| 0.2871 | 34.94 | 140 | 0.0814 | 0.9831 |
|
104 |
+
| 0.2871 | 35.94 | 144 | 0.0691 | 0.9831 |
|
105 |
+
| 0.2871 | 36.94 | 148 | 0.0531 | 0.9831 |
|
106 |
+
| 0.2871 | 37.94 | 152 | 0.0614 | 0.9831 |
|
107 |
+
| 0.2871 | 38.94 | 156 | 0.0578 | 0.9831 |
|
108 |
+
| 0.2754 | 39.94 | 160 | 0.0520 | 0.9831 |
|
109 |
+
| 0.2754 | 40.94 | 164 | 0.0537 | 0.9831 |
|
110 |
+
| 0.2754 | 41.94 | 168 | 0.0447 | 0.9831 |
|
111 |
+
| 0.2754 | 42.94 | 172 | 0.0290 | 1.0 |
|
112 |
+
| 0.2754 | 43.94 | 176 | 0.0291 | 1.0 |
|
113 |
+
| 0.269 | 44.94 | 180 | 0.0326 | 0.9831 |
|
114 |
+
| 0.269 | 45.94 | 184 | 0.0330 | 0.9831 |
|
115 |
+
| 0.269 | 46.94 | 188 | 0.0348 | 0.9831 |
|
116 |
+
| 0.269 | 47.94 | 192 | 0.0347 | 0.9831 |
|
117 |
+
| 0.269 | 48.94 | 196 | 0.0347 | 0.9831 |
|
118 |
+
| 0.2615 | 49.94 | 200 | 0.0424 | 0.9831 |
|
119 |
+
| 0.2615 | 50.94 | 204 | 0.0451 | 0.9831 |
|
120 |
+
| 0.2615 | 51.94 | 208 | 0.0433 | 0.9831 |
|
121 |
+
| 0.2615 | 52.94 | 212 | 0.0352 | 0.9831 |
|
122 |
+
| 0.2615 | 53.94 | 216 | 0.0339 | 0.9831 |
|
123 |
+
| 0.2386 | 54.94 | 220 | 0.0339 | 0.9831 |
|
124 |
+
| 0.2386 | 55.94 | 224 | 0.0339 | 0.9831 |
|
125 |
+
| 0.2386 | 56.94 | 228 | 0.0348 | 0.9831 |
|
126 |
+
| 0.2386 | 57.94 | 232 | 0.0366 | 0.9831 |
|
127 |
+
| 0.2386 | 58.94 | 236 | 0.0374 | 0.9831 |
|
128 |
+
| 0.2362 | 59.94 | 240 | 0.0375 | 0.9831 |
|
129 |
|
130 |
|
131 |
### Framework versions
|