--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: delivery_truck_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # delivery_truck_classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0290 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.94 | 4 | 0.0290 | 1.0 | | No log | 1.94 | 8 | 0.0290 | 1.0 | | No log | 2.94 | 12 | 0.0290 | 1.0 | | No log | 3.94 | 16 | 0.0290 | 1.0 | | 0.2595 | 4.94 | 20 | 0.0290 | 1.0 | | 0.2595 | 5.94 | 24 | 0.0290 | 1.0 | | 0.2595 | 6.94 | 28 | 0.0290 | 1.0 | | 0.2595 | 7.94 | 32 | 0.0290 | 1.0 | | 0.2595 | 8.94 | 36 | 0.0290 | 1.0 | | 0.2679 | 9.94 | 40 | 0.0290 | 1.0 | | 0.2679 | 10.94 | 44 | 0.0290 | 1.0 | | 0.2679 | 11.94 | 48 | 0.0290 | 1.0 | | 0.2679 | 12.94 | 52 | 0.0290 | 1.0 | | 0.2679 | 13.94 | 56 | 0.0290 | 1.0 | | 0.275 | 14.94 | 60 | 0.0290 | 1.0 | | 0.275 | 15.94 | 64 | 0.0290 | 1.0 | | 0.275 | 16.94 | 68 | 0.0290 | 1.0 | | 0.275 | 17.94 | 72 | 0.0290 | 1.0 | | 0.275 | 18.94 | 76 | 0.0290 | 1.0 | | 0.248 | 19.94 | 80 | 0.0290 | 1.0 | | 0.248 | 20.94 | 84 | 0.0290 | 1.0 | | 0.248 | 21.94 | 88 | 0.0290 | 1.0 | | 0.248 | 22.94 | 92 | 0.0290 | 1.0 | | 0.248 | 23.94 | 96 | 0.0290 | 1.0 | | 0.2669 | 24.94 | 100 | 0.0290 | 1.0 | | 0.2669 | 25.94 | 104 | 0.0290 | 1.0 | | 0.2669 | 26.94 | 108 | 0.0290 | 1.0 | | 0.2669 | 27.94 | 112 | 0.0290 | 1.0 | | 0.2669 | 28.94 | 116 | 0.0290 | 1.0 | | 0.2589 | 29.94 | 120 | 0.0290 | 1.0 | | 0.2589 | 30.94 | 124 | 0.0290 | 1.0 | | 0.2589 | 31.94 | 128 | 0.0290 | 1.0 | | 0.2589 | 32.94 | 132 | 0.0290 | 1.0 | | 0.2589 | 33.94 | 136 | 0.0290 | 1.0 | | 0.278 | 34.94 | 140 | 0.0290 | 1.0 | | 0.278 | 35.94 | 144 | 0.0290 | 1.0 | | 0.278 | 36.94 | 148 | 0.0290 | 1.0 | | 0.278 | 37.94 | 152 | 0.0290 | 1.0 | | 0.278 | 38.94 | 156 | 0.0290 | 1.0 | | 0.273 | 39.94 | 160 | 0.0290 | 1.0 | | 0.273 | 40.94 | 164 | 0.0290 | 1.0 | | 0.273 | 41.94 | 168 | 0.0290 | 1.0 | | 0.273 | 42.94 | 172 | 0.0290 | 1.0 | | 0.273 | 43.94 | 176 | 0.0290 | 1.0 | | 0.2535 | 44.94 | 180 | 0.0290 | 1.0 | | 0.2535 | 45.94 | 184 | 0.0290 | 1.0 | | 0.2535 | 46.94 | 188 | 0.0290 | 1.0 | | 0.2535 | 47.94 | 192 | 0.0290 | 1.0 | | 0.2535 | 48.94 | 196 | 0.0290 | 1.0 | | 0.2762 | 49.94 | 200 | 0.0290 | 1.0 | | 0.2762 | 50.94 | 204 | 0.0290 | 1.0 | | 0.2762 | 51.94 | 208 | 0.0290 | 1.0 | | 0.2762 | 52.94 | 212 | 0.0290 | 1.0 | | 0.2762 | 53.94 | 216 | 0.0290 | 1.0 | | 0.2798 | 54.94 | 220 | 0.0290 | 1.0 | | 0.2798 | 55.94 | 224 | 0.0290 | 1.0 | | 0.2798 | 56.94 | 228 | 0.0290 | 1.0 | | 0.2798 | 57.94 | 232 | 0.0290 | 1.0 | | 0.2798 | 58.94 | 236 | 0.0290 | 1.0 | | 0.2709 | 59.94 | 240 | 0.0290 | 1.0 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2