--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: delivery_truck_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # delivery_truck_classification This model is a fine-tuned version of [JEdward7777/delivery_truck_classification](https://huggingface.co/JEdward7777/delivery_truck_classification) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0038 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 3 | 0.1626 | 0.95 | | No log | 2.0 | 6 | 0.1593 | 0.95 | | No log | 3.0 | 9 | 0.1342 | 0.95 | | No log | 4.0 | 12 | 0.0871 | 0.975 | | No log | 5.0 | 15 | 0.0612 | 0.975 | | No log | 6.0 | 18 | 0.0431 | 1.0 | | 0.2745 | 7.0 | 21 | 0.0333 | 1.0 | | 0.2745 | 8.0 | 24 | 0.0487 | 1.0 | | 0.2745 | 9.0 | 27 | 0.0456 | 1.0 | | 0.2745 | 10.0 | 30 | 0.0273 | 1.0 | | 0.2745 | 11.0 | 33 | 0.0180 | 1.0 | | 0.2745 | 12.0 | 36 | 0.0168 | 1.0 | | 0.2745 | 13.0 | 39 | 0.0310 | 1.0 | | 0.1782 | 14.0 | 42 | 0.0438 | 0.975 | | 0.1782 | 15.0 | 45 | 0.0750 | 0.975 | | 0.1782 | 16.0 | 48 | 0.0396 | 0.975 | | 0.1782 | 17.0 | 51 | 0.0177 | 1.0 | | 0.1782 | 18.0 | 54 | 0.0217 | 1.0 | | 0.1782 | 19.0 | 57 | 0.0116 | 1.0 | | 0.1624 | 20.0 | 60 | 0.0081 | 1.0 | | 0.1624 | 21.0 | 63 | 0.0066 | 1.0 | | 0.1624 | 22.0 | 66 | 0.0083 | 1.0 | | 0.1624 | 23.0 | 69 | 0.0126 | 1.0 | | 0.1624 | 24.0 | 72 | 0.0158 | 1.0 | | 0.1624 | 25.0 | 75 | 0.0188 | 1.0 | | 0.1624 | 26.0 | 78 | 0.0149 | 1.0 | | 0.1475 | 27.0 | 81 | 0.0101 | 1.0 | | 0.1475 | 28.0 | 84 | 0.0064 | 1.0 | | 0.1475 | 29.0 | 87 | 0.0050 | 1.0 | | 0.1475 | 30.0 | 90 | 0.0052 | 1.0 | | 0.1475 | 31.0 | 93 | 0.0064 | 1.0 | | 0.1475 | 32.0 | 96 | 0.0070 | 1.0 | | 0.1475 | 33.0 | 99 | 0.0069 | 1.0 | | 0.1345 | 34.0 | 102 | 0.0059 | 1.0 | | 0.1345 | 35.0 | 105 | 0.0049 | 1.0 | | 0.1345 | 36.0 | 108 | 0.0043 | 1.0 | | 0.1345 | 37.0 | 111 | 0.0040 | 1.0 | | 0.1345 | 38.0 | 114 | 0.0038 | 1.0 | | 0.1345 | 39.0 | 117 | 0.0038 | 1.0 | | 0.1232 | 40.0 | 120 | 0.0038 | 1.0 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cpu - Datasets 2.4.0 - Tokenizers 0.12.1