--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: delivery_truck_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # delivery_truck_classification This model is a fine-tuned version of [JEdward7777/delivery_truck_classification](https://huggingface.co/JEdward7777/delivery_truck_classification) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0621 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.86 | 3 | 0.1456 | 0.9574 | | No log | 1.86 | 6 | 0.0900 | 0.9787 | | No log | 2.86 | 9 | 0.0621 | 1.0 | | No log | 3.86 | 12 | 0.0635 | 0.9787 | | No log | 4.86 | 15 | 0.0535 | 0.9787 | | No log | 5.86 | 18 | 0.0663 | 0.9574 | | 0.3029 | 6.86 | 21 | 0.0492 | 0.9787 | | 0.3029 | 7.86 | 24 | 0.0559 | 0.9787 | | 0.3029 | 8.86 | 27 | 0.0664 | 0.9787 | | 0.3029 | 9.86 | 30 | 0.0643 | 0.9787 | | 0.3029 | 10.86 | 33 | 0.0558 | 0.9787 | | 0.3029 | 11.86 | 36 | 0.0365 | 1.0 | | 0.3029 | 12.86 | 39 | 0.0438 | 0.9787 | | 0.2212 | 13.86 | 42 | 0.0456 | 0.9787 | | 0.2212 | 14.86 | 45 | 0.0402 | 0.9787 | | 0.2212 | 15.86 | 48 | 0.0351 | 0.9787 | | 0.2212 | 16.86 | 51 | 0.0359 | 0.9787 | | 0.2212 | 17.86 | 54 | 0.0427 | 0.9787 | | 0.2212 | 18.86 | 57 | 0.0490 | 0.9574 | | 0.186 | 19.86 | 60 | 0.0396 | 0.9787 | | 0.186 | 20.86 | 63 | 0.0291 | 0.9787 | | 0.186 | 21.86 | 66 | 0.0152 | 1.0 | | 0.186 | 22.86 | 69 | 0.0142 | 1.0 | | 0.186 | 23.86 | 72 | 0.0178 | 1.0 | | 0.186 | 24.86 | 75 | 0.0176 | 1.0 | | 0.186 | 25.86 | 78 | 0.0151 | 1.0 | | 0.1751 | 26.86 | 81 | 0.0110 | 1.0 | | 0.1751 | 27.86 | 84 | 0.0121 | 1.0 | | 0.1751 | 28.86 | 87 | 0.0158 | 1.0 | | 0.1751 | 29.86 | 90 | 0.0250 | 1.0 | | 0.1751 | 30.86 | 93 | 0.0292 | 1.0 | | 0.1751 | 31.86 | 96 | 0.0260 | 1.0 | | 0.1751 | 32.86 | 99 | 0.0206 | 1.0 | | 0.1614 | 33.86 | 102 | 0.0181 | 1.0 | | 0.1614 | 34.86 | 105 | 0.0170 | 1.0 | | 0.1614 | 35.86 | 108 | 0.0170 | 1.0 | | 0.1614 | 36.86 | 111 | 0.0177 | 1.0 | | 0.1614 | 37.86 | 114 | 0.0188 | 1.0 | | 0.1614 | 38.86 | 117 | 0.0189 | 1.0 | | 0.1483 | 39.86 | 120 | 0.0188 | 1.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.0 - Tokenizers 0.13.1