--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: delivery_truck_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # delivery_truck_classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2212 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.67 | 1 | 1.7282 | 0.3 | | No log | 1.67 | 2 | 1.6786 | 0.3 | | No log | 2.67 | 3 | 1.5811 | 0.35 | | No log | 3.67 | 4 | 1.4410 | 0.45 | | No log | 4.67 | 5 | 1.2802 | 0.65 | | No log | 5.67 | 6 | 1.1453 | 0.75 | | No log | 6.67 | 7 | 1.0253 | 0.75 | | No log | 7.67 | 8 | 0.9306 | 0.75 | | No log | 8.67 | 9 | 0.8566 | 0.8 | | No log | 9.67 | 10 | 0.8048 | 0.8 | | No log | 10.67 | 11 | 0.7585 | 0.8 | | No log | 11.67 | 12 | 0.7097 | 0.8 | | No log | 12.67 | 13 | 0.6443 | 0.8 | | No log | 13.67 | 14 | 0.5772 | 0.8 | | No log | 14.67 | 15 | 0.5056 | 0.8 | | No log | 15.67 | 16 | 0.4444 | 0.8 | | No log | 16.67 | 17 | 0.3857 | 0.85 | | No log | 17.67 | 18 | 0.3330 | 0.85 | | No log | 18.67 | 19 | 0.2907 | 0.9 | | 1.4985 | 19.67 | 20 | 0.2552 | 0.95 | | 1.4985 | 20.67 | 21 | 0.2212 | 1.0 | | 1.4985 | 21.67 | 22 | 0.1938 | 1.0 | | 1.4985 | 22.67 | 23 | 0.1699 | 1.0 | | 1.4985 | 23.67 | 24 | 0.1490 | 1.0 | | 1.4985 | 24.67 | 25 | 0.1329 | 1.0 | | 1.4985 | 25.67 | 26 | 0.1203 | 1.0 | | 1.4985 | 26.67 | 27 | 0.1141 | 1.0 | | 1.4985 | 27.67 | 28 | 0.1084 | 1.0 | | 1.4985 | 28.67 | 29 | 0.1018 | 1.0 | | 1.4985 | 29.67 | 30 | 0.0953 | 1.0 | | 1.4985 | 30.67 | 31 | 0.0878 | 1.0 | | 1.4985 | 31.67 | 32 | 0.0794 | 1.0 | | 1.4985 | 32.67 | 33 | 0.0730 | 1.0 | | 1.4985 | 33.67 | 34 | 0.0687 | 1.0 | | 1.4985 | 34.67 | 35 | 0.0664 | 1.0 | | 1.4985 | 35.67 | 36 | 0.0649 | 1.0 | | 1.4985 | 36.67 | 37 | 0.0640 | 1.0 | | 1.4985 | 37.67 | 38 | 0.0639 | 1.0 | | 1.4985 | 38.67 | 39 | 0.0638 | 1.0 | | 0.4842 | 39.67 | 40 | 0.0637 | 1.0 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1