OsakanaTeishoku commited on
Commit
16ba128
·
verified ·
1 Parent(s): 903d00f

Upload configuration_deepseek.py

Browse files
Files changed (1) hide show
  1. configuration_deepseek.py +200 -0
configuration_deepseek.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekConfig(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekModel`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-7B.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 102400):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekModel`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_attention_heads (`int`, *optional*, defaults to 32):
30
+ Number of attention heads for each attention layer in the Transformer decoder.
31
+ n_shared_experts (`int`, *optional*, defaults to None):
32
+ Number of shared experts, None means dense model.
33
+ n_routed_experts (`int`, *optional*, defaults to None):
34
+ Number of routed experts, None means dense model.
35
+ num_experts_per_tok (`int`, *optional*, defaults to None):
36
+ Number of selected experts, None means dense model.
37
+ moe_layer_freq (`int`, *optional*, defaults to 1):
38
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
39
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
40
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
41
+ \--k dense layers--/
42
+ norm_topk_prob (`bool`, *optional*, defaults to False):
43
+ Whether to normalize the weights of the routed experts.
44
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
45
+ Method of computing expert weights.
46
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
47
+ Auxiliary loss weight coefficient.
48
+ seq_aux = (`bool`, *optional*, defaults to True):
49
+ Whether to compute the auxiliary loss for each individual sample.
50
+ num_key_value_heads (`int`, *optional*):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
57
+ `num_attention_heads`.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
+ The non-linear activation function (function or string) in the decoder.
60
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
61
+ The maximum sequence length that this model might ever be used with.
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ pad_token_id (`int`, *optional*):
70
+ Padding token id.
71
+ bos_token_id (`int`, *optional*, defaults to 1):
72
+ Beginning of stream token id.
73
+ eos_token_id (`int`, *optional*, defaults to 2):
74
+ End of stream token id.
75
+ pretraining_tp (`int`, *optional*, defaults to 1):
76
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
77
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
78
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
79
+ issue](https://github.com/pytorch/pytorch/issues/76232).
80
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
81
+ Whether to tie weight embeddings
82
+ rope_theta (`float`, *optional*, defaults to 10000.0):
83
+ The base period of the RoPE embeddings.
84
+ rope_scaling (`Dict`, *optional*):
85
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
86
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
87
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
88
+ `max_position_embeddings` to the expected new maximum.
89
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
90
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
91
+ attention_dropout (`float`, *optional*, defaults to 0.0):
92
+ The dropout ratio for the attention probabilities.
93
+
94
+ ```python
95
+ >>> from transformers import DeepseekModel, DeepseekConfig
96
+
97
+ >>> # Initializing a Deepseek deepseek-7b style configuration
98
+ >>> configuration = DeepseekConfig()
99
+
100
+ >>> # Accessing the model configuration
101
+ >>> configuration = model.config
102
+ ```"""
103
+
104
+ model_type = "deepseek"
105
+ keys_to_ignore_at_inference = ["past_key_values"]
106
+
107
+ def __init__(
108
+ self,
109
+ vocab_size=102400,
110
+ hidden_size=4096,
111
+ intermediate_size=11008,
112
+ moe_intermediate_size = 1407,
113
+ num_hidden_layers=30,
114
+ num_attention_heads=32,
115
+ num_key_value_heads=32,
116
+ n_shared_experts = None,
117
+ n_routed_experts = None,
118
+ num_experts_per_tok = None,
119
+ moe_layer_freq = 1,
120
+ first_k_dense_replace = 0,
121
+ norm_topk_prob = False,
122
+ scoring_func = 'softmax',
123
+ aux_loss_alpha = 0.001,
124
+ seq_aux = True,
125
+ hidden_act="silu",
126
+ max_position_embeddings=2048,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-6,
129
+ use_cache=True,
130
+ pad_token_id=None,
131
+ bos_token_id=100000,
132
+ eos_token_id=100001,
133
+ pretraining_tp=1,
134
+ tie_word_embeddings=False,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ attention_bias=False,
138
+ attention_dropout=0.0,
139
+ **kwargs,
140
+ ):
141
+ self.vocab_size = vocab_size
142
+ self.max_position_embeddings = max_position_embeddings
143
+ self.hidden_size = hidden_size
144
+ self.intermediate_size = intermediate_size
145
+ self.moe_intermediate_size = moe_intermediate_size
146
+ self.num_hidden_layers = num_hidden_layers
147
+ self.num_attention_heads = num_attention_heads
148
+ self.n_shared_experts = n_shared_experts
149
+ self.n_routed_experts = n_routed_experts
150
+ self.num_experts_per_tok = num_experts_per_tok
151
+ self.moe_layer_freq = moe_layer_freq
152
+ self.first_k_dense_replace = first_k_dense_replace
153
+ self.norm_topk_prob = norm_topk_prob
154
+ self.scoring_func = scoring_func
155
+ self.aux_loss_alpha = aux_loss_alpha
156
+ self.seq_aux = seq_aux
157
+ # for backward compatibility
158
+ if num_key_value_heads is None:
159
+ num_key_value_heads = num_attention_heads
160
+
161
+ self.num_key_value_heads = num_key_value_heads
162
+ self.hidden_act = hidden_act
163
+ self.initializer_range = initializer_range
164
+ self.rms_norm_eps = rms_norm_eps
165
+ self.pretraining_tp = pretraining_tp
166
+ self.use_cache = use_cache
167
+ self.rope_theta = rope_theta
168
+ self.rope_scaling = rope_scaling
169
+ self._rope_scaling_validation()
170
+ self.attention_bias = attention_bias
171
+ self.attention_dropout = attention_dropout
172
+
173
+ super().__init__(
174
+ pad_token_id=pad_token_id,
175
+ bos_token_id=bos_token_id,
176
+ eos_token_id=eos_token_id,
177
+ tie_word_embeddings=tie_word_embeddings,
178
+ **kwargs,
179
+ )
180
+
181
+ def _rope_scaling_validation(self):
182
+ """
183
+ Validate the `rope_scaling` configuration.
184
+ """
185
+ if self.rope_scaling is None:
186
+ return
187
+
188
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
189
+ raise ValueError(
190
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
191
+ f"got {self.rope_scaling}"
192
+ )
193
+ rope_scaling_type = self.rope_scaling.get("type", None)
194
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
195
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
196
+ raise ValueError(
197
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
198
+ )
199
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
200
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")