Test-test
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 216.99 +/- 71.20
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc49d99edd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc49d99ee60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc49d99eef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc49d99ef80>", "_build": "<function ActorCriticPolicy._build at 0x7fc49d9a5050>", "forward": "<function ActorCriticPolicy.forward at 0x7fc49d9a50e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc49d9a5170>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc49d9a5200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc49d9a5290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc49d9a5320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc49d9a53b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc49d9f43f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655145284.823471, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAArTITPlIC0DpgLRG8vzbruffWtjwNraS6AACAPwAAgD+avYO9XA91uh1ABjzWmM61dbkBu9hwvLQAAIA/AACAP5qxxz32FDS6O3DSOxCTpDcVxLy3hpGHNgAAgD8AAIA/GnLfva5xkLpDF4U5i0w+NhHKzbqUHJm4AACAPwAAgD8NwCa+uFqgu0sFlb3MDyO7zVrnPN1bCzwAAIA/AACAPxMGGb6bo6Q9+pf8vPh8h75b5DY9fEggOwAAAAAAAAAAzdcGvq6X4znBViA8lLucuVkqJLw6BYc6AACAPwAAgD8zlrm9H8XjuTENFjvtvZ00G40Mu2j9mjMAAIA/AACAP8pSmz4xuPg9akKlvVryhL4Lq9E9DbjrPQAAAAAAAAAAgPjUPVzDObqNqW46j4QltuZNkjqm2Ye5AACAPwAAgD9m3by8B7sXPzo8CT2Hm7O+BLtCvVLO3TwAAAAAAAAAAPOOkb2PZl66i97GOjeGTTYvsFC79AVJNQAAgD8AAIA/s/W0PVzTcbozF4k7u34eOLnRSLoe4kG3AACAPwAAgD9zBCw+eGDNPb7RwLu2i4q+R/quPPrIozwAAAAAAAAAAG3CLT6UKs070wQJu5LfzLiSVmU9z2eBOQAAgD8AAIA/cylfPsViiDzKMjW8+W6cPFUOCT/1Noq9AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICW8PQkDSYUCUhpRSlIwBbJRN6AOMAXSUR0CAMXiExqO+dX2UKGgGaAloD0MIlUbM7HNwYUCUhpRSlGgVTegDaBZHQIA6PrMTviN1fZQoaAZoCWgPQwh3gv3XuQ5VQJSGlFKUaBVN6ANoFkdAgD7lHJ9y93V9lChoBmgJaA9DCLRxxFp8kFVAlIaUUpRoFU3oA2gWR0CARzuOS4e+dX2UKGgGaAloD0MI/TIYIxJdOkCUhpRSlGgVS91oFkdAgEfXIU8FIXV9lChoBmgJaA9DCOohGt1BOkdAlIaUUpRoFUvaaBZHQIBIoGlhw2l1fZQoaAZoCWgPQwgOFk7S/GEQwJSGlFKUaBVL6mgWR0CASdsa86FNdX2UKGgGaAloD0MI1xUzwttZQECUhpRSlGgVS/FoFkdAgEvlBIFvAHV9lChoBmgJaA9DCPXabKxETmRAlIaUUpRoFU3oA2gWR0CATk+K0lZ6dX2UKGgGaAloD0MIWcLaGDtsYECUhpRSlGgVTegDaBZHQIBO8JUo8ZF1fZQoaAZoCWgPQwgSM/s8RjJfQJSGlFKUaBVN6ANoFkdAgFSfJV81GnV9lChoBmgJaA9DCC50JQLVvwlAlIaUUpRoFUvFaBZHQIBcVX5nDix1fZQoaAZoCWgPQwjy7shYbQYnQJSGlFKUaBVL4mgWR0CAYDwGW2PUdX2UKGgGaAloD0MIC7WmecdLYkCUhpRSlGgVTegDaBZHQIBiNNHpbEB1fZQoaAZoCWgPQwiYM9sVenZgQJSGlFKUaBVN6ANoFkdAgGQHuiN83XV9lChoBmgJaA9DCCV6GcVyWytAlIaUUpRoFUvTaBZHQIBr8mtyPuJ1fZQoaAZoCWgPQwhf1O5XAXo8QJSGlFKUaBVLs2gWR0CAdWK64Ds/dX2UKGgGaAloD0MI9RH4w88KVECUhpRSlGgVTegDaBZHQIB9iPQv6CV1fZQoaAZoCWgPQwjou1tZorc4wJSGlFKUaBVL5mgWR0CAfn1lGwzMdX2UKGgGaAloD0MIXAUx0LUzWUCUhpRSlGgVTegDaBZHQICnTSVnmJZ1fZQoaAZoCWgPQwjvrUhMUNRgQJSGlFKUaBVN6ANoFkdAgKvDdgv12HV9lChoBmgJaA9DCNBGrptSU2JAlIaUUpRoFU3oA2gWR0CA1yVqveP8dX2UKGgGaAloD0MIvD/eq1ZGYkCUhpRSlGgVTegDaBZHQIDhDCP6sQx1fZQoaAZoCWgPQwhEqFKzh49iQJSGlFKUaBVN6ANoFkdAgOZGU4aP0nV9lChoBmgJaA9DCPPMy2H3AltAlIaUUpRoFU3oA2gWR0CA8TyPMjeLdX2UKGgGaAloD0MIYrzmVZ26Y0CUhpRSlGgVTegDaBZHQIDyrDKoybh1fZQoaAZoCWgPQwhTW+ogr79FQJSGlFKUaBVL+WgWR0CA88dCmdiEdX2UKGgGaAloD0MIEmiwqfN/ZUCUhpRSlGgVTegDaBZHQID0xflZHNJ1fZQoaAZoCWgPQwhEiZY8nkFbQJSGlFKUaBVN6ANoFkdAgPb+fywwCnV9lChoBmgJaA9DCMRCrWnerV9AlIaUUpRoFU3oA2gWR0CA95ybQTmGdX2UKGgGaAloD0MIhC12+6wkWUCUhpRSlGgVTegDaBZHQIEFGbqhUR51fZQoaAZoCWgPQwg/VBoxs+RfQJSGlFKUaBVN6ANoFkdAgQz1WbPQfXV9lChoBmgJaA9DCLfUQV4PbiZAlIaUUpRoFUvnaBZHQIEQ4I0IkZ91fZQoaAZoCWgPQwhKe4MvTP1eQJSGlFKUaBVN6ANoFkdAgRVFG5MDfXV9lChoBmgJaA9DCHcv98nR+mBAlIaUUpRoFU3oA2gWR0CBHsn889wFdX2UKGgGaAloD0MIrmGGxhMgYUCUhpRSlGgVTegDaBZHQIEmkaKk2xZ1fZQoaAZoCWgPQwiqDyTvHBhfQJSGlFKUaBVN6ANoFkdAgSd402tMf3V9lChoBmgJaA9DCC6SdqOPyltAlIaUUpRoFU3oA2gWR0CBTVnuAqd6dX2UKGgGaAloD0MIr+5YbJNeWUCUhpRSlGgVTegDaBZHQIFXhGrjo6l1fZQoaAZoCWgPQwhXPWAeMt9hQJSGlFKUaBVN6ANoFkdAgYfijk+5fHV9lChoBmgJaA9DCJrrNNJSkmFAlIaUUpRoFU3oA2gWR0CBjV90ihWYdX2UKGgGaAloD0MIxvzc0JQ5YECUhpRSlGgVTegDaBZHQIGYhbjcVQB1fZQoaAZoCWgPQwird7gdmuRiQJSGlFKUaBVN6ANoFkdAgZoKSHM2WXV9lChoBmgJaA9DCNU/iGRIZGFAlIaUUpRoFU3oA2gWR0CBmzVea8YidX2UKGgGaAloD0MITn6LTpblYkCUhpRSlGgVTegDaBZHQIGcL9AHE/B1fZQoaAZoCWgPQwiCqzyBMFdiQJSGlFKUaBVN6ANoFkdAgZ5yOR1YAHV9lChoBmgJaA9DCFjGhm72f1RAlIaUUpRoFU3oA2gWR0CBryizsyBTdX2UKGgGaAloD0MIjC/a4wXUYUCUhpRSlGgVTegDaBZHQIG4Ib+98JF1fZQoaAZoCWgPQwiLpx5pcA9IQJSGlFKUaBVL9WgWR0CBuIQJXyRTdX2UKGgGaAloD0MIHAbzV8gsPMCUhpRSlGgVTQEBaBZHQIG8S3Td+G51fZQoaAZoCWgPQwjDmzV4X51dQJSGlFKUaBVN6ANoFkdAgbxrMTviLnV9lChoBmgJaA9DCLk3v2GiJl1AlIaUUpRoFU3oA2gWR0CBwNT6zmfXdX2UKGgGaAloD0MIvYqMDkg4TUCUhpRSlGgVTegDaBZHQIHJdzXBgu11fZQoaAZoCWgPQwgmAP+UKqk4QJSGlFKUaBVL/GgWR0CBzgevpyIYdX2UKGgGaAloD0MIMA4uHXMEXUCUhpRSlGgVTegDaBZHQIHQkT6BRQ91fZQoaAZoCWgPQwglkBK7ttRiQJSGlFKUaBVN6ANoFkdAgdFcxj8UEnV9lChoBmgJaA9DCH/Bbti2Ok1AlIaUUpRoFUuzaBZHQIHVFnVXmvJ1fZQoaAZoCWgPQwjKw0KtaX4MwJSGlFKUaBVL32gWR0CB7EBp5/smdX2UKGgGaAloD0MI2c2MfjTsIECUhpRSlGgVS/loFkdAgezUQsf7rXV9lChoBmgJaA9DCEw0SMFTXWBAlIaUUpRoFU3oA2gWR0CB9Xbg0j1PdX2UKGgGaAloD0MIfh04Z0QEVkCUhpRSlGgVTegDaBZHQIH/NfNRm9R1fZQoaAZoCWgPQwh3uvPEc5paQJSGlFKUaBVN6ANoFkdAgi7JtSAH3XV9lChoBmgJaA9DCICAtWrXvWJAlIaUUpRoFU3oA2gWR0CCNDW8RL9NdX2UKGgGaAloD0MIEi9P5woQYkCUhpRSlGgVTegDaBZHQII/QxUNrj51fZQoaAZoCWgPQwiNl24Sg49bQJSGlFKUaBVN6ANoFkdAgkHra24NJHV9lChoBmgJaA9DCDCbAMNyDWBAlIaUUpRoFU3oA2gWR0CCRWvM8ox6dX2UKGgGaAloD0MIzSN/MPCsOkCUhpRSlGgVS+doFkdAgk0CiqQzUXV9lChoBmgJaA9DCCP5SiAlP11AlIaUUpRoFU3oA2gWR0CCYBpblijMdX2UKGgGaAloD0MIDwwgfCiTX0CUhpRSlGgVTegDaBZHQIJgfUDuBtl1fZQoaAZoCWgPQwg+lGjJ489eQJSGlFKUaBVN6ANoFkdAgmQaPbO/tnV9lChoBmgJaA9DCD6T/fM0s1tAlIaUUpRoFU3oA2gWR0CCZDymQ8wIdX2UKGgGaAloD0MIj26ERcXIYkCUhpRSlGgVTegDaBZHQIJxgGnn+yZ1fZQoaAZoCWgPQwgzjSYXY6lhQJSGlFKUaBVN6ANoFkdAgnnduxbB43V9lChoBmgJaA9DCCS05VyKU19AlIaUUpRoFU3oA2gWR0CCfic5Ke05dX2UKGgGaAloD0MI8ddkjXqYJkCUhpRSlGgVS9VoFkdAgpVnJT2nKnV9lChoBmgJaA9DCKxyofIvaWBAlIaUUpRoFU3oA2gWR0CClcq5sj3VdX2UKGgGaAloD0MIkrJF0u6fYUCUhpRSlGgVTegDaBZHQIKWVBQemvZ1fZQoaAZoCWgPQwgIVWr2QOhXQJSGlFKUaBVN6ANoFkdAgp2qnvUjLXV9lChoBmgJaA9DCHUBLzNsyVxAlIaUUpRoFU3oA2gWR0CCpb74SHuadX2UKGgGaAloD0MIx0s3iUEzYECUhpRSlGgVTegDaBZHQILYYomXw9d1fZQoaAZoCWgPQwjOUx1yMxBgQJSGlFKUaBVN6ANoFkdAguKW1UlzEXV9lChoBmgJaA9DCPRqgNJQ4WRAlIaUUpRoFU3oA2gWR0CC5S/GEPDpdX2UKGgGaAloD0MIOE2fHXA/XkCUhpRSlGgVTegDaBZHQILoigTRIBl1fZQoaAZoCWgPQwgvNq0UAiBcQJSGlFKUaBVN6ANoFkdAgu/Jgb6xgXV9lChoBmgJaA9DCFA5Jov7E11AlIaUUpRoFU3oA2gWR0CDAVN34bjtdX2UKGgGaAloD0MIUmNCzCXrWUCUhpRSlGgVTegDaBZHQIMBy2nbZe11fZQoaAZoCWgPQwgLC+4HPJ9iQJSGlFKUaBVN6ANoFkdAgwa5UtI07HV9lChoBmgJaA9DCADEXb2K5lpAlIaUUpRoFU3oA2gWR0CDBuVvddmhdX2UKGgGaAloD0MIcNI0KJp/OkCUhpRSlGgVS9hoFkdAgw1qOLiuMnV9lChoBmgJaA9DCNO9TupLtWFAlIaUUpRoFU3oA2gWR0CDF0NsnAqNdX2UKGgGaAloD0MIAd2XM9sxOUCUhpRSlGgVS9NoFkdAgyKYVqN6xHV9lChoBmgJaA9DCIlFDDuMAGBAlIaUUpRoFU3oA2gWR0CDIzvgFX7tdX2UKGgGaAloD0MI1SR4QxrBOUCUhpRSlGgVS85oFkdAgybXCTEBKnV9lChoBmgJaA9DCN4AM9/BoUVAlIaUUpRoFUv6aBZHQIM0yzkZJkJ1fZQoaAZoCWgPQwjo2EElLgFiQJSGlFKUaBVN6ANoFkdAgzjBnSOR1XV9lChoBmgJaA9DCOjB3Vm74F9AlIaUUpRoFU3oA2gWR0CDORpt78ekdX2UKGgGaAloD0MIpg9dUN81Y0CUhpRSlGgVTegDaBZHQIM5j4593KV1fZQoaAZoCWgPQwgah/pd2GolQJSGlFKUaBVL02gWR0CDO9x8UmD2dX2UKGgGaAloD0MIXfjB+dRwX0CUhpRSlGgVTegDaBZHQIM/5MrVe8h1fZQoaAZoCWgPQwjDZRU2AzlgQJSGlFKUaBVN6ANoFkdAg0cpBw++unVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aedd3c4745881225f2a54fbfebdf86829021fb66d610489b3098e2b1d53b0c3a
|
3 |
+
size 144127
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc49d99edd0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc49d99ee60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc49d99eef0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc49d99ef80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc49d9a5050>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc49d9a50e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc49d9a5170>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc49d9a5200>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc49d9a5290>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc49d9a5320>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc49d9a53b0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc49d9f43f0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1655145284.823471,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAArTITPlIC0DpgLRG8vzbruffWtjwNraS6AACAPwAAgD+avYO9XA91uh1ABjzWmM61dbkBu9hwvLQAAIA/AACAP5qxxz32FDS6O3DSOxCTpDcVxLy3hpGHNgAAgD8AAIA/GnLfva5xkLpDF4U5i0w+NhHKzbqUHJm4AACAPwAAgD8NwCa+uFqgu0sFlb3MDyO7zVrnPN1bCzwAAIA/AACAPxMGGb6bo6Q9+pf8vPh8h75b5DY9fEggOwAAAAAAAAAAzdcGvq6X4znBViA8lLucuVkqJLw6BYc6AACAPwAAgD8zlrm9H8XjuTENFjvtvZ00G40Mu2j9mjMAAIA/AACAP8pSmz4xuPg9akKlvVryhL4Lq9E9DbjrPQAAAAAAAAAAgPjUPVzDObqNqW46j4QltuZNkjqm2Ye5AACAPwAAgD9m3by8B7sXPzo8CT2Hm7O+BLtCvVLO3TwAAAAAAAAAAPOOkb2PZl66i97GOjeGTTYvsFC79AVJNQAAgD8AAIA/s/W0PVzTcbozF4k7u34eOLnRSLoe4kG3AACAPwAAgD9zBCw+eGDNPb7RwLu2i4q+R/quPPrIozwAAAAAAAAAAG3CLT6UKs070wQJu5LfzLiSVmU9z2eBOQAAgD8AAIA/cylfPsViiDzKMjW8+W6cPFUOCT/1Noq9AACAPwAAgD+UdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICW8PQkDSYUCUhpRSlIwBbJRN6AOMAXSUR0CAMXiExqO+dX2UKGgGaAloD0MIlUbM7HNwYUCUhpRSlGgVTegDaBZHQIA6PrMTviN1fZQoaAZoCWgPQwh3gv3XuQ5VQJSGlFKUaBVN6ANoFkdAgD7lHJ9y93V9lChoBmgJaA9DCLRxxFp8kFVAlIaUUpRoFU3oA2gWR0CARzuOS4e+dX2UKGgGaAloD0MI/TIYIxJdOkCUhpRSlGgVS91oFkdAgEfXIU8FIXV9lChoBmgJaA9DCOohGt1BOkdAlIaUUpRoFUvaaBZHQIBIoGlhw2l1fZQoaAZoCWgPQwgOFk7S/GEQwJSGlFKUaBVL6mgWR0CASdsa86FNdX2UKGgGaAloD0MI1xUzwttZQECUhpRSlGgVS/FoFkdAgEvlBIFvAHV9lChoBmgJaA9DCPXabKxETmRAlIaUUpRoFU3oA2gWR0CATk+K0lZ6dX2UKGgGaAloD0MIWcLaGDtsYECUhpRSlGgVTegDaBZHQIBO8JUo8ZF1fZQoaAZoCWgPQwgSM/s8RjJfQJSGlFKUaBVN6ANoFkdAgFSfJV81GnV9lChoBmgJaA9DCC50JQLVvwlAlIaUUpRoFUvFaBZHQIBcVX5nDix1fZQoaAZoCWgPQwjy7shYbQYnQJSGlFKUaBVL4mgWR0CAYDwGW2PUdX2UKGgGaAloD0MIC7WmecdLYkCUhpRSlGgVTegDaBZHQIBiNNHpbEB1fZQoaAZoCWgPQwiYM9sVenZgQJSGlFKUaBVN6ANoFkdAgGQHuiN83XV9lChoBmgJaA9DCCV6GcVyWytAlIaUUpRoFUvTaBZHQIBr8mtyPuJ1fZQoaAZoCWgPQwhf1O5XAXo8QJSGlFKUaBVLs2gWR0CAdWK64Ds/dX2UKGgGaAloD0MI9RH4w88KVECUhpRSlGgVTegDaBZHQIB9iPQv6CV1fZQoaAZoCWgPQwjou1tZorc4wJSGlFKUaBVL5mgWR0CAfn1lGwzMdX2UKGgGaAloD0MIXAUx0LUzWUCUhpRSlGgVTegDaBZHQICnTSVnmJZ1fZQoaAZoCWgPQwjvrUhMUNRgQJSGlFKUaBVN6ANoFkdAgKvDdgv12HV9lChoBmgJaA9DCNBGrptSU2JAlIaUUpRoFU3oA2gWR0CA1yVqveP8dX2UKGgGaAloD0MIvD/eq1ZGYkCUhpRSlGgVTegDaBZHQIDhDCP6sQx1fZQoaAZoCWgPQwhEqFKzh49iQJSGlFKUaBVN6ANoFkdAgOZGU4aP0nV9lChoBmgJaA9DCPPMy2H3AltAlIaUUpRoFU3oA2gWR0CA8TyPMjeLdX2UKGgGaAloD0MIYrzmVZ26Y0CUhpRSlGgVTegDaBZHQIDyrDKoybh1fZQoaAZoCWgPQwhTW+ogr79FQJSGlFKUaBVL+WgWR0CA88dCmdiEdX2UKGgGaAloD0MIEmiwqfN/ZUCUhpRSlGgVTegDaBZHQID0xflZHNJ1fZQoaAZoCWgPQwhEiZY8nkFbQJSGlFKUaBVN6ANoFkdAgPb+fywwCnV9lChoBmgJaA9DCMRCrWnerV9AlIaUUpRoFU3oA2gWR0CA95ybQTmGdX2UKGgGaAloD0MIhC12+6wkWUCUhpRSlGgVTegDaBZHQIEFGbqhUR51fZQoaAZoCWgPQwg/VBoxs+RfQJSGlFKUaBVN6ANoFkdAgQz1WbPQfXV9lChoBmgJaA9DCLfUQV4PbiZAlIaUUpRoFUvnaBZHQIEQ4I0IkZ91fZQoaAZoCWgPQwhKe4MvTP1eQJSGlFKUaBVN6ANoFkdAgRVFG5MDfXV9lChoBmgJaA9DCHcv98nR+mBAlIaUUpRoFU3oA2gWR0CBHsn889wFdX2UKGgGaAloD0MIrmGGxhMgYUCUhpRSlGgVTegDaBZHQIEmkaKk2xZ1fZQoaAZoCWgPQwiqDyTvHBhfQJSGlFKUaBVN6ANoFkdAgSd402tMf3V9lChoBmgJaA9DCC6SdqOPyltAlIaUUpRoFU3oA2gWR0CBTVnuAqd6dX2UKGgGaAloD0MIr+5YbJNeWUCUhpRSlGgVTegDaBZHQIFXhGrjo6l1fZQoaAZoCWgPQwhXPWAeMt9hQJSGlFKUaBVN6ANoFkdAgYfijk+5fHV9lChoBmgJaA9DCJrrNNJSkmFAlIaUUpRoFU3oA2gWR0CBjV90ihWYdX2UKGgGaAloD0MIxvzc0JQ5YECUhpRSlGgVTegDaBZHQIGYhbjcVQB1fZQoaAZoCWgPQwird7gdmuRiQJSGlFKUaBVN6ANoFkdAgZoKSHM2WXV9lChoBmgJaA9DCNU/iGRIZGFAlIaUUpRoFU3oA2gWR0CBmzVea8YidX2UKGgGaAloD0MITn6LTpblYkCUhpRSlGgVTegDaBZHQIGcL9AHE/B1fZQoaAZoCWgPQwiCqzyBMFdiQJSGlFKUaBVN6ANoFkdAgZ5yOR1YAHV9lChoBmgJaA9DCFjGhm72f1RAlIaUUpRoFU3oA2gWR0CBryizsyBTdX2UKGgGaAloD0MIjC/a4wXUYUCUhpRSlGgVTegDaBZHQIG4Ib+98JF1fZQoaAZoCWgPQwiLpx5pcA9IQJSGlFKUaBVL9WgWR0CBuIQJXyRTdX2UKGgGaAloD0MIHAbzV8gsPMCUhpRSlGgVTQEBaBZHQIG8S3Td+G51fZQoaAZoCWgPQwjDmzV4X51dQJSGlFKUaBVN6ANoFkdAgbxrMTviLnV9lChoBmgJaA9DCLk3v2GiJl1AlIaUUpRoFU3oA2gWR0CBwNT6zmfXdX2UKGgGaAloD0MIvYqMDkg4TUCUhpRSlGgVTegDaBZHQIHJdzXBgu11fZQoaAZoCWgPQwgmAP+UKqk4QJSGlFKUaBVL/GgWR0CBzgevpyIYdX2UKGgGaAloD0MIMA4uHXMEXUCUhpRSlGgVTegDaBZHQIHQkT6BRQ91fZQoaAZoCWgPQwglkBK7ttRiQJSGlFKUaBVN6ANoFkdAgdFcxj8UEnV9lChoBmgJaA9DCH/Bbti2Ok1AlIaUUpRoFUuzaBZHQIHVFnVXmvJ1fZQoaAZoCWgPQwjKw0KtaX4MwJSGlFKUaBVL32gWR0CB7EBp5/smdX2UKGgGaAloD0MI2c2MfjTsIECUhpRSlGgVS/loFkdAgezUQsf7rXV9lChoBmgJaA9DCEw0SMFTXWBAlIaUUpRoFU3oA2gWR0CB9Xbg0j1PdX2UKGgGaAloD0MIfh04Z0QEVkCUhpRSlGgVTegDaBZHQIH/NfNRm9R1fZQoaAZoCWgPQwh3uvPEc5paQJSGlFKUaBVN6ANoFkdAgi7JtSAH3XV9lChoBmgJaA9DCICAtWrXvWJAlIaUUpRoFU3oA2gWR0CCNDW8RL9NdX2UKGgGaAloD0MIEi9P5woQYkCUhpRSlGgVTegDaBZHQII/QxUNrj51fZQoaAZoCWgPQwiNl24Sg49bQJSGlFKUaBVN6ANoFkdAgkHra24NJHV9lChoBmgJaA9DCDCbAMNyDWBAlIaUUpRoFU3oA2gWR0CCRWvM8ox6dX2UKGgGaAloD0MIzSN/MPCsOkCUhpRSlGgVS+doFkdAgk0CiqQzUXV9lChoBmgJaA9DCCP5SiAlP11AlIaUUpRoFU3oA2gWR0CCYBpblijMdX2UKGgGaAloD0MIDwwgfCiTX0CUhpRSlGgVTegDaBZHQIJgfUDuBtl1fZQoaAZoCWgPQwg+lGjJ489eQJSGlFKUaBVN6ANoFkdAgmQaPbO/tnV9lChoBmgJaA9DCD6T/fM0s1tAlIaUUpRoFU3oA2gWR0CCZDymQ8wIdX2UKGgGaAloD0MIj26ERcXIYkCUhpRSlGgVTegDaBZHQIJxgGnn+yZ1fZQoaAZoCWgPQwgzjSYXY6lhQJSGlFKUaBVN6ANoFkdAgnnduxbB43V9lChoBmgJaA9DCCS05VyKU19AlIaUUpRoFU3oA2gWR0CCfic5Ke05dX2UKGgGaAloD0MI8ddkjXqYJkCUhpRSlGgVS9VoFkdAgpVnJT2nKnV9lChoBmgJaA9DCKxyofIvaWBAlIaUUpRoFU3oA2gWR0CClcq5sj3VdX2UKGgGaAloD0MIkrJF0u6fYUCUhpRSlGgVTegDaBZHQIKWVBQemvZ1fZQoaAZoCWgPQwgIVWr2QOhXQJSGlFKUaBVN6ANoFkdAgp2qnvUjLXV9lChoBmgJaA9DCHUBLzNsyVxAlIaUUpRoFU3oA2gWR0CCpb74SHuadX2UKGgGaAloD0MIx0s3iUEzYECUhpRSlGgVTegDaBZHQILYYomXw9d1fZQoaAZoCWgPQwjOUx1yMxBgQJSGlFKUaBVN6ANoFkdAguKW1UlzEXV9lChoBmgJaA9DCPRqgNJQ4WRAlIaUUpRoFU3oA2gWR0CC5S/GEPDpdX2UKGgGaAloD0MIOE2fHXA/XkCUhpRSlGgVTegDaBZHQILoigTRIBl1fZQoaAZoCWgPQwgvNq0UAiBcQJSGlFKUaBVN6ANoFkdAgu/Jgb6xgXV9lChoBmgJaA9DCFA5Jov7E11AlIaUUpRoFU3oA2gWR0CDAVN34bjtdX2UKGgGaAloD0MIUmNCzCXrWUCUhpRSlGgVTegDaBZHQIMBy2nbZe11fZQoaAZoCWgPQwgLC+4HPJ9iQJSGlFKUaBVN6ANoFkdAgwa5UtI07HV9lChoBmgJaA9DCADEXb2K5lpAlIaUUpRoFU3oA2gWR0CDBuVvddmhdX2UKGgGaAloD0MIcNI0KJp/OkCUhpRSlGgVS9hoFkdAgw1qOLiuMnV9lChoBmgJaA9DCNO9TupLtWFAlIaUUpRoFU3oA2gWR0CDF0NsnAqNdX2UKGgGaAloD0MIAd2XM9sxOUCUhpRSlGgVS9NoFkdAgyKYVqN6xHV9lChoBmgJaA9DCIlFDDuMAGBAlIaUUpRoFU3oA2gWR0CDIzvgFX7tdX2UKGgGaAloD0MI1SR4QxrBOUCUhpRSlGgVS85oFkdAgybXCTEBKnV9lChoBmgJaA9DCN4AM9/BoUVAlIaUUpRoFUv6aBZHQIM0yzkZJkJ1fZQoaAZoCWgPQwjo2EElLgFiQJSGlFKUaBVN6ANoFkdAgzjBnSOR1XV9lChoBmgJaA9DCOjB3Vm74F9AlIaUUpRoFU3oA2gWR0CDORpt78ekdX2UKGgGaAloD0MIpg9dUN81Y0CUhpRSlGgVTegDaBZHQIM5j4593KV1fZQoaAZoCWgPQwgah/pd2GolQJSGlFKUaBVL02gWR0CDO9x8UmD2dX2UKGgGaAloD0MIXfjB+dRwX0CUhpRSlGgVTegDaBZHQIM/5MrVe8h1fZQoaAZoCWgPQwjDZRU2AzlgQJSGlFKUaBVN6ANoFkdAg0cpBw++unVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1873d7886619a543d3d345b430dc78d35bb7851f2cf98689e474f5e9d99df1a8
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06ad9cdbdce88cccb736212d00a0a57e3adb8723e1642607531a28f24e437a5d
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:209b5f45cb3b25e509781ed9f90fadf6bd401a2fa3495108aa8377096eec61d5
|
3 |
+
size 249260
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 216.98516614481508, "std_reward": 71.19789927936583, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-13T18:56:24.775823"}
|