--- library_name: transformers language: - en license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/voxconverse model-index: - name: JSWOOK/pyannote_finetuning results: [] --- # JSWOOK/pyannote_finetuning This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the diarizers-community/voxconverse dataset. It achieves the following results on the evaluation set: - Loss: 0.1283 - Model Preparation Time: 0.0036 - Der: 0.0490 - False Alarm: 0.0309 - Missed Detection: 0.0091 - Confusion: 0.0090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | No log | 1.0 | 21 | 0.1258 | 0.0036 | 0.0485 | 0.0287 | 0.0105 | 0.0093 | | 0.228 | 2.0 | 42 | 0.1327 | 0.0036 | 0.0509 | 0.0300 | 0.0098 | 0.0112 | | 0.1873 | 3.0 | 63 | 0.1280 | 0.0036 | 0.0496 | 0.0307 | 0.0092 | 0.0097 | | 0.166 | 4.0 | 84 | 0.1280 | 0.0036 | 0.0487 | 0.0307 | 0.0091 | 0.0090 | | 0.152 | 5.0 | 105 | 0.1283 | 0.0036 | 0.0490 | 0.0309 | 0.0091 | 0.0090 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1