{ "name": "root", "gauges": { "Pyramids.Policy.Entropy.mean": { "value": 0.1831962913274765, "min": 0.1831962913274765, "max": 1.4030972719192505, "count": 100 }, "Pyramids.Policy.Entropy.sum": { "value": 5443.12841796875, "min": 5443.12841796875, "max": 42564.359375, "count": 100 }, "Pyramids.Step.mean": { "value": 2999897.0, "min": 29957.0, "max": 2999897.0, "count": 100 }, "Pyramids.Step.sum": { "value": 2999897.0, "min": 29957.0, "max": 2999897.0, "count": 100 }, "Pyramids.Policy.ExtrinsicValueEstimate.mean": { "value": 0.8675899505615234, "min": -0.10322670638561249, "max": 0.8675899505615234, "count": 100 }, "Pyramids.Policy.ExtrinsicValueEstimate.sum": { "value": 267.21771240234375, "min": -24.774410247802734, "max": 267.21771240234375, "count": 100 }, "Pyramids.Policy.RndValueEstimate.mean": { "value": -0.0021614315919578075, "min": -0.009575147181749344, "max": 0.3840174078941345, "count": 100 }, "Pyramids.Policy.RndValueEstimate.sum": { "value": -0.6657209396362305, "min": -2.8246684074401855, "max": 91.3961410522461, "count": 100 }, "Pyramids.Losses.PolicyLoss.mean": { "value": 0.06677757072542419, "min": 0.062460236586048275, "max": 0.07272326924275326, "count": 100 }, "Pyramids.Losses.PolicyLoss.sum": { "value": 0.9348859901559385, "min": 0.4989583194423092, "max": 1.0804470503353512, "count": 100 }, "Pyramids.Losses.ValueLoss.mean": { "value": 0.015470774749354902, "min": 0.00014103356808186499, "max": 0.016758141704771082, "count": 100 }, "Pyramids.Losses.ValueLoss.sum": { "value": 0.21659084649096863, "min": 0.0018334363850642447, "max": 0.25137212557156624, "count": 100 }, "Pyramids.Policy.LearningRate.mean": { "value": 1.4781995073000018e-06, "min": 1.4781995073000018e-06, "max": 0.00029841272910051907, "count": 100 }, "Pyramids.Policy.LearningRate.sum": { "value": 2.0694793102200025e-05, "min": 2.0694793102200025e-05, "max": 0.0040526196491267995, "count": 100 }, "Pyramids.Policy.Epsilon.mean": { "value": 0.10049269999999999, "min": 0.10049269999999999, "max": 0.19947090952380955, "count": 100 }, "Pyramids.Policy.Epsilon.sum": { "value": 1.4068977999999999, "min": 1.3962963666666668, "max": 2.7508732000000005, "count": 100 }, "Pyramids.Policy.Beta.mean": { "value": 5.922073000000008e-05, "min": 5.922073000000008e-05, "max": 0.009947143861428571, "count": 100 }, "Pyramids.Policy.Beta.sum": { "value": 0.0008290902200000011, "min": 0.0008290902200000011, "max": 0.13509223268, "count": 100 }, "Pyramids.Losses.RNDLoss.mean": { "value": 0.0050178999081254005, "min": 0.0050178999081254005, "max": 0.28419381380081177, "count": 100 }, "Pyramids.Losses.RNDLoss.sum": { "value": 0.07025060057640076, "min": 0.07025060057640076, "max": 1.9893567562103271, "count": 100 }, "Pyramids.Environment.EpisodeLength.mean": { "value": 210.3877551020408, "min": 205.31034482758622, "max": 999.0, "count": 100 }, "Pyramids.Environment.EpisodeLength.sum": { "value": 30927.0, "min": 16628.0, "max": 32730.0, "count": 100 }, "Pyramids.Environment.CumulativeReward.mean": { "value": 1.77600543180696, "min": -0.9997226321889509, "max": 1.7872014792997446, "count": 100 }, "Pyramids.Environment.CumulativeReward.sum": { "value": 261.07279847562313, "min": -30.991401597857475, "max": 261.07279847562313, "count": 100 }, "Pyramids.Policy.ExtrinsicReward.mean": { "value": 1.77600543180696, "min": -0.9997226321889509, "max": 1.7872014792997446, "count": 100 }, "Pyramids.Policy.ExtrinsicReward.sum": { "value": 261.07279847562313, "min": -30.991401597857475, "max": 261.07279847562313, "count": 100 }, "Pyramids.Policy.RndReward.mean": { "value": 0.011044202118911654, "min": 0.011044202118911654, "max": 5.234463107169551, "count": 100 }, "Pyramids.Policy.RndReward.sum": { "value": 1.623497711480013, "min": 1.5349532740656286, "max": 88.98587282188237, "count": 100 }, "Pyramids.IsTraining.mean": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 100 }, "Pyramids.IsTraining.sum": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 100 } }, "metadata": { "timer_format_version": "0.1.0", "start_time_seconds": "1678896937", "python_version": "3.9.16 (main, Dec 7 2022, 01:11:51) \n[GCC 9.4.0]", "command_line_arguments": "/usr/local/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=Pyramids Training --no-graphics", "mlagents_version": "0.31.0.dev0", "mlagents_envs_version": "0.31.0.dev0", "communication_protocol_version": "1.5.0", "pytorch_version": "1.11.0+cu102", "numpy_version": "1.21.2", "end_time_seconds": "1678903978" }, "total": 7041.621897225001, "count": 1, "self": 0.48829447999924014, "children": { "run_training.setup": { "total": 0.10121478100018066, "count": 1, "self": 0.10121478100018066 }, "TrainerController.start_learning": { "total": 7041.032387964001, "count": 1, "self": 4.279513499911445, "children": { "TrainerController._reset_env": { "total": 7.137056819999998, "count": 1, "self": 7.137056819999998 }, "TrainerController.advance": { "total": 7029.51810427409, "count": 194416, "self": 4.604560456399668, "children": { "env_step": { "total": 5187.086400418697, "count": 194416, "self": 4860.421685129949, "children": { "SubprocessEnvManager._take_step": { "total": 324.06522057471784, "count": 194416, "self": 14.123216512640738, "children": { "TorchPolicy.evaluate": { "total": 309.9420040620771, "count": 187542, "self": 309.9420040620771 } } }, "workers": { "total": 2.599494714030243, "count": 194416, "self": 0.0, "children": { "worker_root": { "total": 7025.91826345774, "count": 194416, "is_parallel": true, "self": 2517.8532818880376, "children": { "run_training.setup": { "total": 0.0, "count": 0, "is_parallel": true, "self": 0.0, "children": { "steps_from_proto": { "total": 0.0024591239998699166, "count": 1, "is_parallel": true, "self": 0.0007148099998630641, "children": { "_process_rank_one_or_two_observation": { "total": 0.0017443140000068524, "count": 8, "is_parallel": true, "self": 0.0017443140000068524 } } }, "UnityEnvironment.step": { "total": 0.04659869699980845, "count": 1, "is_parallel": true, "self": 0.000549624999621301, "children": { "UnityEnvironment._generate_step_input": { "total": 0.0004763880001519283, "count": 1, "is_parallel": true, "self": 0.0004763880001519283 }, "communicator.exchange": { "total": 0.04395655899998019, "count": 1, "is_parallel": true, "self": 0.04395655899998019 }, "steps_from_proto": { "total": 0.0016161250000550353, "count": 1, "is_parallel": true, "self": 0.0003796229998442868, "children": { "_process_rank_one_or_two_observation": { "total": 0.0012365020002107485, "count": 8, "is_parallel": true, "self": 0.0012365020002107485 } } } } } } }, "UnityEnvironment.step": { "total": 4508.0649815697025, "count": 194415, "is_parallel": true, "self": 93.87945050240432, "children": { "UnityEnvironment._generate_step_input": { "total": 66.91296703207263, "count": 194415, "is_parallel": true, "self": 66.91296703207263 }, "communicator.exchange": { "total": 4071.9833795521085, "count": 194415, "is_parallel": true, "self": 4071.9833795521085 }, "steps_from_proto": { "total": 275.2891844831179, "count": 194415, "is_parallel": true, "self": 59.58703876449408, "children": { "_process_rank_one_or_two_observation": { "total": 215.7021457186238, "count": 1555320, "is_parallel": true, "self": 215.7021457186238 } } } } } } } } } } }, "trainer_advance": { "total": 1837.827143398993, "count": 194416, "self": 8.187124995135946, "children": { "process_trajectory": { "total": 353.0863881128962, "count": 194416, "self": 352.4608233808963, "children": { "RLTrainer._checkpoint": { "total": 0.6255647319999298, "count": 6, "self": 0.6255647319999298 } } }, "_update_policy": { "total": 1476.5536302909609, "count": 1401, "self": 939.3457707249681, "children": { "TorchPPOOptimizer.update": { "total": 537.2078595659927, "count": 68331, "self": 537.2078595659927 } } } } } } }, "trainer_threads": { "total": 9.519990271655843e-07, "count": 1, "self": 9.519990271655843e-07 }, "TrainerController._save_models": { "total": 0.09771241800081043, "count": 1, "self": 0.0015371999998023966, "children": { "RLTrainer._checkpoint": { "total": 0.09617521800100803, "count": 1, "self": 0.09617521800100803 } } } } } } }