Upload folder using huggingface_hub
Browse files
modeling_llavanext_for_embedding.py
CHANGED
@@ -305,7 +305,6 @@ class LLaVANextForEmbedding(LlavaNextForConditionalGeneration):
|
|
305 |
text_input = self.prepare_text_input(images, text, q_or_c, task_instruction)
|
306 |
text_input = [text_input]
|
307 |
|
308 |
-
print(text_input)
|
309 |
|
310 |
if images is not None:
|
311 |
images = Image.open(images).resize((512,512)).convert("RGB")
|
@@ -315,10 +314,10 @@ class LLaVANextForEmbedding(LlavaNextForConditionalGeneration):
|
|
315 |
inputs = self.processor(text=text_input, return_tensors="pt", padding=True)
|
316 |
|
317 |
else:
|
|
|
|
|
318 |
text_input = [self.prepare_text_input(_image, _text, q_or_c, task_instruction) for _image, _text in zip(images, text)]
|
319 |
|
320 |
-
print(text_input)
|
321 |
-
|
322 |
if images is not None:
|
323 |
images = [Image.open(_image).resize((512,512)).convert("RGB") for _image in images]
|
324 |
inputs = self.processor(images=images, text=text_input, return_tensors="pt", padding=True)
|
|
|
305 |
text_input = self.prepare_text_input(images, text, q_or_c, task_instruction)
|
306 |
text_input = [text_input]
|
307 |
|
|
|
308 |
|
309 |
if images is not None:
|
310 |
images = Image.open(images).resize((512,512)).convert("RGB")
|
|
|
314 |
inputs = self.processor(text=text_input, return_tensors="pt", padding=True)
|
315 |
|
316 |
else:
|
317 |
+
if text is None:
|
318 |
+
text = [None] * len(images)
|
319 |
text_input = [self.prepare_text_input(_image, _text, q_or_c, task_instruction) for _image, _text in zip(images, text)]
|
320 |
|
|
|
|
|
321 |
if images is not None:
|
322 |
images = [Image.open(_image).resize((512,512)).convert("RGB") for _image in images]
|
323 |
inputs = self.processor(images=images, text=text_input, return_tensors="pt", padding=True)
|