File size: 1,922 Bytes
7ddbccc
 
 
 
 
3f1f89d
 
7ddbccc
 
 
 
 
 
 
 
 
 
 
3f1f89d
 
 
7ddbccc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1f89d
 
 
 
 
 
 
 
 
 
 
 
7ddbccc
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: cc-by-nc-4.0
base_model: facebook/timesformer-base-finetuned-k400
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: timesformer-base-finetuned-k400-finetuned-kinetic-subset-three-local-temporal-with-spatial
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# timesformer-base-finetuned-k400-finetuned-kinetic-subset-three-local-temporal-with-spatial

This model is a fine-tuned version of [facebook/timesformer-base-finetuned-k400](https://huggingface.co/facebook/timesformer-base-finetuned-k400) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3731
- Accuracy: 0.9118

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 300

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0003        | 0.17  | 50   | 0.4553          | 0.8472   |
| 0.0004        | 1.17  | 100  | 0.3349          | 0.9028   |
| 0.0004        | 2.17  | 150  | 0.1279          | 0.9583   |
| 0.0995        | 3.17  | 200  | 0.1181          | 0.9306   |
| 0.0001        | 4.17  | 250  | 0.1797          | 0.9167   |
| 0.0003        | 5.17  | 300  | 0.1393          | 0.9444   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2