File size: 10,150 Bytes
3b3134b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import os
from itertools import combinations
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from datasets import Audio, load_dataset
from safetensors.torch import save_file
from tqdm import tqdm
from transformers import AutoFeatureExtractor, WhisperModel
from .config import *
model_ids = ENABLED_MODELS
# Load dataset
dataset = load_dataset("JacobLinCool/cv161-en-zh-subset-200", split="train")
if MAX_SAMPLES is not None:
dataset = dataset.select(range(min(MAX_SAMPLES, len(dataset))))
print(f"Limited dataset to {len(dataset)} samples for testing")
dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
device = torch.device(
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"Using device: {device}")
def extract_layer_reps_generator(model_id, batch_size=4):
"""
Use a generator to process samples in batches, avoiding loading all hidden states into memory at once.
Yields (sample_idx, layer_reps) pairs, where layer_reps is a list of all layer representations for the sample.
"""
model = WhisperModel.from_pretrained(model_id).to(device)
feat_ext = AutoFeatureExtractor.from_pretrained(model_id)
model.eval()
for i in tqdm(
range(0, len(dataset), batch_size), desc=f"Processing {model_id} in batches"
):
batch_end = min(i + batch_size, len(dataset))
batch_samples = dataset.select(range(i, batch_end))
# Process each sample in the batch
for j, sample in enumerate(batch_samples):
audio = sample["audio"]
samples = audio["array"]
sr = audio["sampling_rate"]
inputs = feat_ext(
samples, sampling_rate=sr, return_tensors="pt"
).input_features.to(device)
with torch.no_grad():
outputs = model.encoder(
inputs, return_dict=True, output_hidden_states=True
)
# Save the full sequence for each layer and immediately move to CPU; optionally use half precision to save memory
layer_reps_for_sample = []
for hs in outputs.hidden_states:
# hs: [1, T, D] -> [T, D]
layer_rep = hs.squeeze(0)
if USE_HALF_PRECISION:
layer_rep = layer_rep.to(HALF_PRECISION_DTYPE)
layer_reps_for_sample.append(layer_rep)
yield i + j, layer_reps_for_sample
# Clean up GPU memory
del outputs, inputs
if AGGRESSIVE_CLEANUP and torch.cuda.is_available():
torch.cuda.empty_cache()
# Clean up model memory
del model, feat_ext
if AGGRESSIVE_CLEANUP and torch.cuda.is_available():
torch.cuda.empty_cache()
def compute_linear_mse_matrix_temporal_memory_efficient(
model_a_id, model_b_id, n_steps=200, lr=1e-3, batch_size=4
):
"""
Memory-efficient version: For each layer pair (i, j), trains a 1x1 convolution as a linear probe and computes MSE.
Uses a generator to process in batches, avoiding loading all representations into memory at once.
Returns an MSE matrix of shape (layers_a, layers_b) and all trained probes.
"""
print(f"Computing alignment between {model_a_id} and {model_b_id}...")
# First, get the number of layers
sample_gen_a = extract_layer_reps_generator(model_a_id, batch_size=1)
_, sample_reps_a = next(sample_gen_a)
layers_a = len(sample_reps_a)
sample_gen_b = extract_layer_reps_generator(model_b_id, batch_size=1)
_, sample_reps_b = next(sample_gen_b)
layers_b = len(sample_reps_b)
mse_mat = np.zeros((layers_a, layers_b))
trained_probes = {}
pbar = tqdm(total=layers_a * layers_b, desc="Comparing layer pairs")
# Re-initialize generators to process all samples
gen_a = extract_layer_reps_generator(model_a_id, batch_size=batch_size)
gen_b = extract_layer_reps_generator(model_b_id, batch_size=batch_size)
# Collect all sample representations for specified layers
reps_a_dict_all = {}
for sample_idx, layer_reps in gen_a:
reps_a_dict_all[sample_idx] = layer_reps
reps_b_dict_all = {}
for sample_idx, layer_reps in gen_b:
reps_b_dict_all[sample_idx] = layer_reps
for i in range(layers_a):
for j in range(layers_b):
# Collect all sample representations for the specified layer
reps_a_dict = {}
for sample_idx, layer_reps in reps_a_dict_all.items():
if i < len(layer_reps):
reps_a_dict[sample_idx] = layer_reps[i]
reps_b_dict = {}
for sample_idx, layer_reps in reps_b_dict_all.items():
if j < len(layer_reps):
reps_b_dict[sample_idx] = layer_reps[j]
# Concatenate representations in order
X_list = [reps_a_dict[idx] for idx in sorted(reps_a_dict.keys())]
Y_list = [reps_b_dict[idx] for idx in sorted(reps_b_dict.keys())]
# Process in batches to avoid memory issues
X_cat = torch.cat(X_list, dim=0).to(device)
Y_cat = torch.cat(Y_list, dim=0).to(device)
dim_a = X_cat.shape[1]
dim_b = Y_cat.shape[1]
# For Conv1d, reshape to [Batch, Channels, Length]
X = X_cat.T.unsqueeze(0) # [1, Dim_A, Total_Tokens]
Y = Y_cat.T.unsqueeze(0) # [1, Dim_B, Total_Tokens]
# 2. Define and train linear probe (1x1 Conv)
probe = nn.Conv1d(
in_channels=dim_a, out_channels=dim_b, kernel_size=1, bias=False
).to(device=device, dtype=HALF_PRECISION_DTYPE)
probe.train()
optimizer = torch.optim.Adam(probe.parameters(), lr=lr)
loss_fn = nn.MSELoss()
for step in tqdm(range(n_steps), desc=f"Training probe {i}->{j}"):
optimizer.zero_grad()
Y_pred = probe(X)
loss = loss_fn(Y_pred, Y)
loss.backward()
optimizer.step()
# 3. Record final MSE and trained probe
final_mse = loss.item()
mse_mat[i, j] = final_mse
trained_probes[f"layer_{i}_to_{j}"] = probe.state_dict()["weight"]
# Clean up memory
del (
X_cat,
Y_cat,
X,
Y,
probe,
optimizer,
reps_a_dict,
reps_b_dict,
X_list,
Y_list,
)
if torch.cuda.is_available():
torch.cuda.empty_cache()
pbar.update(1)
pbar.set_postfix({"layer_a": i, "layer_b": j, "mse": f"{final_mse:.4f}"})
pbar.close()
return mse_mat, trained_probes
if __name__ == "__main__":
print(f"Memory optimization settings:")
print(f" Batch size: {BATCH_SIZE}")
print(f" Training steps: {TRAINING_STEPS}")
if USE_HALF_PRECISION:
dtype_name = "bfloat16" if HALF_PRECISION_DTYPE == torch.bfloat16 else "float16"
print(f" Half precision: {USE_HALF_PRECISION} ({dtype_name})")
else:
print(f" Half precision: {USE_HALF_PRECISION}")
print(f" Aggressive cleanup: {AGGRESSIVE_CLEANUP}")
print(f" Models: {list(model_ids.keys())}")
print(f" Dataset size: {len(dataset)} samples")
# Create results directory
os.makedirs(OUTPUT_DIR, exist_ok=True)
# 2. Compare all model pairs - using memory-efficient method
model_names = list(model_ids.keys())
all_pairs = list(combinations(model_names, 2))
print(
f"\nProcessing {len(all_pairs)} model pairs with memory-efficient approach..."
)
for pair_idx, (model_a, model_b) in enumerate(all_pairs):
print(
f"\n[{pair_idx + 1}/{len(all_pairs)}] Computing temporal linear MSE for whisper-{model_a} vs whisper-{model_b}..."
)
# Compute linear MSE along the temporal dimension and get trained probes - memory-efficient version
mse_mat_temporal, trained_probes = (
compute_linear_mse_matrix_temporal_memory_efficient(
model_ids[model_a],
model_ids[model_b],
n_steps=TRAINING_STEPS,
lr=LEARNING_RATE,
batch_size=BATCH_SIZE,
)
)
# Save trained models
model_save_path = f"{OUTPUT_DIR}/{model_a}-to-{model_b}-probes.safetensors"
save_file(
trained_probes,
model_save_path,
{
"from_model": model_a,
"to_model": model_b,
"from_layers": str(len(mse_mat_temporal)),
"to_layers": str(len(mse_mat_temporal[0])),
},
)
print(f"Saved trained probes to: {model_save_path}")
if SAVE_PLOTS:
# Visualize results
# Avoid log(0) by adding a small value
eps = 1e-10
log_mse_mat = -np.log10(mse_mat_temporal + eps)
plt.figure(figsize=(8, 6))
plt.imshow(
log_mse_mat, aspect="auto", origin="lower"
) # origin='lower' is more standard for matrices
plt.colorbar(label="-log10(MSE)")
plt.title(
f"Temporal Linear MSE (log scale): whisper-{model_a} vs whisper-{model_b}"
)
plt.xlabel(f"whisper-{model_b} layers")
plt.ylabel(f"whisper-{model_a} layers")
plt.tight_layout()
# Save visualization results
plot_save_path = (
f"{OUTPUT_DIR}/{model_a}-vs-{model_b}-temporal-linear-mse-log.png"
)
plt.savefig(plot_save_path, dpi=PLOT_DPI)
plt.close() # Close figure to save memory
print(f"Saved plot to: {plot_save_path}")
print(f"\nAll experiments complete! Results saved to '{OUTPUT_DIR}' directory")
print(
f"Generated {len(all_pairs)} visualization plots and {len(all_pairs)} trained probe models"
)
|