File size: 2,942 Bytes
aacedad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
library_name: peft
language:
- zh
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- JacobLinCool/mozilla-foundation-common_voice_16_1-zh-TW-preprocessed
metrics:
- wer
model-index:
- name: whisper-large-v3-turbo-common_voice_16_1-zh-TW-pissa
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: JacobLinCool/mozilla-foundation-common_voice_16_1-zh-TW-preprocessed
      type: JacobLinCool/mozilla-foundation-common_voice_16_1-zh-TW-preprocessed
    metrics:
    - type: wer
      value: 63.665594855305464
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-turbo-common_voice_16_1-zh-TW-pissa

This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the JacobLinCool/mozilla-foundation-common_voice_16_1-zh-TW-preprocessed dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5133
- Wer: 63.6656
- Cer: 23.5752

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     | Cer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|
| No log        | 0      | 0    | 2.7520          | 77.6125 | 20.7783 |
| 7.6982        | 0.9987 | 377  | 0.8744          | 87.9421 | 41.2804 |
| 5.1677        | 2.0    | 755  | 0.7499          | 82.5965 | 36.6407 |
| 3.3647        | 2.9987 | 1132 | 0.6433          | 76.8087 | 31.6068 |
| 3.4711        | 4.0    | 1510 | 0.6397          | 76.2460 | 30.2862 |
| 1.5694        | 4.9987 | 1887 | 0.5779          | 71.5434 | 27.5471 |
| 0.7951        | 6.0    | 2265 | 0.5664          | 71.3223 | 27.0600 |
| 0.4709        | 6.9987 | 2642 | 0.5492          | 68.8706 | 26.0131 |
| 0.116         | 8.0    | 3020 | 0.5427          | 66.7605 | 24.8104 |
| 0.0512        | 8.9987 | 3397 | 0.5298          | 66.1375 | 24.8632 |
| 0.0273        | 9.9868 | 3770 | 0.5133          | 63.6656 | 23.5752 |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.4.0
- Datasets 3.0.2
- Tokenizers 0.20.1