grc_perseus_sm / config.cfg
Jacobo's picture
Update spaCy pipeline
354f8cf
raw
history blame
5.39 kB
[paths]
train = "corpus/train/grc_perseus-ud-train.spacy"
dev = "corpus/dev/grc_perseus-ud-dev.spacy"
vectors = null
init_tok2vec = null
[system]
gpu_allocator = null
seed = 0
[nlp]
lang = "grc"
pipeline = ["tok2vec","morphologizer","tagger","parser","senter","lemmatizer","attribute_ruler"]
batch_size = 128
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
[components]
[components.attribute_ruler]
factory = "attribute_ruler"
scorer = {"@scorers":"spacy.attribute_ruler_scorer.v1"}
validate = false
[components.lemmatizer]
factory = "trainable_lemmatizer"
backoff = "orth"
min_tree_freq = 1
overwrite = false
scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}
top_k = 5
[components.lemmatizer.model]
@architectures = "spacy.Tagger.v2"
nO = null
normalize = false
[components.lemmatizer.model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v2"
pretrained_vectors = false
width = 96
depth = 4
embed_size = 2000
window_size = 1
maxout_pieces = 3
subword_features = true
[components.morphologizer]
factory = "morphologizer"
extend = false
overwrite = true
scorer = {"@scorers":"spacy.morphologizer_scorer.v1"}
[components.morphologizer.model]
@architectures = "spacy.Tagger.v2"
nO = null
normalize = false
[components.morphologizer.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
upstream = "tok2vec"
[components.parser]
factory = "parser"
learn_tokens = false
min_action_freq = 30
moves = null
scorer = {"@scorers":"spacy.parser_scorer.v1"}
update_with_oracle_cut_size = 100
[components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "parser"
extra_state_tokens = false
hidden_width = 128
maxout_pieces = 3
use_upper = true
nO = null
[components.parser.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
upstream = "tok2vec"
[components.senter]
factory = "senter"
overwrite = false
scorer = {"@scorers":"spacy.senter_scorer.v1"}
[components.senter.model]
@architectures = "spacy.Tagger.v2"
nO = null
normalize = false
[components.senter.model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v2"
pretrained_vectors = null
width = 12
depth = 1
embed_size = 2000
window_size = 1
maxout_pieces = 2
subword_features = true
[components.tagger]
factory = "tagger"
neg_prefix = "!"
overwrite = false
scorer = {"@scorers":"spacy.tagger_scorer.v1"}
[components.tagger.model]
@architectures = "spacy.Tagger.v2"
nO = null
normalize = false
[components.tagger.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
upstream = "tok2vec"
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v2"
[components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = ${components.tok2vec.model.encode.width}
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
rows = [5000,2500,2500,2500]
include_static_vectors = false
[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 256
depth = 8
window_size = 1
maxout_pieces = 3
[corpora]
[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null
[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null
[training]
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
dropout = 0.1
accumulate_gradient = 1
patience = 5000
max_epochs = 0
max_steps = 20000
eval_frequency = 200
frozen_components = ["lemmatizer","senter"]
annotating_components = []
before_to_disk = null
before_update = null
[training.batcher]
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2
get_length = null
[training.batcher.size]
@schedules = "compounding.v1"
start = 100
stop = 1000
compound = 1.001
t = 0.0
[training.logger]
@loggers = "spacy.WandbLogger.v3"
project_name = "proiel"
remove_config_values = ["paths.train","paths.dev","corpora.train.path","corpora.dev.path"]
log_dataset_dir = "./corpus"
model_log_interval = 1000
entity = null
run_name = null
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 0.00000001
learn_rate = 0.001
[training.score_weights]
pos_acc = 0.06
morph_acc = 0.06
morph_per_feat = null
tag_acc = 0.12
dep_uas = 0.06
dep_las = 0.06
dep_las_per_type = null
sents_p = null
sents_r = null
sents_f = null
lemma_acc = 0.64
[pretraining]
[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null
[initialize.components]
[initialize.components.attribute_ruler]
[initialize.components.attribute_ruler.patterns]
@readers = "srsly.read_json.v1"
path = "data/augments/attribute_ruler_patterns.json"
[initialize.components.parser]
[initialize.components.parser.labels]
@readers = "spacy.read_labels.v1"
path = "corpus/labels/parser.json"
require = false
[initialize.components.tagger]
[initialize.components.tagger.labels]
@readers = "spacy.read_labels.v1"
path = "corpus/labels/tagger.json"
require = false
[initialize.tokenizer]