Jaechang commited on
Commit
3da1d7d
1 Parent(s): 5d2f116

Upload ppo-LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,21 @@
1
  ---
2
- license: afl-3.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 210.82 +/- 19.82
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
  ---
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5c120745f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5c12074680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5c12074710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5c120747a0>", "_build": "<function ActorCriticPolicy._build at 0x7f5c12074830>", "forward": "<function ActorCriticPolicy.forward at 0x7f5c120748c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5c12074950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5c120749e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5c12074a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5c12074b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5c12074b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5c120ce0c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651690364.3501337, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpECb0fPZy5LTubumYzILYJbkk70++1OQAAgD8AAIA/c4a1PeGgpLr1BNu58TSqtI7/wTk6yfs4AACAPwAAgD/NYMA79oxSuggoDzqCbv80makKOuTXKLkAAIA/AACAP63+Lb6FHA4/1o3zvAF+Z74+eYG9vp6WvQAAAAAAAAAAM5Pzu49CGDlHryG4rlOLNYLVvrtWuQG1AACAPwAAgD8zh5q8af8MPTIYwL1dEx6+MGu7vdmgBDwAAAAAAAAAAAAdp73Ixrk/ith5vnNcgb6GJSG+TjWKvQAAAAAAAAAAjeOivY9eXbr82sE7K276N/ri1zpmJO40AACAPwAAgD+z8uq94SqTupf9wTuJic+5ON4zu23cujoAAIA/AACAP43Rkz2koD252OBrO4FqbDg+Ucy4qkAQugAAgD8AAIA/WlLhvVxXWrrcIpK6jEk0OZCyaDtylLi3AACAPwAAgD/Nuaq9j94fulMXWrrENEk0eHqvuvyRgDkAAIA/AACAP5rEobyP8kG6djdbO+KPGjYlyp47q+x/ugAAgD8AAIA/syojvoXalLv3jQ68v4yUPHb0O70AK309AACAPwAAgD9APOC9KUhTuhfPBDpq5KK456IPuqI2LLcAAIA/AACAPxplYD2JQzY9uq+DvdVlIb4fy6i8Fg/VPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkq0upwTjXUCUhpRSlIwBbJRN6AOMAXSUR0CGBfph4MWodX2UKGgGaAloD0MIclMDzWc2YkCUhpRSlGgVTegDaBZHQIYJfCqIacZ1fZQoaAZoCWgPQwg7bY0IRoFjQJSGlFKUaBVN6ANoFkdAhgnj0L+glHV9lChoBmgJaA9DCHeDaK1of2BAlIaUUpRoFU3oA2gWR0CGD5JI1+AmdX2UKGgGaAloD0MIP1WFBmJCWECUhpRSlGgVTegDaBZHQIYVESkCV8l1fZQoaAZoCWgPQwgJ/Uy9bn5XQJSGlFKUaBVN6ANoFkdAhhkVWbPQfXV9lChoBmgJaA9DCP88DRgkfRNAlIaUUpRoFU1OAWgWR0CGH05eZ5RkdX2UKGgGaAloD0MIOZm4VRBTYkCUhpRSlGgVTegDaBZHQIY32rZJ04l1fZQoaAZoCWgPQwi95erHJnVbQJSGlFKUaBVN6ANoFkdAhjq1M/QjU3V9lChoBmgJaA9DCCqpE9BESCnAlIaUUpRoFU1BAWgWR0CGO6RnOB1+dX2UKGgGaAloD0MINWH7yRimX0CUhpRSlGgVTegDaBZHQIZF4z+FUQ11fZQoaAZoCWgPQwiJ0t7gC0ZiQJSGlFKUaBVN6ANoFkdAhn0w3gk1M3V9lChoBmgJaA9DCEZgrG9gaifAlIaUUpRoFU00AWgWR0CGjZlA/s3RdX2UKGgGaAloD0MIUcHhBRHJXECUhpRSlGgVTegDaBZHQIaRNmSQo1F1fZQoaAZoCWgPQwgSTDWzlp1bQJSGlFKUaBVN6ANoFkdAhpw5ZSvTw3V9lChoBmgJaA9DCCqqfqXzkV9AlIaUUpRoFU3oA2gWR0CGqcmplz2fdX2UKGgGaAloD0MI+8vuycMUZECUhpRSlGgVTegDaBZHQIau6sGPgel1fZQoaAZoCWgPQwg1s5YC0uhgQJSGlFKUaBVN6ANoFkdAhrYQPqcEvHV9lChoBmgJaA9DCNZ0PdF1G1VAlIaUUpRoFU3oA2gWR0CGuNZKWcBmdX2UKGgGaAloD0MI28TJ/Q4KXkCUhpRSlGgVTegDaBZHQIa8B0r9VFR1fZQoaAZoCWgPQwi9qx4wj+5hQJSGlFKUaBVN6ANoFkdAhrxn1vl2eXV9lChoBmgJaA9DCDpa1ZKO6kDAlIaUUpRoFU1zAWgWR0CGxDncL0BfdX2UKGgGaAloD0MIebDFbp9KVUCUhpRSlGgVTegDaBZHQIbGgjMV1wJ1fZQoaAZoCWgPQwgGDmjpCnozwJSGlFKUaBVNPQFoFkdAhsa+V1Oj7HV9lChoBmgJaA9DCDqy8svgo2BAlIaUUpRoFU3oA2gWR0CGyeM1jy4GdX2UKGgGaAloD0MIk8mpnWG3WECUhpRSlGgVTegDaBZHQIbO5IQOFxp1fZQoaAZoCWgPQwiPUglP6BFjQJSGlFKUaBVN6ANoFkdAhuKlhPTG53V9lChoBmgJaA9DCJBlwcQfWWJAlIaUUpRoFU3oA2gWR0CG5UioKlYVdX2UKGgGaAloD0MIMBFvnX+mXkCUhpRSlGgVTegDaBZHQIbv/3Fkxyp1fZQoaAZoCWgPQwjEtG/ur7ZrQJSGlFKUaBVN4wFoFkdAhyYiaAnUlXV9lChoBmgJaA9DCONTAIznGmNAlIaUUpRoFU3oA2gWR0CHJjqveP7vdX2UKGgGaAloD0MISGsMOqGYZECUhpRSlGgVTegDaBZHQIc2nl8w5/91fZQoaAZoCWgPQwgUXRd+cAFhQJSGlFKUaBVN6ANoFkdAh1ZHPu5SWXV9lChoBmgJaA9DCLgGtkowLWBAlIaUUpRoFU3oA2gWR0CHW+Hmig01dX2UKGgGaAloD0MI4h3gSYtCYECUhpRSlGgVTegDaBZHQIdkS8+Royt1fZQoaAZoCWgPQwgFa5xNRyNYQJSGlFKUaBVN6ANoFkdAh2cnbh3qzXV9lChoBmgJaA9DCHlzuFZ7wF9AlIaUUpRoFU3oA2gWR0CHanH0btJGdX2UKGgGaAloD0MIQdMSK6MSZECUhpRSlGgVTegDaBZHQIdq1kJ8fFJ1fZQoaAZoCWgPQwjmeXB31jI2QJSGlFKUaBVNYgFoFkdAh27eZ5Rj0HV9lChoBmgJaA9DCHmu78PB1mFAlIaUUpRoFU3oA2gWR0CHc5W1c+qzdX2UKGgGaAloD0MIQX+hRwyIYECUhpRSlGgVTegDaBZHQId2MGRmseZ1fZQoaAZoCWgPQwgldQKaCL1dQJSGlFKUaBVN6ANoFkdAh3mZSvTw2HV9lChoBmgJaA9DCFCop49An2BAlIaUUpRoFU3oA2gWR0CHf1+vQnhLdX2UKGgGaAloD0MIJTs2AvG6wj+UhpRSlGgVTVoBaBZHQIeQn60pmVZ1fZQoaAZoCWgPQwhhjh6/t3xdQJSGlFKUaBVN6ANoFkdAh5Q7fgrH2nV9lChoBmgJaA9DCBrba0Hvz2BAlIaUUpRoFU3oA2gWR0CHl0ZOSGJvdX2UKGgGaAloD0MIOs5twj0CYUCUhpRSlGgVTegDaBZHQIehuE7GNrF1fZQoaAZoCWgPQwhXX10VqONXQJSGlFKUaBVN6ANoFkdAh7QP9UCJXXV9lChoBmgJaA9DCPIGmPkOZV1AlIaUUpRoFU3oA2gWR0CHtCfYjB2wdX2UKGgGaAloD0MIPbt868PpbUCUhpRSlGgVTXwCaBZHQIfjUbR4QjF1fZQoaAZoCWgPQwjAIVSp2fpZQJSGlFKUaBVN6ANoFkdAiACn/1g6VHV9lChoBmgJaA9DCDJ3LSEfhFRAlIaUUpRoFU3oA2gWR0CIBWxoIv8JdX2UKGgGaAloD0MIPYGwUyy5YkCUhpRSlGgVTegDaBZHQIgMCeNDMNd1fZQoaAZoCWgPQwgz/KcbKJFvQJSGlFKUaBVNigJoFkdAiA33sXzlLnV9lChoBmgJaA9DCFcnZyhu52xAlIaUUpRoFU0xA2gWR0CIEHWluWKNdX2UKGgGaAloD0MI3LsGfWmzYECUhpRSlGgVTegDaBZHQIgRjmGM4tJ1fZQoaAZoCWgPQwjRzmkWaBRgQJSGlFKUaBVN6ANoFkdAiBHkc81XNnV9lChoBmgJaA9DCNyDEJAvj11AlIaUUpRoFU3oA2gWR0CIGS46wMYudX2UKGgGaAloD0MI7x01JsQlYkCUhpRSlGgVTegDaBZHQIgboarFOwh1fZQoaAZoCWgPQwi7RsuBHu9cQJSGlFKUaBVN6ANoFkdAiB64oy9EkXV9lChoBmgJaA9DCMdim1Q0oF1AlIaUUpRoFU3oA2gWR0CIOMV+qioLdX2UKGgGaAloD0MI7UrLSH2TcECUhpRSlGgVTeQBaBZHQIg6XEbYK6Z1fZQoaAZoCWgPQwi3lzRGa3BhQJSGlFKUaBVN6ANoFkdAiDuOCf6Gg3V9lChoBmgJaA9DCPAUcqUe3WFAlIaUUpRoFU3oA2gWR0CIRyDg62fDdX2UKGgGaAloD0MIJXSXxNkcY0CUhpRSlGgVTegDaBZHQIhZ7jYI0Il1fZQoaAZoCWgPQwhWZHRAkudlQJSGlFKUaBVN6ANoFkdAiFoFuNxVAHV9lChoBmgJaA9DCLb2PlWFD11AlIaUUpRoFU3oA2gWR0CIigqBEroXdX2UKGgGaAloD0MIjUKSWb3rYECUhpRSlGgVTegDaBZHQIituZE2Hcl1fZQoaAZoCWgPQwiNuAA0yjBjQJSGlFKUaBVN6ANoFkdAiLUrp7kXDXV9lChoBmgJaA9DCAYTfxR1uVlAlIaUUpRoFU3oA2gWR0CIt6GsV+I/dX2UKGgGaAloD0MIi8Iuih68W0CUhpRSlGgVTegDaBZHQIi6Kb6P8yh1fZQoaAZoCWgPQwjFHAQdrcBYQJSGlFKUaBVN6ANoFkdAiLs9xyXD33V9lChoBmgJaA9DCPN2hNOC715AlIaUUpRoFU3oA2gWR0CIu6IFeOXFdX2UKGgGaAloD0MID39N1qikXkCUhpRSlGgVTegDaBZHQIjDK704BFN1fZQoaAZoCWgPQwjdeHdkrJNcQJSGlFKUaBVN6ANoFkdAiMVmT1TR6XV9lChoBmgJaA9DCJIE4Qoo6lZAlIaUUpRoFU3oA2gWR0CIyHZ2ZApsdX2UKGgGaAloD0MIZyrEI3G3bkCUhpRSlGgVTYoCaBZHQIjfF+qioKl1fZQoaAZoCWgPQwhfs1w2uhNgQJSGlFKUaBVN6ANoFkdAiOHZ13dKunV9lChoBmgJaA9DCCXP9X047FhAlIaUUpRoFU3oA2gWR0CI4xU70WdmdX2UKGgGaAloD0MI/KpcqHxcYkCUhpRSlGgVTegDaBZHQIjkDB42S+x1fZQoaAZoCWgPQwi/C1uzFZFhQJSGlFKUaBVN6ANoFkdAiO1LMC9ytHV9lChoBmgJaA9DCGKDhZM02GJAlIaUUpRoFU3oA2gWR0CI/hLh73PBdX2UKGgGaAloD0MIkpOJWwV1ZkCUhpRSlGgVTegDaBZHQIj+KIDYAbR1fZQoaAZoCWgPQwjD1mzlJc8lwJSGlFKUaBVNJgFoFkdAiQLC+10DEHV9lChoBmgJaA9DCMIyNnQz3GxAlIaUUpRoFU3HAmgWR0CJQSCCBf8edX2UKGgGaAloD0MI9DRgkPQjXECUhpRSlGgVTegDaBZHQIlQ4YxcmjV1fZQoaAZoCWgPQwhmaafmcixbQJSGlFKUaBVN6ANoFkdAiViCrLhaT3V9lChoBmgJaA9DCAA5YcLoE21AlIaUUpRoFU1wAmgWR0CJWqG21D0EdX2UKGgGaAloD0MInPwWnSxbYUCUhpRSlGgVTegDaBZHQIlbFb3XZoR1fZQoaAZoCWgPQwjXZ876FLdtQJSGlFKUaBVN3gNoFkdAiV3Nb9qDb3V9lChoBmgJaA9DCPOTap+OF19AlIaUUpRoFU3oA2gWR0CJXfjENvwWdX2UKGgGaAloD0MIUOJzJ9h9YUCUhpRSlGgVTegDaBZHQIlfe1jRUm51fZQoaAZoCWgPQwhjt88qs4FjQJSGlFKUaBVN6ANoFkdAiWfmig00nHV9lChoBmgJaA9DCOJ30y37cXBAlIaUUpRoFU0XAmgWR0CJbF2AXl8xdX2UKGgGaAloD0MIIv5hSw+fZUCUhpRSlGgVTegDaBZHQIluEEvCdjJ1fZQoaAZoCWgPQwiho1UtqTZwQJSGlFKUaBVNqAJoFkdAiXyojv/ipHV9lChoBmgJaA9DCAG9cOfC42RAlIaUUpRoFU3oA2gWR0CJibV7Qb++dX2UKGgGaAloD0MIp0BmZ9HQVkCUhpRSlGgVTegDaBZHQImK37rLQol1fZQoaAZoCWgPQwg8TtGRXHlfQJSGlFKUaBVN6ANoFkdAiZYkB0ZFX3V9lChoBmgJaA9DCDcWFAZlLF1AlIaUUpRoFU3oA2gWR0CJr6fXf642dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 176, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca9d4366d1f4ef3d305f765c300552569f3c9922b74c180e75c8f03e397abefd
3
+ size 144048
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5c120745f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5c12074680>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5c12074710>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5c120747a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5c12074830>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5c120748c0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5c12074950>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5c120749e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5c12074a70>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5c12074b00>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5c12074b90>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f5c120ce0c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651690364.3501337,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpECb0fPZy5LTubumYzILYJbkk70++1OQAAgD8AAIA/c4a1PeGgpLr1BNu58TSqtI7/wTk6yfs4AACAPwAAgD/NYMA79oxSuggoDzqCbv80makKOuTXKLkAAIA/AACAP63+Lb6FHA4/1o3zvAF+Z74+eYG9vp6WvQAAAAAAAAAAM5Pzu49CGDlHryG4rlOLNYLVvrtWuQG1AACAPwAAgD8zh5q8af8MPTIYwL1dEx6+MGu7vdmgBDwAAAAAAAAAAAAdp73Ixrk/ith5vnNcgb6GJSG+TjWKvQAAAAAAAAAAjeOivY9eXbr82sE7K276N/ri1zpmJO40AACAPwAAgD+z8uq94SqTupf9wTuJic+5ON4zu23cujoAAIA/AACAP43Rkz2koD252OBrO4FqbDg+Ucy4qkAQugAAgD8AAIA/WlLhvVxXWrrcIpK6jEk0OZCyaDtylLi3AACAPwAAgD/Nuaq9j94fulMXWrrENEk0eHqvuvyRgDkAAIA/AACAP5rEobyP8kG6djdbO+KPGjYlyp47q+x/ugAAgD8AAIA/syojvoXalLv3jQ68v4yUPHb0O70AK309AACAPwAAgD9APOC9KUhTuhfPBDpq5KK456IPuqI2LLcAAIA/AACAPxplYD2JQzY9uq+DvdVlIb4fy6i8Fg/VPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkq0upwTjXUCUhpRSlIwBbJRN6AOMAXSUR0CGBfph4MWodX2UKGgGaAloD0MIclMDzWc2YkCUhpRSlGgVTegDaBZHQIYJfCqIacZ1fZQoaAZoCWgPQwg7bY0IRoFjQJSGlFKUaBVN6ANoFkdAhgnj0L+glHV9lChoBmgJaA9DCHeDaK1of2BAlIaUUpRoFU3oA2gWR0CGD5JI1+AmdX2UKGgGaAloD0MIP1WFBmJCWECUhpRSlGgVTegDaBZHQIYVESkCV8l1fZQoaAZoCWgPQwgJ/Uy9bn5XQJSGlFKUaBVN6ANoFkdAhhkVWbPQfXV9lChoBmgJaA9DCP88DRgkfRNAlIaUUpRoFU1OAWgWR0CGH05eZ5RkdX2UKGgGaAloD0MIOZm4VRBTYkCUhpRSlGgVTegDaBZHQIY32rZJ04l1fZQoaAZoCWgPQwi95erHJnVbQJSGlFKUaBVN6ANoFkdAhjq1M/QjU3V9lChoBmgJaA9DCCqpE9BESCnAlIaUUpRoFU1BAWgWR0CGO6RnOB1+dX2UKGgGaAloD0MINWH7yRimX0CUhpRSlGgVTegDaBZHQIZF4z+FUQ11fZQoaAZoCWgPQwiJ0t7gC0ZiQJSGlFKUaBVN6ANoFkdAhn0w3gk1M3V9lChoBmgJaA9DCEZgrG9gaifAlIaUUpRoFU00AWgWR0CGjZlA/s3RdX2UKGgGaAloD0MIUcHhBRHJXECUhpRSlGgVTegDaBZHQIaRNmSQo1F1fZQoaAZoCWgPQwgSTDWzlp1bQJSGlFKUaBVN6ANoFkdAhpw5ZSvTw3V9lChoBmgJaA9DCCqqfqXzkV9AlIaUUpRoFU3oA2gWR0CGqcmplz2fdX2UKGgGaAloD0MI+8vuycMUZECUhpRSlGgVTegDaBZHQIau6sGPgel1fZQoaAZoCWgPQwg1s5YC0uhgQJSGlFKUaBVN6ANoFkdAhrYQPqcEvHV9lChoBmgJaA9DCNZ0PdF1G1VAlIaUUpRoFU3oA2gWR0CGuNZKWcBmdX2UKGgGaAloD0MI28TJ/Q4KXkCUhpRSlGgVTegDaBZHQIa8B0r9VFR1fZQoaAZoCWgPQwi9qx4wj+5hQJSGlFKUaBVN6ANoFkdAhrxn1vl2eXV9lChoBmgJaA9DCDpa1ZKO6kDAlIaUUpRoFU1zAWgWR0CGxDncL0BfdX2UKGgGaAloD0MIebDFbp9KVUCUhpRSlGgVTegDaBZHQIbGgjMV1wJ1fZQoaAZoCWgPQwgGDmjpCnozwJSGlFKUaBVNPQFoFkdAhsa+V1Oj7HV9lChoBmgJaA9DCDqy8svgo2BAlIaUUpRoFU3oA2gWR0CGyeM1jy4GdX2UKGgGaAloD0MIk8mpnWG3WECUhpRSlGgVTegDaBZHQIbO5IQOFxp1fZQoaAZoCWgPQwiPUglP6BFjQJSGlFKUaBVN6ANoFkdAhuKlhPTG53V9lChoBmgJaA9DCJBlwcQfWWJAlIaUUpRoFU3oA2gWR0CG5UioKlYVdX2UKGgGaAloD0MIMBFvnX+mXkCUhpRSlGgVTegDaBZHQIbv/3Fkxyp1fZQoaAZoCWgPQwjEtG/ur7ZrQJSGlFKUaBVN4wFoFkdAhyYiaAnUlXV9lChoBmgJaA9DCONTAIznGmNAlIaUUpRoFU3oA2gWR0CHJjqveP7vdX2UKGgGaAloD0MISGsMOqGYZECUhpRSlGgVTegDaBZHQIc2nl8w5/91fZQoaAZoCWgPQwgUXRd+cAFhQJSGlFKUaBVN6ANoFkdAh1ZHPu5SWXV9lChoBmgJaA9DCLgGtkowLWBAlIaUUpRoFU3oA2gWR0CHW+Hmig01dX2UKGgGaAloD0MI4h3gSYtCYECUhpRSlGgVTegDaBZHQIdkS8+Royt1fZQoaAZoCWgPQwgFa5xNRyNYQJSGlFKUaBVN6ANoFkdAh2cnbh3qzXV9lChoBmgJaA9DCHlzuFZ7wF9AlIaUUpRoFU3oA2gWR0CHanH0btJGdX2UKGgGaAloD0MIQdMSK6MSZECUhpRSlGgVTegDaBZHQIdq1kJ8fFJ1fZQoaAZoCWgPQwjmeXB31jI2QJSGlFKUaBVNYgFoFkdAh27eZ5Rj0HV9lChoBmgJaA9DCHmu78PB1mFAlIaUUpRoFU3oA2gWR0CHc5W1c+qzdX2UKGgGaAloD0MIQX+hRwyIYECUhpRSlGgVTegDaBZHQId2MGRmseZ1fZQoaAZoCWgPQwgldQKaCL1dQJSGlFKUaBVN6ANoFkdAh3mZSvTw2HV9lChoBmgJaA9DCFCop49An2BAlIaUUpRoFU3oA2gWR0CHf1+vQnhLdX2UKGgGaAloD0MIJTs2AvG6wj+UhpRSlGgVTVoBaBZHQIeQn60pmVZ1fZQoaAZoCWgPQwhhjh6/t3xdQJSGlFKUaBVN6ANoFkdAh5Q7fgrH2nV9lChoBmgJaA9DCBrba0Hvz2BAlIaUUpRoFU3oA2gWR0CHl0ZOSGJvdX2UKGgGaAloD0MIOs5twj0CYUCUhpRSlGgVTegDaBZHQIehuE7GNrF1fZQoaAZoCWgPQwhXX10VqONXQJSGlFKUaBVN6ANoFkdAh7QP9UCJXXV9lChoBmgJaA9DCPIGmPkOZV1AlIaUUpRoFU3oA2gWR0CHtCfYjB2wdX2UKGgGaAloD0MIPbt868PpbUCUhpRSlGgVTXwCaBZHQIfjUbR4QjF1fZQoaAZoCWgPQwjAIVSp2fpZQJSGlFKUaBVN6ANoFkdAiACn/1g6VHV9lChoBmgJaA9DCDJ3LSEfhFRAlIaUUpRoFU3oA2gWR0CIBWxoIv8JdX2UKGgGaAloD0MIPYGwUyy5YkCUhpRSlGgVTegDaBZHQIgMCeNDMNd1fZQoaAZoCWgPQwgz/KcbKJFvQJSGlFKUaBVNigJoFkdAiA33sXzlLnV9lChoBmgJaA9DCFcnZyhu52xAlIaUUpRoFU0xA2gWR0CIEHWluWKNdX2UKGgGaAloD0MI3LsGfWmzYECUhpRSlGgVTegDaBZHQIgRjmGM4tJ1fZQoaAZoCWgPQwjRzmkWaBRgQJSGlFKUaBVN6ANoFkdAiBHkc81XNnV9lChoBmgJaA9DCNyDEJAvj11AlIaUUpRoFU3oA2gWR0CIGS46wMYudX2UKGgGaAloD0MI7x01JsQlYkCUhpRSlGgVTegDaBZHQIgboarFOwh1fZQoaAZoCWgPQwi7RsuBHu9cQJSGlFKUaBVN6ANoFkdAiB64oy9EkXV9lChoBmgJaA9DCMdim1Q0oF1AlIaUUpRoFU3oA2gWR0CIOMV+qioLdX2UKGgGaAloD0MI7UrLSH2TcECUhpRSlGgVTeQBaBZHQIg6XEbYK6Z1fZQoaAZoCWgPQwi3lzRGa3BhQJSGlFKUaBVN6ANoFkdAiDuOCf6Gg3V9lChoBmgJaA9DCPAUcqUe3WFAlIaUUpRoFU3oA2gWR0CIRyDg62fDdX2UKGgGaAloD0MIJXSXxNkcY0CUhpRSlGgVTegDaBZHQIhZ7jYI0Il1fZQoaAZoCWgPQwhWZHRAkudlQJSGlFKUaBVN6ANoFkdAiFoFuNxVAHV9lChoBmgJaA9DCLb2PlWFD11AlIaUUpRoFU3oA2gWR0CIigqBEroXdX2UKGgGaAloD0MIjUKSWb3rYECUhpRSlGgVTegDaBZHQIituZE2Hcl1fZQoaAZoCWgPQwiNuAA0yjBjQJSGlFKUaBVN6ANoFkdAiLUrp7kXDXV9lChoBmgJaA9DCAYTfxR1uVlAlIaUUpRoFU3oA2gWR0CIt6GsV+I/dX2UKGgGaAloD0MIi8Iuih68W0CUhpRSlGgVTegDaBZHQIi6Kb6P8yh1fZQoaAZoCWgPQwjFHAQdrcBYQJSGlFKUaBVN6ANoFkdAiLs9xyXD33V9lChoBmgJaA9DCPN2hNOC715AlIaUUpRoFU3oA2gWR0CIu6IFeOXFdX2UKGgGaAloD0MID39N1qikXkCUhpRSlGgVTegDaBZHQIjDK704BFN1fZQoaAZoCWgPQwjdeHdkrJNcQJSGlFKUaBVN6ANoFkdAiMVmT1TR6XV9lChoBmgJaA9DCJIE4Qoo6lZAlIaUUpRoFU3oA2gWR0CIyHZ2ZApsdX2UKGgGaAloD0MIZyrEI3G3bkCUhpRSlGgVTYoCaBZHQIjfF+qioKl1fZQoaAZoCWgPQwhfs1w2uhNgQJSGlFKUaBVN6ANoFkdAiOHZ13dKunV9lChoBmgJaA9DCCXP9X047FhAlIaUUpRoFU3oA2gWR0CI4xU70WdmdX2UKGgGaAloD0MI/KpcqHxcYkCUhpRSlGgVTegDaBZHQIjkDB42S+x1fZQoaAZoCWgPQwi/C1uzFZFhQJSGlFKUaBVN6ANoFkdAiO1LMC9ytHV9lChoBmgJaA9DCGKDhZM02GJAlIaUUpRoFU3oA2gWR0CI/hLh73PBdX2UKGgGaAloD0MIkpOJWwV1ZkCUhpRSlGgVTegDaBZHQIj+KIDYAbR1fZQoaAZoCWgPQwjD1mzlJc8lwJSGlFKUaBVNJgFoFkdAiQLC+10DEHV9lChoBmgJaA9DCMIyNnQz3GxAlIaUUpRoFU3HAmgWR0CJQSCCBf8edX2UKGgGaAloD0MI9DRgkPQjXECUhpRSlGgVTegDaBZHQIlQ4YxcmjV1fZQoaAZoCWgPQwhmaafmcixbQJSGlFKUaBVN6ANoFkdAiViCrLhaT3V9lChoBmgJaA9DCAA5YcLoE21AlIaUUpRoFU1wAmgWR0CJWqG21D0EdX2UKGgGaAloD0MInPwWnSxbYUCUhpRSlGgVTegDaBZHQIlbFb3XZoR1fZQoaAZoCWgPQwjXZ876FLdtQJSGlFKUaBVN3gNoFkdAiV3Nb9qDb3V9lChoBmgJaA9DCPOTap+OF19AlIaUUpRoFU3oA2gWR0CJXfjENvwWdX2UKGgGaAloD0MIUOJzJ9h9YUCUhpRSlGgVTegDaBZHQIlfe1jRUm51fZQoaAZoCWgPQwhjt88qs4FjQJSGlFKUaBVN6ANoFkdAiWfmig00nHV9lChoBmgJaA9DCOJ30y37cXBAlIaUUpRoFU0XAmgWR0CJbF2AXl8xdX2UKGgGaAloD0MIIv5hSw+fZUCUhpRSlGgVTegDaBZHQIluEEvCdjJ1fZQoaAZoCWgPQwiho1UtqTZwQJSGlFKUaBVNqAJoFkdAiXyojv/ipHV9lChoBmgJaA9DCAG9cOfC42RAlIaUUpRoFU3oA2gWR0CJibV7Qb++dX2UKGgGaAloD0MIp0BmZ9HQVkCUhpRSlGgVTegDaBZHQImK37rLQol1fZQoaAZoCWgPQwg8TtGRXHlfQJSGlFKUaBVN6ANoFkdAiZYkB0ZFX3V9lChoBmgJaA9DCDcWFAZlLF1AlIaUUpRoFU3oA2gWR0CJr6fXf642dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 176,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e0a7a703ec27b5896df9be45130172a98edb56499a6e86adb8557fad16d7c9e
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3d78d88e32819aac5c789a2dd2867fba2c6b72fd6929b177ecffd0c5745f948
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64462e5399619c363c7f97d8b2aca3c471c32692ed193db476453fdc774ed1a2
3
+ size 251425
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 210.82138917809888, "std_reward": 19.823789760832906, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T19:08:43.651268"}