Upload ppo-LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +19 -1
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,21 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 210.82 +/- 19.82
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
---
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5c120745f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5c12074680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5c12074710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5c120747a0>", "_build": "<function ActorCriticPolicy._build at 0x7f5c12074830>", "forward": "<function ActorCriticPolicy.forward at 0x7f5c120748c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5c12074950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5c120749e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5c12074a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5c12074b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5c12074b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5c120ce0c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651690364.3501337, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpECb0fPZy5LTubumYzILYJbkk70++1OQAAgD8AAIA/c4a1PeGgpLr1BNu58TSqtI7/wTk6yfs4AACAPwAAgD/NYMA79oxSuggoDzqCbv80makKOuTXKLkAAIA/AACAP63+Lb6FHA4/1o3zvAF+Z74+eYG9vp6WvQAAAAAAAAAAM5Pzu49CGDlHryG4rlOLNYLVvrtWuQG1AACAPwAAgD8zh5q8af8MPTIYwL1dEx6+MGu7vdmgBDwAAAAAAAAAAAAdp73Ixrk/ith5vnNcgb6GJSG+TjWKvQAAAAAAAAAAjeOivY9eXbr82sE7K276N/ri1zpmJO40AACAPwAAgD+z8uq94SqTupf9wTuJic+5ON4zu23cujoAAIA/AACAP43Rkz2koD252OBrO4FqbDg+Ucy4qkAQugAAgD8AAIA/WlLhvVxXWrrcIpK6jEk0OZCyaDtylLi3AACAPwAAgD/Nuaq9j94fulMXWrrENEk0eHqvuvyRgDkAAIA/AACAP5rEobyP8kG6djdbO+KPGjYlyp47q+x/ugAAgD8AAIA/syojvoXalLv3jQ68v4yUPHb0O70AK309AACAPwAAgD9APOC9KUhTuhfPBDpq5KK456IPuqI2LLcAAIA/AACAPxplYD2JQzY9uq+DvdVlIb4fy6i8Fg/VPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkq0upwTjXUCUhpRSlIwBbJRN6AOMAXSUR0CGBfph4MWodX2UKGgGaAloD0MIclMDzWc2YkCUhpRSlGgVTegDaBZHQIYJfCqIacZ1fZQoaAZoCWgPQwg7bY0IRoFjQJSGlFKUaBVN6ANoFkdAhgnj0L+glHV9lChoBmgJaA9DCHeDaK1of2BAlIaUUpRoFU3oA2gWR0CGD5JI1+AmdX2UKGgGaAloD0MIP1WFBmJCWECUhpRSlGgVTegDaBZHQIYVESkCV8l1fZQoaAZoCWgPQwgJ/Uy9bn5XQJSGlFKUaBVN6ANoFkdAhhkVWbPQfXV9lChoBmgJaA9DCP88DRgkfRNAlIaUUpRoFU1OAWgWR0CGH05eZ5RkdX2UKGgGaAloD0MIOZm4VRBTYkCUhpRSlGgVTegDaBZHQIY32rZJ04l1fZQoaAZoCWgPQwi95erHJnVbQJSGlFKUaBVN6ANoFkdAhjq1M/QjU3V9lChoBmgJaA9DCCqpE9BESCnAlIaUUpRoFU1BAWgWR0CGO6RnOB1+dX2UKGgGaAloD0MINWH7yRimX0CUhpRSlGgVTegDaBZHQIZF4z+FUQ11fZQoaAZoCWgPQwiJ0t7gC0ZiQJSGlFKUaBVN6ANoFkdAhn0w3gk1M3V9lChoBmgJaA9DCEZgrG9gaifAlIaUUpRoFU00AWgWR0CGjZlA/s3RdX2UKGgGaAloD0MIUcHhBRHJXECUhpRSlGgVTegDaBZHQIaRNmSQo1F1fZQoaAZoCWgPQwgSTDWzlp1bQJSGlFKUaBVN6ANoFkdAhpw5ZSvTw3V9lChoBmgJaA9DCCqqfqXzkV9AlIaUUpRoFU3oA2gWR0CGqcmplz2fdX2UKGgGaAloD0MI+8vuycMUZECUhpRSlGgVTegDaBZHQIau6sGPgel1fZQoaAZoCWgPQwg1s5YC0uhgQJSGlFKUaBVN6ANoFkdAhrYQPqcEvHV9lChoBmgJaA9DCNZ0PdF1G1VAlIaUUpRoFU3oA2gWR0CGuNZKWcBmdX2UKGgGaAloD0MI28TJ/Q4KXkCUhpRSlGgVTegDaBZHQIa8B0r9VFR1fZQoaAZoCWgPQwi9qx4wj+5hQJSGlFKUaBVN6ANoFkdAhrxn1vl2eXV9lChoBmgJaA9DCDpa1ZKO6kDAlIaUUpRoFU1zAWgWR0CGxDncL0BfdX2UKGgGaAloD0MIebDFbp9KVUCUhpRSlGgVTegDaBZHQIbGgjMV1wJ1fZQoaAZoCWgPQwgGDmjpCnozwJSGlFKUaBVNPQFoFkdAhsa+V1Oj7HV9lChoBmgJaA9DCDqy8svgo2BAlIaUUpRoFU3oA2gWR0CGyeM1jy4GdX2UKGgGaAloD0MIk8mpnWG3WECUhpRSlGgVTegDaBZHQIbO5IQOFxp1fZQoaAZoCWgPQwiPUglP6BFjQJSGlFKUaBVN6ANoFkdAhuKlhPTG53V9lChoBmgJaA9DCJBlwcQfWWJAlIaUUpRoFU3oA2gWR0CG5UioKlYVdX2UKGgGaAloD0MIMBFvnX+mXkCUhpRSlGgVTegDaBZHQIbv/3Fkxyp1fZQoaAZoCWgPQwjEtG/ur7ZrQJSGlFKUaBVN4wFoFkdAhyYiaAnUlXV9lChoBmgJaA9DCONTAIznGmNAlIaUUpRoFU3oA2gWR0CHJjqveP7vdX2UKGgGaAloD0MISGsMOqGYZECUhpRSlGgVTegDaBZHQIc2nl8w5/91fZQoaAZoCWgPQwgUXRd+cAFhQJSGlFKUaBVN6ANoFkdAh1ZHPu5SWXV9lChoBmgJaA9DCLgGtkowLWBAlIaUUpRoFU3oA2gWR0CHW+Hmig01dX2UKGgGaAloD0MI4h3gSYtCYECUhpRSlGgVTegDaBZHQIdkS8+Royt1fZQoaAZoCWgPQwgFa5xNRyNYQJSGlFKUaBVN6ANoFkdAh2cnbh3qzXV9lChoBmgJaA9DCHlzuFZ7wF9AlIaUUpRoFU3oA2gWR0CHanH0btJGdX2UKGgGaAloD0MIQdMSK6MSZECUhpRSlGgVTegDaBZHQIdq1kJ8fFJ1fZQoaAZoCWgPQwjmeXB31jI2QJSGlFKUaBVNYgFoFkdAh27eZ5Rj0HV9lChoBmgJaA9DCHmu78PB1mFAlIaUUpRoFU3oA2gWR0CHc5W1c+qzdX2UKGgGaAloD0MIQX+hRwyIYECUhpRSlGgVTegDaBZHQId2MGRmseZ1fZQoaAZoCWgPQwgldQKaCL1dQJSGlFKUaBVN6ANoFkdAh3mZSvTw2HV9lChoBmgJaA9DCFCop49An2BAlIaUUpRoFU3oA2gWR0CHf1+vQnhLdX2UKGgGaAloD0MIJTs2AvG6wj+UhpRSlGgVTVoBaBZHQIeQn60pmVZ1fZQoaAZoCWgPQwhhjh6/t3xdQJSGlFKUaBVN6ANoFkdAh5Q7fgrH2nV9lChoBmgJaA9DCBrba0Hvz2BAlIaUUpRoFU3oA2gWR0CHl0ZOSGJvdX2UKGgGaAloD0MIOs5twj0CYUCUhpRSlGgVTegDaBZHQIehuE7GNrF1fZQoaAZoCWgPQwhXX10VqONXQJSGlFKUaBVN6ANoFkdAh7QP9UCJXXV9lChoBmgJaA9DCPIGmPkOZV1AlIaUUpRoFU3oA2gWR0CHtCfYjB2wdX2UKGgGaAloD0MIPbt868PpbUCUhpRSlGgVTXwCaBZHQIfjUbR4QjF1fZQoaAZoCWgPQwjAIVSp2fpZQJSGlFKUaBVN6ANoFkdAiACn/1g6VHV9lChoBmgJaA9DCDJ3LSEfhFRAlIaUUpRoFU3oA2gWR0CIBWxoIv8JdX2UKGgGaAloD0MIPYGwUyy5YkCUhpRSlGgVTegDaBZHQIgMCeNDMNd1fZQoaAZoCWgPQwgz/KcbKJFvQJSGlFKUaBVNigJoFkdAiA33sXzlLnV9lChoBmgJaA9DCFcnZyhu52xAlIaUUpRoFU0xA2gWR0CIEHWluWKNdX2UKGgGaAloD0MI3LsGfWmzYECUhpRSlGgVTegDaBZHQIgRjmGM4tJ1fZQoaAZoCWgPQwjRzmkWaBRgQJSGlFKUaBVN6ANoFkdAiBHkc81XNnV9lChoBmgJaA9DCNyDEJAvj11AlIaUUpRoFU3oA2gWR0CIGS46wMYudX2UKGgGaAloD0MI7x01JsQlYkCUhpRSlGgVTegDaBZHQIgboarFOwh1fZQoaAZoCWgPQwi7RsuBHu9cQJSGlFKUaBVN6ANoFkdAiB64oy9EkXV9lChoBmgJaA9DCMdim1Q0oF1AlIaUUpRoFU3oA2gWR0CIOMV+qioLdX2UKGgGaAloD0MI7UrLSH2TcECUhpRSlGgVTeQBaBZHQIg6XEbYK6Z1fZQoaAZoCWgPQwi3lzRGa3BhQJSGlFKUaBVN6ANoFkdAiDuOCf6Gg3V9lChoBmgJaA9DCPAUcqUe3WFAlIaUUpRoFU3oA2gWR0CIRyDg62fDdX2UKGgGaAloD0MIJXSXxNkcY0CUhpRSlGgVTegDaBZHQIhZ7jYI0Il1fZQoaAZoCWgPQwhWZHRAkudlQJSGlFKUaBVN6ANoFkdAiFoFuNxVAHV9lChoBmgJaA9DCLb2PlWFD11AlIaUUpRoFU3oA2gWR0CIigqBEroXdX2UKGgGaAloD0MIjUKSWb3rYECUhpRSlGgVTegDaBZHQIituZE2Hcl1fZQoaAZoCWgPQwiNuAA0yjBjQJSGlFKUaBVN6ANoFkdAiLUrp7kXDXV9lChoBmgJaA9DCAYTfxR1uVlAlIaUUpRoFU3oA2gWR0CIt6GsV+I/dX2UKGgGaAloD0MIi8Iuih68W0CUhpRSlGgVTegDaBZHQIi6Kb6P8yh1fZQoaAZoCWgPQwjFHAQdrcBYQJSGlFKUaBVN6ANoFkdAiLs9xyXD33V9lChoBmgJaA9DCPN2hNOC715AlIaUUpRoFU3oA2gWR0CIu6IFeOXFdX2UKGgGaAloD0MID39N1qikXkCUhpRSlGgVTegDaBZHQIjDK704BFN1fZQoaAZoCWgPQwjdeHdkrJNcQJSGlFKUaBVN6ANoFkdAiMVmT1TR6XV9lChoBmgJaA9DCJIE4Qoo6lZAlIaUUpRoFU3oA2gWR0CIyHZ2ZApsdX2UKGgGaAloD0MIZyrEI3G3bkCUhpRSlGgVTYoCaBZHQIjfF+qioKl1fZQoaAZoCWgPQwhfs1w2uhNgQJSGlFKUaBVN6ANoFkdAiOHZ13dKunV9lChoBmgJaA9DCCXP9X047FhAlIaUUpRoFU3oA2gWR0CI4xU70WdmdX2UKGgGaAloD0MI/KpcqHxcYkCUhpRSlGgVTegDaBZHQIjkDB42S+x1fZQoaAZoCWgPQwi/C1uzFZFhQJSGlFKUaBVN6ANoFkdAiO1LMC9ytHV9lChoBmgJaA9DCGKDhZM02GJAlIaUUpRoFU3oA2gWR0CI/hLh73PBdX2UKGgGaAloD0MIkpOJWwV1ZkCUhpRSlGgVTegDaBZHQIj+KIDYAbR1fZQoaAZoCWgPQwjD1mzlJc8lwJSGlFKUaBVNJgFoFkdAiQLC+10DEHV9lChoBmgJaA9DCMIyNnQz3GxAlIaUUpRoFU3HAmgWR0CJQSCCBf8edX2UKGgGaAloD0MI9DRgkPQjXECUhpRSlGgVTegDaBZHQIlQ4YxcmjV1fZQoaAZoCWgPQwhmaafmcixbQJSGlFKUaBVN6ANoFkdAiViCrLhaT3V9lChoBmgJaA9DCAA5YcLoE21AlIaUUpRoFU1wAmgWR0CJWqG21D0EdX2UKGgGaAloD0MInPwWnSxbYUCUhpRSlGgVTegDaBZHQIlbFb3XZoR1fZQoaAZoCWgPQwjXZ876FLdtQJSGlFKUaBVN3gNoFkdAiV3Nb9qDb3V9lChoBmgJaA9DCPOTap+OF19AlIaUUpRoFU3oA2gWR0CJXfjENvwWdX2UKGgGaAloD0MIUOJzJ9h9YUCUhpRSlGgVTegDaBZHQIlfe1jRUm51fZQoaAZoCWgPQwhjt88qs4FjQJSGlFKUaBVN6ANoFkdAiWfmig00nHV9lChoBmgJaA9DCOJ30y37cXBAlIaUUpRoFU0XAmgWR0CJbF2AXl8xdX2UKGgGaAloD0MIIv5hSw+fZUCUhpRSlGgVTegDaBZHQIluEEvCdjJ1fZQoaAZoCWgPQwiho1UtqTZwQJSGlFKUaBVNqAJoFkdAiXyojv/ipHV9lChoBmgJaA9DCAG9cOfC42RAlIaUUpRoFU3oA2gWR0CJibV7Qb++dX2UKGgGaAloD0MIp0BmZ9HQVkCUhpRSlGgVTegDaBZHQImK37rLQol1fZQoaAZoCWgPQwg8TtGRXHlfQJSGlFKUaBVN6ANoFkdAiZYkB0ZFX3V9lChoBmgJaA9DCDcWFAZlLF1AlIaUUpRoFU3oA2gWR0CJr6fXf642dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 176, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca9d4366d1f4ef3d305f765c300552569f3c9922b74c180e75c8f03e397abefd
|
3 |
+
size 144048
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5c120745f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5c12074680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5c12074710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5c120747a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5c12074830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5c120748c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5c12074950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5c120749e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5c12074a70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5c12074b00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5c12074b90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5c120ce0c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651690364.3501337,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpECb0fPZy5LTubumYzILYJbkk70++1OQAAgD8AAIA/c4a1PeGgpLr1BNu58TSqtI7/wTk6yfs4AACAPwAAgD/NYMA79oxSuggoDzqCbv80makKOuTXKLkAAIA/AACAP63+Lb6FHA4/1o3zvAF+Z74+eYG9vp6WvQAAAAAAAAAAM5Pzu49CGDlHryG4rlOLNYLVvrtWuQG1AACAPwAAgD8zh5q8af8MPTIYwL1dEx6+MGu7vdmgBDwAAAAAAAAAAAAdp73Ixrk/ith5vnNcgb6GJSG+TjWKvQAAAAAAAAAAjeOivY9eXbr82sE7K276N/ri1zpmJO40AACAPwAAgD+z8uq94SqTupf9wTuJic+5ON4zu23cujoAAIA/AACAP43Rkz2koD252OBrO4FqbDg+Ucy4qkAQugAAgD8AAIA/WlLhvVxXWrrcIpK6jEk0OZCyaDtylLi3AACAPwAAgD/Nuaq9j94fulMXWrrENEk0eHqvuvyRgDkAAIA/AACAP5rEobyP8kG6djdbO+KPGjYlyp47q+x/ugAAgD8AAIA/syojvoXalLv3jQ68v4yUPHb0O70AK309AACAPwAAgD9APOC9KUhTuhfPBDpq5KK456IPuqI2LLcAAIA/AACAPxplYD2JQzY9uq+DvdVlIb4fy6i8Fg/VPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkq0upwTjXUCUhpRSlIwBbJRN6AOMAXSUR0CGBfph4MWodX2UKGgGaAloD0MIclMDzWc2YkCUhpRSlGgVTegDaBZHQIYJfCqIacZ1fZQoaAZoCWgPQwg7bY0IRoFjQJSGlFKUaBVN6ANoFkdAhgnj0L+glHV9lChoBmgJaA9DCHeDaK1of2BAlIaUUpRoFU3oA2gWR0CGD5JI1+AmdX2UKGgGaAloD0MIP1WFBmJCWECUhpRSlGgVTegDaBZHQIYVESkCV8l1fZQoaAZoCWgPQwgJ/Uy9bn5XQJSGlFKUaBVN6ANoFkdAhhkVWbPQfXV9lChoBmgJaA9DCP88DRgkfRNAlIaUUpRoFU1OAWgWR0CGH05eZ5RkdX2UKGgGaAloD0MIOZm4VRBTYkCUhpRSlGgVTegDaBZHQIY32rZJ04l1fZQoaAZoCWgPQwi95erHJnVbQJSGlFKUaBVN6ANoFkdAhjq1M/QjU3V9lChoBmgJaA9DCCqpE9BESCnAlIaUUpRoFU1BAWgWR0CGO6RnOB1+dX2UKGgGaAloD0MINWH7yRimX0CUhpRSlGgVTegDaBZHQIZF4z+FUQ11fZQoaAZoCWgPQwiJ0t7gC0ZiQJSGlFKUaBVN6ANoFkdAhn0w3gk1M3V9lChoBmgJaA9DCEZgrG9gaifAlIaUUpRoFU00AWgWR0CGjZlA/s3RdX2UKGgGaAloD0MIUcHhBRHJXECUhpRSlGgVTegDaBZHQIaRNmSQo1F1fZQoaAZoCWgPQwgSTDWzlp1bQJSGlFKUaBVN6ANoFkdAhpw5ZSvTw3V9lChoBmgJaA9DCCqqfqXzkV9AlIaUUpRoFU3oA2gWR0CGqcmplz2fdX2UKGgGaAloD0MI+8vuycMUZECUhpRSlGgVTegDaBZHQIau6sGPgel1fZQoaAZoCWgPQwg1s5YC0uhgQJSGlFKUaBVN6ANoFkdAhrYQPqcEvHV9lChoBmgJaA9DCNZ0PdF1G1VAlIaUUpRoFU3oA2gWR0CGuNZKWcBmdX2UKGgGaAloD0MI28TJ/Q4KXkCUhpRSlGgVTegDaBZHQIa8B0r9VFR1fZQoaAZoCWgPQwi9qx4wj+5hQJSGlFKUaBVN6ANoFkdAhrxn1vl2eXV9lChoBmgJaA9DCDpa1ZKO6kDAlIaUUpRoFU1zAWgWR0CGxDncL0BfdX2UKGgGaAloD0MIebDFbp9KVUCUhpRSlGgVTegDaBZHQIbGgjMV1wJ1fZQoaAZoCWgPQwgGDmjpCnozwJSGlFKUaBVNPQFoFkdAhsa+V1Oj7HV9lChoBmgJaA9DCDqy8svgo2BAlIaUUpRoFU3oA2gWR0CGyeM1jy4GdX2UKGgGaAloD0MIk8mpnWG3WECUhpRSlGgVTegDaBZHQIbO5IQOFxp1fZQoaAZoCWgPQwiPUglP6BFjQJSGlFKUaBVN6ANoFkdAhuKlhPTG53V9lChoBmgJaA9DCJBlwcQfWWJAlIaUUpRoFU3oA2gWR0CG5UioKlYVdX2UKGgGaAloD0MIMBFvnX+mXkCUhpRSlGgVTegDaBZHQIbv/3Fkxyp1fZQoaAZoCWgPQwjEtG/ur7ZrQJSGlFKUaBVN4wFoFkdAhyYiaAnUlXV9lChoBmgJaA9DCONTAIznGmNAlIaUUpRoFU3oA2gWR0CHJjqveP7vdX2UKGgGaAloD0MISGsMOqGYZECUhpRSlGgVTegDaBZHQIc2nl8w5/91fZQoaAZoCWgPQwgUXRd+cAFhQJSGlFKUaBVN6ANoFkdAh1ZHPu5SWXV9lChoBmgJaA9DCLgGtkowLWBAlIaUUpRoFU3oA2gWR0CHW+Hmig01dX2UKGgGaAloD0MI4h3gSYtCYECUhpRSlGgVTegDaBZHQIdkS8+Royt1fZQoaAZoCWgPQwgFa5xNRyNYQJSGlFKUaBVN6ANoFkdAh2cnbh3qzXV9lChoBmgJaA9DCHlzuFZ7wF9AlIaUUpRoFU3oA2gWR0CHanH0btJGdX2UKGgGaAloD0MIQdMSK6MSZECUhpRSlGgVTegDaBZHQIdq1kJ8fFJ1fZQoaAZoCWgPQwjmeXB31jI2QJSGlFKUaBVNYgFoFkdAh27eZ5Rj0HV9lChoBmgJaA9DCHmu78PB1mFAlIaUUpRoFU3oA2gWR0CHc5W1c+qzdX2UKGgGaAloD0MIQX+hRwyIYECUhpRSlGgVTegDaBZHQId2MGRmseZ1fZQoaAZoCWgPQwgldQKaCL1dQJSGlFKUaBVN6ANoFkdAh3mZSvTw2HV9lChoBmgJaA9DCFCop49An2BAlIaUUpRoFU3oA2gWR0CHf1+vQnhLdX2UKGgGaAloD0MIJTs2AvG6wj+UhpRSlGgVTVoBaBZHQIeQn60pmVZ1fZQoaAZoCWgPQwhhjh6/t3xdQJSGlFKUaBVN6ANoFkdAh5Q7fgrH2nV9lChoBmgJaA9DCBrba0Hvz2BAlIaUUpRoFU3oA2gWR0CHl0ZOSGJvdX2UKGgGaAloD0MIOs5twj0CYUCUhpRSlGgVTegDaBZHQIehuE7GNrF1fZQoaAZoCWgPQwhXX10VqONXQJSGlFKUaBVN6ANoFkdAh7QP9UCJXXV9lChoBmgJaA9DCPIGmPkOZV1AlIaUUpRoFU3oA2gWR0CHtCfYjB2wdX2UKGgGaAloD0MIPbt868PpbUCUhpRSlGgVTXwCaBZHQIfjUbR4QjF1fZQoaAZoCWgPQwjAIVSp2fpZQJSGlFKUaBVN6ANoFkdAiACn/1g6VHV9lChoBmgJaA9DCDJ3LSEfhFRAlIaUUpRoFU3oA2gWR0CIBWxoIv8JdX2UKGgGaAloD0MIPYGwUyy5YkCUhpRSlGgVTegDaBZHQIgMCeNDMNd1fZQoaAZoCWgPQwgz/KcbKJFvQJSGlFKUaBVNigJoFkdAiA33sXzlLnV9lChoBmgJaA9DCFcnZyhu52xAlIaUUpRoFU0xA2gWR0CIEHWluWKNdX2UKGgGaAloD0MI3LsGfWmzYECUhpRSlGgVTegDaBZHQIgRjmGM4tJ1fZQoaAZoCWgPQwjRzmkWaBRgQJSGlFKUaBVN6ANoFkdAiBHkc81XNnV9lChoBmgJaA9DCNyDEJAvj11AlIaUUpRoFU3oA2gWR0CIGS46wMYudX2UKGgGaAloD0MI7x01JsQlYkCUhpRSlGgVTegDaBZHQIgboarFOwh1fZQoaAZoCWgPQwi7RsuBHu9cQJSGlFKUaBVN6ANoFkdAiB64oy9EkXV9lChoBmgJaA9DCMdim1Q0oF1AlIaUUpRoFU3oA2gWR0CIOMV+qioLdX2UKGgGaAloD0MI7UrLSH2TcECUhpRSlGgVTeQBaBZHQIg6XEbYK6Z1fZQoaAZoCWgPQwi3lzRGa3BhQJSGlFKUaBVN6ANoFkdAiDuOCf6Gg3V9lChoBmgJaA9DCPAUcqUe3WFAlIaUUpRoFU3oA2gWR0CIRyDg62fDdX2UKGgGaAloD0MIJXSXxNkcY0CUhpRSlGgVTegDaBZHQIhZ7jYI0Il1fZQoaAZoCWgPQwhWZHRAkudlQJSGlFKUaBVN6ANoFkdAiFoFuNxVAHV9lChoBmgJaA9DCLb2PlWFD11AlIaUUpRoFU3oA2gWR0CIigqBEroXdX2UKGgGaAloD0MIjUKSWb3rYECUhpRSlGgVTegDaBZHQIituZE2Hcl1fZQoaAZoCWgPQwiNuAA0yjBjQJSGlFKUaBVN6ANoFkdAiLUrp7kXDXV9lChoBmgJaA9DCAYTfxR1uVlAlIaUUpRoFU3oA2gWR0CIt6GsV+I/dX2UKGgGaAloD0MIi8Iuih68W0CUhpRSlGgVTegDaBZHQIi6Kb6P8yh1fZQoaAZoCWgPQwjFHAQdrcBYQJSGlFKUaBVN6ANoFkdAiLs9xyXD33V9lChoBmgJaA9DCPN2hNOC715AlIaUUpRoFU3oA2gWR0CIu6IFeOXFdX2UKGgGaAloD0MID39N1qikXkCUhpRSlGgVTegDaBZHQIjDK704BFN1fZQoaAZoCWgPQwjdeHdkrJNcQJSGlFKUaBVN6ANoFkdAiMVmT1TR6XV9lChoBmgJaA9DCJIE4Qoo6lZAlIaUUpRoFU3oA2gWR0CIyHZ2ZApsdX2UKGgGaAloD0MIZyrEI3G3bkCUhpRSlGgVTYoCaBZHQIjfF+qioKl1fZQoaAZoCWgPQwhfs1w2uhNgQJSGlFKUaBVN6ANoFkdAiOHZ13dKunV9lChoBmgJaA9DCCXP9X047FhAlIaUUpRoFU3oA2gWR0CI4xU70WdmdX2UKGgGaAloD0MI/KpcqHxcYkCUhpRSlGgVTegDaBZHQIjkDB42S+x1fZQoaAZoCWgPQwi/C1uzFZFhQJSGlFKUaBVN6ANoFkdAiO1LMC9ytHV9lChoBmgJaA9DCGKDhZM02GJAlIaUUpRoFU3oA2gWR0CI/hLh73PBdX2UKGgGaAloD0MIkpOJWwV1ZkCUhpRSlGgVTegDaBZHQIj+KIDYAbR1fZQoaAZoCWgPQwjD1mzlJc8lwJSGlFKUaBVNJgFoFkdAiQLC+10DEHV9lChoBmgJaA9DCMIyNnQz3GxAlIaUUpRoFU3HAmgWR0CJQSCCBf8edX2UKGgGaAloD0MI9DRgkPQjXECUhpRSlGgVTegDaBZHQIlQ4YxcmjV1fZQoaAZoCWgPQwhmaafmcixbQJSGlFKUaBVN6ANoFkdAiViCrLhaT3V9lChoBmgJaA9DCAA5YcLoE21AlIaUUpRoFU1wAmgWR0CJWqG21D0EdX2UKGgGaAloD0MInPwWnSxbYUCUhpRSlGgVTegDaBZHQIlbFb3XZoR1fZQoaAZoCWgPQwjXZ876FLdtQJSGlFKUaBVN3gNoFkdAiV3Nb9qDb3V9lChoBmgJaA9DCPOTap+OF19AlIaUUpRoFU3oA2gWR0CJXfjENvwWdX2UKGgGaAloD0MIUOJzJ9h9YUCUhpRSlGgVTegDaBZHQIlfe1jRUm51fZQoaAZoCWgPQwhjt88qs4FjQJSGlFKUaBVN6ANoFkdAiWfmig00nHV9lChoBmgJaA9DCOJ30y37cXBAlIaUUpRoFU0XAmgWR0CJbF2AXl8xdX2UKGgGaAloD0MIIv5hSw+fZUCUhpRSlGgVTegDaBZHQIluEEvCdjJ1fZQoaAZoCWgPQwiho1UtqTZwQJSGlFKUaBVNqAJoFkdAiXyojv/ipHV9lChoBmgJaA9DCAG9cOfC42RAlIaUUpRoFU3oA2gWR0CJibV7Qb++dX2UKGgGaAloD0MIp0BmZ9HQVkCUhpRSlGgVTegDaBZHQImK37rLQol1fZQoaAZoCWgPQwg8TtGRXHlfQJSGlFKUaBVN6ANoFkdAiZYkB0ZFX3V9lChoBmgJaA9DCDcWFAZlLF1AlIaUUpRoFU3oA2gWR0CJr6fXf642dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 176,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e0a7a703ec27b5896df9be45130172a98edb56499a6e86adb8557fad16d7c9e
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3d78d88e32819aac5c789a2dd2867fba2c6b72fd6929b177ecffd0c5745f948
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64462e5399619c363c7f97d8b2aca3c471c32692ed193db476453fdc774ed1a2
|
3 |
+
size 251425
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 210.82138917809888, "std_reward": 19.823789760832906, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T19:08:43.651268"}
|