File size: 2,118 Bytes
fbcc54f d547b4b fbcc54f 2510ace fbcc54f d547b4b fbcc54f 2510ace fbcc54f 2510ace faf76d2 fbcc54f faf76d2 fbcc54f 965b988 d990bc2 fbcc54f 2510ace fbcc54f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-jana-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice
type: common_voice
config: cy
split: test
args: cy
metrics:
- name: Wer
type: wer
value: 0.6497412901000345
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-jana-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8913
- Wer: 0.6497
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.6444 | 1.67 | 200 | 2.9379 | 1.0 |
| 2.7964 | 3.33 | 400 | 1.9912 | 0.9927 |
| 1.1945 | 5.0 | 600 | 0.9492 | 0.7889 |
| 0.6065 | 6.67 | 800 | 0.8534 | 0.7137 |
| 0.3859 | 8.33 | 1000 | 0.8933 | 0.6689 |
| 0.2724 | 10.0 | 1200 | 0.8913 | 0.6497 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|