Jasontth commited on
Commit
9577e68
1 Parent(s): c5dff8b

climate_verfication_model

Browse files
README.md ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: roberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: results
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # results
20
+
21
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.7998
24
+ - Accuracy: 0.7023
25
+ - Precision: 0.7144
26
+ - Recall: 0.7023
27
+ - F1: 0.7065
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 16
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_steps: 500
53
+ - num_epochs: 5
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
60
+ | 1.0859 | 0.04 | 10 | 1.0722 | 0.6493 | 0.6735 | 0.6493 | 0.5118 |
61
+ | 1.0731 | 0.07 | 20 | 1.0562 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
62
+ | 1.0456 | 0.11 | 30 | 1.0316 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
63
+ | 1.0199 | 0.15 | 40 | 0.9979 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
64
+ | 0.9613 | 0.19 | 50 | 0.9362 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
65
+ | 0.8949 | 0.22 | 60 | 0.8645 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
66
+ | 0.9151 | 0.26 | 70 | 0.8606 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
67
+ | 0.8583 | 0.3 | 80 | 0.8593 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
68
+ | 0.9604 | 0.33 | 90 | 0.8539 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
69
+ | 0.7919 | 0.37 | 100 | 0.8504 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
70
+ | 0.9365 | 0.41 | 110 | 0.8520 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
71
+ | 0.9285 | 0.45 | 120 | 0.8521 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
72
+ | 0.8564 | 0.48 | 130 | 0.8615 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
73
+ | 0.8132 | 0.52 | 140 | 0.8583 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
74
+ | 0.8911 | 0.56 | 150 | 0.8467 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
75
+ | 0.8383 | 0.59 | 160 | 0.8373 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
76
+ | 0.8387 | 0.63 | 170 | 0.8372 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
77
+ | 0.979 | 0.67 | 180 | 0.8595 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
78
+ | 0.7621 | 0.71 | 190 | 0.8642 | 0.6488 | 0.4209 | 0.6488 | 0.5105 |
79
+ | 0.8367 | 0.74 | 200 | 0.8276 | 0.6553 | 0.6447 | 0.6553 | 0.5271 |
80
+ | 0.9116 | 0.78 | 210 | 0.8466 | 0.6493 | 0.6735 | 0.6493 | 0.5118 |
81
+ | 0.8444 | 0.82 | 220 | 0.8171 | 0.6504 | 0.6740 | 0.6504 | 0.5143 |
82
+ | 0.7815 | 0.86 | 230 | 0.7919 | 0.6667 | 0.6008 | 0.6667 | 0.5615 |
83
+ | 0.8592 | 0.89 | 240 | 0.7907 | 0.6732 | 0.5878 | 0.6732 | 0.5962 |
84
+ | 0.8933 | 0.93 | 250 | 0.7963 | 0.6813 | 0.6004 | 0.6813 | 0.6102 |
85
+ | 0.8409 | 0.97 | 260 | 0.7812 | 0.6797 | 0.6021 | 0.6797 | 0.6066 |
86
+ | 0.8285 | 1.0 | 270 | 0.7794 | 0.6737 | 0.5987 | 0.6737 | 0.5940 |
87
+ | 0.7895 | 1.04 | 280 | 0.7893 | 0.6846 | 0.6044 | 0.6846 | 0.6168 |
88
+ | 0.8012 | 1.08 | 290 | 0.7617 | 0.6813 | 0.6129 | 0.6813 | 0.6002 |
89
+ | 0.7215 | 1.12 | 300 | 0.8029 | 0.6748 | 0.6248 | 0.6748 | 0.5764 |
90
+ | 0.8134 | 1.15 | 310 | 0.8294 | 0.6781 | 0.5949 | 0.6781 | 0.6294 |
91
+ | 0.7247 | 1.19 | 320 | 0.7944 | 0.6732 | 0.5941 | 0.6732 | 0.6290 |
92
+ | 0.8043 | 1.23 | 330 | 0.7978 | 0.6656 | 0.5931 | 0.6656 | 0.6268 |
93
+ | 0.7647 | 1.26 | 340 | 0.7571 | 0.6884 | 0.6344 | 0.6884 | 0.6063 |
94
+ | 0.7807 | 1.3 | 350 | 0.7958 | 0.6412 | 0.6041 | 0.6412 | 0.6167 |
95
+ | 0.8031 | 1.34 | 360 | 0.7261 | 0.6906 | 0.6820 | 0.6906 | 0.6680 |
96
+ | 0.6965 | 1.38 | 370 | 0.7287 | 0.7003 | 0.6796 | 0.7003 | 0.6813 |
97
+ | 0.69 | 1.41 | 380 | 0.7115 | 0.7074 | 0.6981 | 0.7074 | 0.6581 |
98
+ | 0.7015 | 1.45 | 390 | 0.7391 | 0.7063 | 0.6932 | 0.7063 | 0.6813 |
99
+ | 0.7461 | 1.49 | 400 | 0.7624 | 0.6987 | 0.6791 | 0.6987 | 0.6787 |
100
+ | 0.758 | 1.52 | 410 | 0.7778 | 0.6819 | 0.6893 | 0.6819 | 0.6695 |
101
+ | 0.7617 | 1.56 | 420 | 0.7913 | 0.6878 | 0.6906 | 0.6878 | 0.6339 |
102
+ | 0.7848 | 1.6 | 430 | 0.7785 | 0.6629 | 0.6806 | 0.6629 | 0.6643 |
103
+ | 0.8138 | 1.64 | 440 | 0.7191 | 0.6954 | 0.6763 | 0.6954 | 0.6474 |
104
+ | 0.7451 | 1.67 | 450 | 0.7086 | 0.7030 | 0.7061 | 0.7030 | 0.6434 |
105
+ | 0.788 | 1.71 | 460 | 0.7202 | 0.6840 | 0.6956 | 0.6840 | 0.6497 |
106
+ | 0.7107 | 1.75 | 470 | 0.7543 | 0.6835 | 0.6067 | 0.6835 | 0.6379 |
107
+ | 0.7047 | 1.78 | 480 | 0.7940 | 0.6862 | 0.6697 | 0.6862 | 0.6258 |
108
+ | 0.8561 | 1.82 | 490 | 0.7497 | 0.6802 | 0.6860 | 0.6802 | 0.6666 |
109
+ | 0.804 | 1.86 | 500 | 0.7247 | 0.6938 | 0.6757 | 0.6938 | 0.6555 |
110
+ | 0.7796 | 1.9 | 510 | 0.7239 | 0.7063 | 0.6988 | 0.7063 | 0.6702 |
111
+ | 0.8124 | 1.93 | 520 | 0.7693 | 0.6976 | 0.7003 | 0.6976 | 0.6621 |
112
+ | 0.7306 | 1.97 | 530 | 0.8395 | 0.6363 | 0.6788 | 0.6363 | 0.6329 |
113
+ | 0.7079 | 2.01 | 540 | 0.7051 | 0.7041 | 0.6828 | 0.7041 | 0.6811 |
114
+ | 0.6018 | 2.04 | 550 | 0.7327 | 0.7058 | 0.6873 | 0.7058 | 0.6849 |
115
+ | 0.5824 | 2.08 | 560 | 0.7819 | 0.6743 | 0.6811 | 0.6743 | 0.6774 |
116
+ | 0.6001 | 2.12 | 570 | 0.7547 | 0.7139 | 0.6980 | 0.7139 | 0.7023 |
117
+ | 0.6471 | 2.16 | 580 | 0.7617 | 0.7172 | 0.7040 | 0.7172 | 0.6848 |
118
+ | 0.6226 | 2.19 | 590 | 0.7421 | 0.6927 | 0.6974 | 0.6927 | 0.6909 |
119
+ | 0.5203 | 2.23 | 600 | 0.7935 | 0.6694 | 0.6871 | 0.6694 | 0.6748 |
120
+ | 0.6445 | 2.27 | 610 | 0.7722 | 0.7182 | 0.7038 | 0.7182 | 0.6947 |
121
+ | 0.7027 | 2.3 | 620 | 0.7517 | 0.6754 | 0.7039 | 0.6754 | 0.6814 |
122
+ | 0.5662 | 2.34 | 630 | 0.6804 | 0.7182 | 0.7069 | 0.7182 | 0.7090 |
123
+ | 0.6304 | 2.38 | 640 | 0.6965 | 0.7128 | 0.6958 | 0.7128 | 0.6904 |
124
+ | 0.6258 | 2.42 | 650 | 0.7053 | 0.7041 | 0.7041 | 0.7041 | 0.7041 |
125
+ | 0.4966 | 2.45 | 660 | 0.7300 | 0.7177 | 0.7030 | 0.7177 | 0.7033 |
126
+ | 0.5721 | 2.49 | 670 | 0.8330 | 0.6683 | 0.6910 | 0.6683 | 0.6737 |
127
+ | 0.5507 | 2.53 | 680 | 0.8154 | 0.6857 | 0.7020 | 0.6857 | 0.6923 |
128
+ | 0.6392 | 2.57 | 690 | 0.8048 | 0.7166 | 0.7079 | 0.7166 | 0.6814 |
129
+ | 0.6128 | 2.6 | 700 | 0.7445 | 0.6786 | 0.6890 | 0.6786 | 0.6827 |
130
+ | 0.622 | 2.64 | 710 | 0.7029 | 0.7047 | 0.6895 | 0.7047 | 0.6870 |
131
+ | 0.5847 | 2.68 | 720 | 0.7911 | 0.6569 | 0.6889 | 0.6569 | 0.6677 |
132
+ | 0.6454 | 2.71 | 730 | 0.7062 | 0.7112 | 0.7017 | 0.7112 | 0.6797 |
133
+ | 0.5264 | 2.75 | 740 | 0.7419 | 0.6992 | 0.6893 | 0.6992 | 0.6870 |
134
+ | 0.649 | 2.79 | 750 | 0.7243 | 0.7063 | 0.7009 | 0.7063 | 0.7030 |
135
+ | 0.5343 | 2.83 | 760 | 0.7478 | 0.6889 | 0.7030 | 0.6889 | 0.6946 |
136
+ | 0.5335 | 2.86 | 770 | 0.7222 | 0.7237 | 0.7115 | 0.7237 | 0.7052 |
137
+ | 0.5228 | 2.9 | 780 | 0.7182 | 0.7226 | 0.7152 | 0.7226 | 0.7063 |
138
+ | 0.5605 | 2.94 | 790 | 0.7195 | 0.7210 | 0.7128 | 0.7210 | 0.7106 |
139
+ | 0.627 | 2.97 | 800 | 0.7559 | 0.6878 | 0.7135 | 0.6878 | 0.6933 |
140
+ | 0.6536 | 3.01 | 810 | 0.6616 | 0.7275 | 0.7141 | 0.7275 | 0.7105 |
141
+ | 0.4106 | 3.05 | 820 | 0.7176 | 0.7307 | 0.7209 | 0.7307 | 0.7230 |
142
+ | 0.3588 | 3.09 | 830 | 0.8387 | 0.7226 | 0.7230 | 0.7226 | 0.7183 |
143
+ | 0.404 | 3.12 | 840 | 0.8459 | 0.7117 | 0.7138 | 0.7117 | 0.7124 |
144
+ | 0.4313 | 3.16 | 850 | 0.8406 | 0.6992 | 0.7108 | 0.6992 | 0.7036 |
145
+ | 0.3407 | 3.2 | 860 | 0.8317 | 0.6916 | 0.7133 | 0.6916 | 0.6997 |
146
+ | 0.365 | 3.23 | 870 | 0.8310 | 0.6992 | 0.7110 | 0.6992 | 0.7035 |
147
+ | 0.3776 | 3.27 | 880 | 0.8376 | 0.6927 | 0.7107 | 0.6927 | 0.6986 |
148
+ | 0.3442 | 3.31 | 890 | 0.8554 | 0.7079 | 0.7082 | 0.7079 | 0.7079 |
149
+ | 0.41 | 3.35 | 900 | 0.9473 | 0.6401 | 0.7039 | 0.6401 | 0.6550 |
150
+ | 0.4649 | 3.38 | 910 | 0.8139 | 0.7134 | 0.7063 | 0.7134 | 0.7090 |
151
+ | 0.4359 | 3.42 | 920 | 0.8275 | 0.6992 | 0.7095 | 0.6992 | 0.7022 |
152
+ | 0.2906 | 3.46 | 930 | 0.8398 | 0.7096 | 0.7013 | 0.7096 | 0.7025 |
153
+ | 0.413 | 3.49 | 940 | 0.8558 | 0.6982 | 0.7049 | 0.6982 | 0.7009 |
154
+ | 0.3936 | 3.53 | 950 | 0.8457 | 0.7025 | 0.7058 | 0.7025 | 0.7039 |
155
+ | 0.3691 | 3.57 | 960 | 0.8312 | 0.7014 | 0.7102 | 0.7014 | 0.7050 |
156
+ | 0.3747 | 3.61 | 970 | 0.8146 | 0.7210 | 0.7074 | 0.7210 | 0.7086 |
157
+ | 0.4037 | 3.64 | 980 | 0.7906 | 0.7199 | 0.7132 | 0.7199 | 0.7150 |
158
+ | 0.4112 | 3.68 | 990 | 0.8135 | 0.7139 | 0.7145 | 0.7139 | 0.7137 |
159
+ | 0.3685 | 3.72 | 1000 | 0.8024 | 0.7106 | 0.7144 | 0.7106 | 0.7123 |
160
+ | 0.3881 | 3.75 | 1010 | 0.8339 | 0.7063 | 0.7109 | 0.7063 | 0.7063 |
161
+ | 0.4168 | 3.79 | 1020 | 0.8261 | 0.7231 | 0.7191 | 0.7231 | 0.7206 |
162
+ | 0.3591 | 3.83 | 1030 | 0.8014 | 0.7340 | 0.7258 | 0.7340 | 0.7281 |
163
+ | 0.3632 | 3.87 | 1040 | 0.8568 | 0.6878 | 0.7206 | 0.6878 | 0.6974 |
164
+ | 0.259 | 3.9 | 1050 | 0.8182 | 0.7324 | 0.7226 | 0.7324 | 0.7225 |
165
+ | 0.3741 | 3.94 | 1060 | 0.8511 | 0.7009 | 0.7200 | 0.7009 | 0.7078 |
166
+ | 0.3551 | 3.98 | 1070 | 0.8283 | 0.7150 | 0.7186 | 0.7150 | 0.7159 |
167
+ | 0.4105 | 4.01 | 1080 | 0.7817 | 0.7204 | 0.7209 | 0.7204 | 0.7205 |
168
+ | 0.2411 | 4.05 | 1090 | 0.8384 | 0.7372 | 0.7272 | 0.7372 | 0.7274 |
169
+ | 0.2166 | 4.09 | 1100 | 0.9466 | 0.7003 | 0.7240 | 0.7003 | 0.7066 |
170
+ | 0.4075 | 4.13 | 1110 | 0.9255 | 0.6976 | 0.7157 | 0.6976 | 0.7042 |
171
+ | 0.3328 | 4.16 | 1120 | 0.9120 | 0.6922 | 0.7153 | 0.6922 | 0.7003 |
172
+ | 0.1584 | 4.2 | 1130 | 0.9688 | 0.6857 | 0.7100 | 0.6857 | 0.6942 |
173
+ | 0.1737 | 4.24 | 1140 | 1.0205 | 0.7356 | 0.7267 | 0.7356 | 0.7289 |
174
+ | 0.2335 | 4.28 | 1150 | 1.0734 | 0.7068 | 0.7194 | 0.7068 | 0.7116 |
175
+ | 0.2179 | 4.31 | 1160 | 1.0748 | 0.7085 | 0.7190 | 0.7085 | 0.7127 |
176
+ | 0.244 | 4.35 | 1170 | 1.0801 | 0.7030 | 0.7220 | 0.7030 | 0.7097 |
177
+ | 0.2151 | 4.39 | 1180 | 1.0332 | 0.7112 | 0.7176 | 0.7112 | 0.7140 |
178
+ | 0.2602 | 4.42 | 1190 | 1.0343 | 0.7134 | 0.7181 | 0.7134 | 0.7154 |
179
+ | 0.131 | 4.46 | 1200 | 1.0453 | 0.7128 | 0.7175 | 0.7128 | 0.7149 |
180
+ | 0.1966 | 4.5 | 1210 | 1.0673 | 0.7096 | 0.7160 | 0.7096 | 0.7121 |
181
+ | 0.2136 | 4.54 | 1220 | 1.0550 | 0.7166 | 0.7157 | 0.7166 | 0.7158 |
182
+ | 0.1625 | 4.57 | 1230 | 1.0690 | 0.7172 | 0.7148 | 0.7172 | 0.7156 |
183
+ | 0.2199 | 4.61 | 1240 | 1.0908 | 0.7112 | 0.7182 | 0.7112 | 0.7141 |
184
+ | 0.2028 | 4.65 | 1250 | 1.0991 | 0.7085 | 0.7200 | 0.7085 | 0.7130 |
185
+ | 0.2669 | 4.68 | 1260 | 1.0944 | 0.7134 | 0.7205 | 0.7134 | 0.7163 |
186
+ | 0.1408 | 4.72 | 1270 | 1.0827 | 0.7248 | 0.7198 | 0.7248 | 0.7215 |
187
+ | 0.2649 | 4.76 | 1280 | 1.0974 | 0.7199 | 0.7182 | 0.7199 | 0.7187 |
188
+ | 0.1512 | 4.8 | 1290 | 1.1159 | 0.7220 | 0.7212 | 0.7220 | 0.7214 |
189
+ | 0.1962 | 4.83 | 1300 | 1.1374 | 0.7161 | 0.7206 | 0.7161 | 0.7180 |
190
+ | 0.2322 | 4.87 | 1310 | 1.1435 | 0.7144 | 0.7226 | 0.7144 | 0.7178 |
191
+ | 0.2095 | 4.91 | 1320 | 1.1408 | 0.7106 | 0.7220 | 0.7106 | 0.7151 |
192
+ | 0.1534 | 4.94 | 1330 | 1.1466 | 0.7123 | 0.7248 | 0.7123 | 0.7170 |
193
+ | 0.2505 | 4.98 | 1340 | 1.1481 | 0.7123 | 0.7248 | 0.7123 | 0.7170 |
194
+
195
+
196
+ ### Framework versions
197
+
198
+ - Transformers 4.35.2
199
+ - Pytorch 2.1.0+cu121
200
+ - Datasets 2.15.0
201
+ - Tokenizers 0.15.0
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "roberta-base",
3
+ "architectures": [
4
+ "RobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "SUPPORTS",
15
+ "1": "REFUTES",
16
+ "2": "NOT_ENOUGH_INFO"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "NOT_ENOUGH_INFO": 2,
22
+ "REFUTES": 1,
23
+ "SUPPORTS": 0
24
+ },
25
+ "layer_norm_eps": 1e-05,
26
+ "max_position_embeddings": 514,
27
+ "model_type": "roberta",
28
+ "num_attention_heads": 12,
29
+ "num_hidden_layers": 12,
30
+ "pad_token_id": 1,
31
+ "position_embedding_type": "absolute",
32
+ "problem_type": "single_label_classification",
33
+ "torch_dtype": "float32",
34
+ "transformers_version": "4.35.2",
35
+ "type_vocab_size": 1,
36
+ "use_cache": true,
37
+ "vocab_size": 50265
38
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38d03624d1de58e0ce09cbcc689b146c3eff9fe5302b3cc65dc81e94e686470f
3
+ size 498615900
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4904e3b92fab79a4767d73e1ccdbb20c6a59c11d28c8ca8045c5d7f8d06200dd
3
+ size 4536
vocab.json ADDED
The diff for this file is too large to render. See raw diff